R. K├╝mmerle, B. Steder, C. Dornhege, A. Kleiner, G. Grisetti, and W. Burgard.
Large Scale Graph-based SLAM using Aerial Images as Prior Information.
Journal of Autonomous Robots, 30(1):25-39, 2011.


The problem of learning a map with a mobile robot has been intensively studied in the past and is usually referred to as the simultaneous localization and mapping (SLAM) problem. However, most existing solutions to the SLAM problem learn the maps from scratch and have no means for incorporating prior information. In this paper, we present a novel SLAM approach that achieves global consistency by utilizing publicly accessible aerial photographs as prior information. It inserts correspondences found between stereo and three-dimensional range data and the aerial images as constraints into a graph-based formulation of the SLAM problem. We evaluate our algorithm based on large real-world datasets acquired even in mixed in- and outdoor environments by comparing the global accuracy with state-of-the-art SLAM approaches and GPS. The experimental results demonstrate that the maps acquired with our method show increased global consistency.

Download: Online Version

BibTeX entry:

  author = {K\"ummerle, R. and Steder, B. and Dornhege, C. and Kleiner, A. and Grisetti,
     G. and Burgard, W.},
  doi = {10.1007/s10514-010-9204-1},
  title = {Large Scale Graph-based {SLAM} using Aerial Images as Prior Information},
  journal = {Journal of Autonomous Robots},
  number = {1},
  volume = {30},
  year = {2011},
  pages = {25--39}