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Abstract— For several applications, robots and other computer
systems must provide route descriptions to humans. These
descriptions should be natural and intuitive for the human
users. In this paper, we present an algorithm that learns how
to provide good route descriptions from a corpus of human-
written directions. Using inverse reinforcement learning, our
algorithm learns how to select the information for the description
depending on the context of the route segment. The algorithm
then uses the learned policy to generate directions that imitate
the style of the descriptions provided by humans, thus taking
into account personal as well as cultural preferences and special
requirements of the particular user group providing the learning
demonstrations. We evaluate our approach in a user study and
show that the directions generated by our policy sound similar
to human-given directions and substantially more natural than
directions provided by commercial web services.

I. INTRODUCTION

Providing and following route directions is a task we face
on a daily basis, for example, when asking staff members
how to get to the right aisle in a library or shopping center, or
when moving in an unknown city using instructions provided
by a navigation device. When driving cars, we already rely
on web services such as Google Maps [1] and satellite
navigation systems that provide turn-by-turn instructions. For
some applications, however, giving turn-by-turn instructions
is suboptimal, for example, in indoor navigation where global
positioning is not available. In such applications, computer
systems should be able to give spoken directions of the
complete route in advance. This is relevant for information
kiosks in public buildings, tour guide robots in museums, or
navigation devices for visually impaired persons.

Existing commercial web services typically follow rigid
patterns for giving directions, usually referring to the metrical
distance to the forthcoming turning and the name of the street
that the user has to take, e.g., “Turn left after 267 m onto
Market Street.” While these descriptions meet the requirement
of guiding us to our target, they do not resemble the directions
a human would give. Instead of providing precise metric
information, humans usually refer to salient landmarks along
the route [2], trade off the amount of information that the
recipient requires against the memory load caused by long
descriptions, and take into account personal and cultural
preferenceswhen giving route directions [3].

The goal of this work is to develop a system that gives
route directions in spoken form that humans can naturally
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Fig. 1. The problem of giving route directions as a reinforcement learning
problem. Left: The route to be described (blue). Right: The corresponding
Markov decision process encodes all valid descriptions of the route.

and intuitively understand. We propose an approach that
learns how to generate route descriptions from a corpus of
human-generated descriptions. In this way, the user can train
our system to use a particular style of instructions that is
appropriate for the use case at hand. One of the key challenges
is to choose the right amount and type of information that a
route description should contain. What constitutes a “good”
description depends on the user and the situation. For example,
street names are hardly of use for visually impaired or blind
recipients. The person giving the directions has to trade off
the amount of information to give to the recipient. More
detailed descriptions may help the user to resolve ambiguities
and recover from errors but on the other hand require more
memory and are thus harder to remember. Hund et al. [3]
found in a user study that cultural backgrounds influence the
style of route directions, for example the use of street name
and cardinal directions (US) vs. landmarks (The Netherlands).
Many other factors influence the decision of which ingredients
to choose for composing a route description, such as personal
preferences, and the situation.

The contribution of this paper is a novel approach to learn
a model of human-like directions for routes. We formulate
the problem of giving directions as a Markov decision
process. Hence, we assume that humans seek to optimize
an unknown reward function when giving directions. We
apply maximum entropy inverse reinforcement learning to
infer the reward function from a set of directions provided
by humans. The reward function is expressed in terms of
features that capture relevant properties of the directions. Our
experimental evaluation suggests that the directions generated
by our approach are significantly more human-like than the
directions provided by a baseline method.



II. RELATED WORK

Studies in psychology, cognition, geo sciences, linguis-
tics, and computer science have investigated the principles
underlying the process of giving route descriptions. The
work by Allen [4] and Lovelace et al. [5] identify common
characteristics of good route descriptions. For instance,
humans typically give directions in linear order along the
projected route. Richter [6] provides an overview over related
studies and discusses the underlying cognitive principles.
While studies such as [2] point out the importance of including
landmarks in route descriptions, there is no clear consensus on
how to select appropriate landmarks for including them into
route descriptions. Many factors affect the route directions
given by humans, such as cultural backgrounds [3], gender [7],
and familiarity with the environment [5]. As it is impossible
to model all related influences, we instead propose a learning
algorithm that adapts the style of giving route directions to the
preferences of the particular user group by imitating humans.

Several research groups investigated how natural language
processing can be used to understand and follow route
directions [8], [9], which can be seen as the inverse problem
to generating directions. While their results provide valuable
insights, their methods are not directly applicable to the
problem of generating new route descriptions.

Look [10] implemented a system for generating overview
descriptions consisting of subgoals and neighborhoods along
the route that complement and structure turn-by-turn in-
structions according to cognitive principles. Dale et al. [11]
manually analyzed references and structures in a corpus
of human-written directions and derived a set of rules
for generating route descriptions that appear to be more
human-like. In our work, we follow a similar approach but
attempt to learn the user preferences directly from the human-
generated corpus instead of manually inferring a set of rules.

Several algorithms have been proposed for altering the
route in order to generate better descriptions, for example,
for finding the most reliable path [12], or the simplest
instructions [13]. Goeddel et al. [14] propose to use a particle
filtering technique for maximizing the chances for arriving at
the goal despite possible errors the user makes while traveling.
In contrast to these approaches, our algorithm learns policies
that cater to specific user groups with particular needs and
preferences. The generated descriptions are not necessarily
optimal with respect to efficiency, reliability, simplicity, or
similar metrics, as descriptions given by humans are not
optimal according to these metrics either.

Cuayáhuitl et al. [15] propose a hierarchical reinforcement
learning approach for choosing a route and generating suitable
directions along that route. The learned policy minimizes the
number of instructions necessary to describe the route and the
“user confusion” based on hand-crafted reward functions and
transition models that consider the user’s familiarity with the
environment, the distance between subsequent decision points,
and the saliency of the landmarks that the directions refer to.
In contrast to that, our approach learns how much information
and which pieces of information the route description should

include by imitating descriptions given by humans without
the need for estimating parameters of the underlying model,
such as the “user confusion” probabilities.

Inverse reinforcement learning techniques have been used
to address a variety of imitation learning problems including
autonomous helicopter aerobatics [16], learning pedestrian
navigation behavior [17], [18], and learning the preferences
of cab drivers [19]. In particular, Abbeel and Ng [20] suggest
to match features that capture relevant aspects of the behavior
that is to be imitated. However, feature matching does not lead
to a unique cost function. To resolve this ambiguity, Maximum
Entropy Inverse Reinforcement Learning [21] relies on the
principle of maximum entropy [22] and, hence, aims to
find the policy with the highest entropy subject to feature
matching. In this work, we apply Maximum Entropy Inverse
Reinforcement Learning to learn a model of “human-like”
route descriptions from a set of directions given by humans.
Our approach is able to imitate their style of route directions
in order to generate route descriptions that appear natural
and intuitive to the recipients.

III. LEARNING TO GIVE DIRECTIONS FOR ROUTES
FROM HUMAN DEMONSTRATIONS

The objective of this work is to learn a model of natural-
language route directions from human demonstrations. We
model the problem of giving directions for routes as a
reinforcement learning problem in terms of a Markov decision
process. We apply inverse reinforcement learning to elicit the
unknown reward function from a set of directions provided by
humans. The reward function captures relevant characteristics
of the route directions and allows us to apply reinforcement
learning to generate directions for new routes that mimic the
human demonstrations.

A. Giving directions as a reinforcement learning problem

A Markov Decision Process (MDP) is given by a set
of states s ∈ S, a set of actions a ∈ A, state transition
dynamics in terms of a probability distribution P (s′ | s, a)
of the next state s′, and a reward function r : S × A → R.
A trajectory τ = {s1:T , a1:T } is a sequence of states and
actions that obeys the state transition dynamics. A policy
π(a | s) is given by a probability distribution over actions a
to take when in state s. The goal of reinforcement learning
is to compute a policy π(a | s) that maximizes the expected
cumulative reward. In contrast to that, inverse reinforcement
learning is the problem of recovering an unknown reward
function given a set of demonstrations {τ1, . . . , τn}. In this
work, we apply inverse reinforcement learning as a reward
function cannot be specified easily.

As illustrated in Fig. 1, we model the environment m as a
graph G = (V,E), where the nodes v ∈ V represent intersec-
tions, and the edges e ∈ E represent streets. The space of all
directions that guide a user through the environment m from
its current location v1 to a specific destination location vgoal
along a given route is encoded by a deterministic MDP M . In
particular, each action a of the MDP corresponds to a single
instruction that guides the user from node vi to node vj .



Consequently, each trajectory τ in the MDP M corresponds
to valid directions that guide the user all the way from its
current location to its target location.

B. Maximum entropy inverse reinforcement learning

Maximum entropy inverse reinforcement learning (MaxEnt
IRL) [21] assumes that the behavior of the agent is governed
by a probability distribution of trajectories that is a function
of features fτ ∈ Rn. The principle of maximum entropy [22]
suggests to select the distribution that least favors any
particular outcome while satisfying observed constraints.
Accordingly, MaxEnt IRL considers the maximum entropy
distribution of trajectories whose expected feature values
match the observed feature values f̃τ , yielding

f̃τ = Epθ [f(τ)]. (1)

Hence, the algorithm optimizes the objective function

p?θ = argmax
pθ

Hpθ(τ) such that f̃τ = Epθ [f(τ)], (2)

where H(pθ) is the Shannon entropy of distribution pθ . The
resulting distribution p?θ(τ) is given by

p?θ(τ) ∝ e−θ
T f(τ), (3)

and the gradient with respect to its parameters θ is

f̃τ − Epθ [f(τ)]. (4)

We apply gradient-based optimization to iteratively refine
the parameters θ to achieve feature matching. To this end, we
use Ziebart’s efficient dynamic programming algorithm [21]
to compute the expected visitation frequency Dθ(si, ai) of
each state-action pair (si, ai) ∈ τ . The expected feature
values Epθ [f(τ)] induced by the current parameters θ are
then given by

Epθ [f(τ)] =
∑

(si,ai)∈τ

Dθ(si, ai)f(si, ai). (5)

C. Features

Inverse reinforcement learning uses feature vectors to
characterize each possible solution of the task to be learned.
In our scenario, the features represent properties of the route
directions such as the length of the description, the landmarks
mentioned in the instructions, or the frame of reference used
to indicate turn directions.

Tab. I shows all features implemented in our system. They
can be grouped into three categories:

a) Amount of information: The amount of information
that the directions should include depends on the situation
in which the user gives the directions to the recipient. For
example, if the recipient will receive the directions as a printed
text that he can take along while traveling, the descriptions
can be more detailed compared to situations in which he
has to memorize the whole description. We introduce two
features to measure the amount of information on different
levels: First, we count the total number of instructions.
Second, we define a feature measuring the number of pieces
of information within each instruction inspired by Mark’s

TABLE I
FEATURES CHARACTERIZING ROUTE DESCRIPTIONS. SEE SEC. III-C FOR

DETAILED EXPLANATIONS.

Feature Description
number of instructions total number of instructions
number of slots number of pieces of information an instruc-

tion contains (see Sec. III-C)
abstraction level turn-by-turn instruction, chunked instruction,

or destination description
segment length length of the described route segment in

meters
number of intersections number of intersections described by the

instruction
street name references number of street names mentioned
street name saliency saliency of the street name if mentioned
cross street references number of crossing street names mentioned
cross street saliency saliency of crossing street if mentioned
street category ref. number of street categories mentioned
cross street cat. ref. number of crossing street categories
“head towards” ref. number, saliency and distance of landmarks

that indicate the heading, but are not part of
the route, e.g. “head towards the ocean”

“head towards” saliency
“head towards” distance
landmark reference number of landmarks mentioned
landmark distance distance of landmark if mentioned
landmark direction direction of landmark relative to recipient

(back, side, ahead, etc.)
landmark saliency saliency of landmark based on the number

of hits returned from a web search for the
landmark’s name (see Sec. IV-A for details)

turn anchor turn at landmark / after metric distance / etc.
metric reference discretized mileage mentioned, e.g. “turn

right after 200 m”
counter reference counter value mentioned, e.g. “turn right at

the second intersection”
reference frame at turns cardinal (e.g. “turn north”), allocentric

(e.g. “turn left”), or using counter (e.g. “take
the second exit in the roundabout”)

reference frame at start cardinal, relative to landmark, or using street
name (e.g. “Start on Main St.”)

“n times” chunking e.g. “turn right twice”

concept of “slots” [23]. For instance, the instruction “Turn
right at the second intersection into Market Street” contains
three pieces of information that the recipient has to remember.

b) Abstraction levels: Turn-by-turn instructions refer to
each decision point individually (e.g. “Turn right”), chunked
instructions that direct the recipient across multiple decision
points (e.g. “Go straight ahead until you get to the church”),
and destination descriptions just give an intermediate goal
without specifying how to get there (e.g. “Drive to Freiburg”).
We define features that count the frequencies of these
abstraction levels as well as features measuring the number of
decision points and the length of the route segment covered
by an instruction.

c) Description style: Personal and cultural preferences
also influence the description style, e.g., the person giving the
directions can use cardinal directions, allocentric directions, or
directions relative to landmarks to indicate in which direction
the recipient has to travel. Furthermore, they can choose to
give street names, mileages, etc. Therefore, we define features
that count the frequencies of these types of information.

For learning how to choose suitable landmarks, we define
features of the saliency of the landmarks (see Sec. IV-A), the
distance between the landmarks and the decision points, and
the directions of the landmarks relative to the user.



TABLE II
CONTEXTS CHARACTERIZING THE ROUTE SEGMENT AND ITS

ENVIRONMENT. SEE SEC. III-D FOR DETAILED EXPLANATIONS.

Context Description
is at start true if recipient is at start location
is at goal true if recipient is at goal location
is dead end true if recipient’s position is in a dead end
is turn true if recipient has to change direction
turn angle discretized turn angle (hard, right, slight)
navigation complexity complexity measure of the intersection
landmark present true if a suitable landmark is nearby
best landmark saliency highest saliency of nearby landmarks
street name saliency saliency of the current street name
street category category of the current street (e.g. foot path)
street category diff. difference between street category of current

and next road segment

D. Contexts
The description of a particular route segment typically

depends on the environment of the route segment. For
example, turning at complex intersections requires more
information than simply going straight ahead. To integrate the
context information into the learning process, we introduce
contexts as functions c : A→ K that map properties of the
route segment covered by actions A to discrete, finite sets K
(e.g. the set of discretized turn angles). In contrast to features,
contexts only depend on the route and its surroundings, but
not on the user’s description.

For example, we calculate a complexity measure of each
intersection based on the number and geometry of the
streets meeting at that intersection, the direction in which
the route continues, and the street names of the inbound
and outbound segment of the route. Similarly, we define
discretized measures for the turn direction angle, for the
street category ranging from foot paths to motorways, and
for the presence of landmarks near the decision point.

In line with Ziebart’s approach for context-aware inverse
reinforcement learning [19], we consider features fk that are
only active in a particular context, i.e.,

∀k ∈ K : fk(a) :=

{
f(a) if c(a) = k

0 otherwise.
(6)

To determine which features depend on which contexts,
we define for each feature f the probability distribution
P (f) as the histogram of feature values observed during
the demonstrations. We then compute for each feature and
each context the mutual information (information gain)

MI (f ; c) = H(f)−H(f | c), (7)

where H(·) denotes the Shannon entropy, and P (c) is the
distribution of context values in the training data. The
mutual information MI (f ; c) measures how informative the
context is for determining the distribution of feature values.
Following the approach commonly used in decision tree
learning [24], we combine the features and contexts yielding
the highest information gain. For instance, the “is turn”
context provides a high information gain for the feature
“street name references”, as humans mention street names
more often when turning than when going straight ahead.

IV. EXPERIMENTAL EVALUATION

We conducted a two-part user study for evaluating our
approach. In the first part, we collected a corpus of directions
for a set of given routes from the participants. Using this
corpus, we learned a reward function, which we then used to
generate descriptions for a set of test routes. In the second part
of the experiment, we presented human-written and computer-
generated directions to other participants and asked them to
rate how natural the descriptions sound to them.

A. Acquiring training data

In order to acquire training data for learning a route
description policy, we asked 13 participants in a web-based
survey to describe up to three routes within Freiburg. All
participants were locals and fluent in English. We provided
an unmodified, interactive OpenStreetMap map to the partici-
pants and asked them to describe the route marked on the map.
The instructions introducing the experiment stated that the
recipient of the description was a non-local business partner
who had some rudimentary knowledge about the city. The
recipient would print out the directions and take them along
while walking, but would not have a map at his disposal.

In this experiment setup, we collected a corpus of 28
descriptions for ten routes ranging from 0.6 km to 2.9 km in
both urban and downtown environments.

For each route, our system generated natural-language
instructions corresponding to the route segments based on
OpenStreetMap data. All generated descriptions are valid in
the sense that they correctly describe the navigation actions
the recipient has to execute in order to reach the target.

In order to estimate the saliency of landmarks, we use a
two-step metric. First, the algorithm counts the frequency of
each category of landmarks in the human-written descriptions,
yielding a saliency value for each landmark category. We
then weight the individual saliency of each landmark within
its group. For estimating landmark saliency, commonly used
metrics rely on the visual appearance and semantic attraction
of the landmark (e.g. [25]). Unfortunately, publicly available
data sources such as OpenStreetMap do not provide the
information these metrics require. Hence, our algorithm
resorts to querying a web search engine to get a rough saliency
estimate. For landmarks with unique proper names (e.g. Eiffel
Tower), the algorithm searches for the location and exact name
of the landmark (e.g. Paris “Eiffel Tower”) and estimates
the saliency of the landmark based on the relative number of
hits. We argue that landmarks that are often mentioned on
the web are likely to be better known and more salient. For
unnamed landmarks and landmarks without unique names,
such as branches of banks or fast-food chains, we estimated
the individual saliency based on the density of landmarks of
the same type in the vicinity, arguing that landmarks are only
valuable if they are distinguishable and not ambiguous. If the
map contained enough information on the shape and physical
appearance of the landmarks, then the distinctiveness and the
visibility of the landmarks from the user’s view point could
also be incorporated into the saliency measure.



TABLE III
EXAMPLE INSTRUCTIONS FOR A GIVEN ROUTE

Human-provided description
Start going through the Katharinenstraße. When you get to a huge
intersection, turn left onto the big street. Go straight until you come to
the trail of the tram. Turn right there. Walk along the trail of the tram,
then at the Bertoldsbrunnen you have to turn left onto the Salzstraße.
Walk up to the Augustinermuseum, where you have to turn right and
enter the Augustinerplatz.

Generated by our algorithm
On Katharinenstraße start heading towards the Altstadt. Go along
the street until you encounter a large intersection. Turn left onto the
Friedrichstraße, and pass the Vapiano on your right. Go ahead until you
come to the tram track. Turn right there onto the Kaiser-Joseph-Straße.
Turn left after the Drogerie Müller. Turn right at the second possibility
and enter the Augustinerplatz. You are at your target when you get there.

Google Maps description (similar result for Bing and MapQuest)
Head north on Katharinenstraße toward Rheinstraße. Turn right onto
Rheinstraße. Turn right onto Merianstraße. Continue onto Rathausplatz.
Continue onto Universitätsstraße. Turn left onto Bertoldstraße. Continue
onto Salzstraße. Turn right onto Augustinerplatz.

As natural language processing is beyond the scope of
this work, we manually matched each description in the
collected corpus to the closest description generated by the
MDP corresponding to the route. This step implicitly corrects
obvious errors in the human-provided descriptions, such
as left-right confusions or miscounted intersections, as the
generating model always produces correct instructions. We
also replaced descriptions of the appearance of landmarks
with the name of the respective landmark as we only consider
which landmarks to include in the directions, but not how to
describe them in words.1

Based on the corpus of route descriptions, our algorithm
learned a weight vector. To generate a description for a
novel route, the algorithm generates the corresponding MDP,
computes a policy for the MDP using Ziebart’s algorithm,
and samples a path through the MDP according to the learned
policy to generate a route description.

B. Experimental setup

The goal of our work is to imitate the way humans give
directions. Hence, we evaluated how well the learned policy
imitates the directions given by humans in a second web-based
experiment. We provided the participants with a route marked
on an interactive OpenStreetMap map together with either a
human-written description gathered in the first experiment, a
description generated automatically according to the learned
policy, or a description generated by one of three popular
web services (Google Maps, Bing, and MapQuest).

For the computer-generated descriptions, we used the same
routes as in the first experiment to allow for direct comparison
with the human-written descriptions, as well as four novel
routes. We asked the participants to answer the question “How
natural does this description sound to you?” by dragging a

1Example: rewrite “you reach a square with a statue of a rider in the middle”
as “you reach the Bertoldsbrunnen fountain.” In future work, an additional
step could be introduced in the text generation procedure that substitutes
the names of the landmarks back to descriptions generated from additional
sources, such as the Wikipedia entry of the landmark or information from
tourist guide books.
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Fig. 2. Results of the second user study. The values on the horizontal axis
represent the user ratings of the directions from 0 (“sounds like a computer”)
to 100 (“sounds natural (human-like)”). The box plots show the minimum,
lower quartile Q1, median (thick line), mean (asterisk), upper quartile Q3,
and maximum, and outliers (circles). Data points are considered to be outliers
if they are outside the 1.5 interquartile range [Q1 − 1.5(Q3 −Q1), Q3 +
1.5(Q3 −Q1)]. N = 54 for (a) and (b), N = 22 for (c).

continuous slider between “sounds like a computer” and
“sounds natural (human-like).” Each subject rated twelve
descriptions in random order, each description corresponding
to a different route. The subjects were allowed to go back to
previous routes to revise their answer.

We processed the human-written descriptions according to
the manual annotations that the algorithm used for learning
the policy. We furthermore fixed typos and spelling errors. As
a result of that, the regenerated descriptions have the same
structure and contain the same information as the original
input, but use the same formatting as the computer-generated
instructions. Tab. III provides example descriptions for a
given route.

C. How human-like are the directions generated by our
approach?

Fig. 2 shows the distribution of the ratings that the
participants of the second experiment assigned to the routes
and the corresponding box plots. The participants generally
rated the descriptions generated by our approach to sound
more natural than the descriptions provided by the commercial
web services. The difference is statistically highly significant
(t-test with 99.9% significance).
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Fig. 3. The difference between the feature vector of the demonstrations
and the learned feature expectations quickly converges.

The participants rated the generated descriptions and the
human-written descriptions similarly. The mean of the slider
values are slightly higher for the human-written descriptions
(71.7) compared to the generated descriptions (69.5), but the
difference is not statistically significant. Both distributions
have high variances, reflecting that there is no clear consensus
among the participants what constitutes “natural” instructions.

We furthermore analyzed the number of training instances
our system requires. Fig. 3 suggests that a low number of
training samples is sufficient to achieve this level of similarity
between human and generated directions, as the Euclidean
distance between the feature vector of the demonstrations
and the feature expectations quickly converges.

The generated descriptions sometimes contain repetitions,
for example if two subsequent instructions refer to the same
landmark or if the description contains instructions like “Keep
going straight ahead” multiple times in a row. According to
participants of the second experiment, repetitions make the
directions appear less natural. In our framework, however,
the Markov property of the MDP prohibits to define a
suitable feature for measuring repetitions, as features may
only depend on the current action, but not on the previous path
leading up to the current state. An additional filtering step
after generating the descriptions could address this problem
by combining subsequent repetitive instructions to a single
instruction that sounds more natural.

V. CONCLUSIONS

In many applications, robots and other computer systems
are required to provide route descriptions to humans. It is
desirable that these descriptions are natural and intuitive to hu-
man users. In order to generate such natural descriptions, we
presented an approach that is based on inverse reinforcement
learning and computes a reward function based on human
demonstrations. This allows for generating route directions
that sound natural to humans by imitating the description
style of a particular user group. Our algorithm learns from
a corpus of human-written route descriptions which pieces
of information are relevant depending on the route and its
environment. We carried out a user study to evaluate the
quality of the descriptions generated by our approach in terms
of how natural they appear to human participants. The results
suggest that our learning algorithm produces descriptions that
sound similarly natural as human-written descriptions and
clearly outperform the descriptions generated by commercial
routing web services.
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