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Following another person’s gaze in order to achieve joint attention is an important
skill in human social interactions. This work analyzes geometric aspects of the gaze
following problem and proposes a learning-based computational model for the emer-
gence of gaze following skills in infants. The model acquires advanced gaze following
skills by learning associations between caregiver head poses and positions in space,
and utilizes depth perception to resolve spatial ambiguities. It demonstrates that the
succession of different “stages” of gaze following competence observed in infants can
be explained with a single, generic learning mechanism.
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0 Preface

The work for this paper has been done during my stay in the Complex Systems &
Cognition Laboratory at the University of California, San Diego, with Jochen Triesch
being my supervisor. It is part of the interdisciplinary MESA project (Modeling the
Emergence of Shared Attention) at UC San Diego, a larger effort to understand the
emergence of shared attention in normal and abnormal development supported by
the National Alliance for Autism Research. Parts of this paper have already been
published and presented at the workshop “Selforganization of adaptive behaviour” in
Ilmenau, Germany [1] and the “International Conference on Development and Learn-
ing” [2] in San Diego, USA. Compared to the published conference papers this seminar
paper has a slightly longer introduction and an additional chapter about the new sim-
ulation platform, with implementation details of the model. Further work has been
done on the model, to make it more robust with respect to parameter variations. It
utilizes now a different way of representing memory, which I think is clearer and more
straight forward. There also is a new section with a third experiment that tests how
a cluttered training environment affects the performance of the model.

This paper could not exist without the help and support from several people: I want
to thank Jochen Triesch, Christof Teuscher and Gedeon Deák for fruitful discussions,
and Alan Robinson, Erik Murphy-Chutorian and Melanie Keller for comments on the
draft. I also thank the German National Merit Foundation for their support, especially
for the financial aid for my stay in San Diego.
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1 Introduction

Why a computational model for the acquisition of gaze following in infants? Current
accounts of cognitive development are largely descriptive. Little is known about how
the many factors that change in the infant brain cause social specific skills to emerge.
The developmental trajectory for a particular cognitive skill such as gaze following
may depend in complex ways on the course of development of other skills such as face
processing. Little is known about such dependencies and they are notoriously difficult
to study experimentally. Computational models can help to theorize about develop-
mental phenomena like the emergence of shared attention, and suggest explanations
that in turn can guide further experimental work. The benefits of such an approach
have been discussed in the literature (e.g. [3, 4]) and discovered by a growing commu-
nity of scientists. Also, there are several international conferences that explicitly deal
with cognitive modelling.

1.1 Shared attention and gaze following

The capacity for shared attention or joint attention is a cornerstone of social intelli-
gence. It refers to the matching of one’s focus of attention with that of another person,
which can be established for example by gaze following. Attention sharing plays an
important role in the communication between infant and caregiver [5]. It allows infants
to learn what is important in their environment, based on the perceived distribution
of attention of older, more expert individuals. In conjunction with a shared language,
it makes children able to communicate about what they perceive and think about,
and to construct mental representations of what others perceive and think about.
Consequently, episodes of shared attention are crucial for language learning [6].

Some authors make a subtle distinction between joint and shared attention: joint
attention only requires that two individuals attend to the same object, whereas shared
attention also implies that each have knowledge of the other individual’s attention to
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1 Introduction

Figure 1.1: Left: Gaze following experiment with frontal (F), lateral (L) and rear (R)
objects. Caregiver (C) and infant (I) are facing each other. Right: The
caregiver looks at the lateral target. Six-month-old infants shift their gaze
in the correct direction, but will most likely attend to the first object
along their scan path (Butterworth error). 18-month-olds follow gaze to
the correct lateral object, second in their scan path.

this object. In this paper, we will only be concerned with joint visual attention, which
has been defined as looking where somebody else is looking, and which we view as an
important precursor to the emergence of true shared attention. While initially, joint
visual attention is mostly initiated by the caregiver, young infants soon acquire gaze
following skills and initiate joint attention themselves [7]. There has been a significant
body of research studying how these skills develop since the pioneering work by Scaife
and Bruner [8].

1.2 Developmental stages in gaze following

Infants do not follow another person’s gaze from their birth on: three-month-old in-
fants respond slowly or almost not at all to a parent’s voice or gesture, but by 10
months, their responses are better organized, more controlled, and predictable. By
their first birthday most infants can follow adults’ gaze and pointing gestures [9, 10].
This schedule should be understood as a rough guideline. In fact, there has been a
considerable debate about when gaze following emerges in human infants with esti-
mates ranging from 6 to 18 months, and there is evidence for substantial individual
differences [11].

Different distinguishable stages and effects during the development of gaze following
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1 Introduction

have been discovered in cross-sectional studies: Butterworth and Jarrett tested gaze
following abilities of 6-, 12- and 18-month-old infants in a controlled environment
[12]. In their experiments the infants were seated facing their mothers at eye level
in an undistracting laboratory. Two or four targets of identical shape and color were
presented at the same time as pairs on opposite sides of the room, also at the infants’
eye level. Mother and infant were facing each other in every trial, until the mother
shifted her gaze to a designated target. The infants’ reactions were monitored and
analyzed. Figure 1.1 (left) shows a typical setup of the experiments. All tested infants
could shift their gaze to the correct direction and were able to locate targets presented
within their field of view. However, only the 18-month-old infants followed gaze to rear
targets, while younger infants would not turn to search for targets behind them. When
multiple target pairs were presented at the same time, for example the frontal and
lateral targets in Fig. 1.1, 6-month-old infants were not able to tell which target their
mother was looking at: when the mother turned to look at a lateral object, they shifted
their gaze in the correct direction, but were likely to end the gaze shift at the first
(frontal) object along their scan path, as shown in Fig. 1.1 (right). We call this effect
the “Butterworth error”. The infants in the 12 month group attended significantly
more often to the correct object, but only the 18-month-old infants reliably followed
their mother’s gaze to the second (lateral) target.

Butterworth and Jarrett associate a developmental stage with each of the age groups:
infants in the “ecological stage” around 6 months follow gaze in the right direction but
locate only frontal targets correctly, and only if they are first along the scan path. 12-
month-old infants in the “geometric stage” are able to locate the target objects more
accurately and overcome the Butterworth error in some of the trials. Infants who have
reached the “representational stage” around 18 months overcome the Butterworth error
even more reliable and are also able to locate targets behind them. The emergence
of those stages is explained with three different mechanisms of gaze following that
become effective in a sequential order and correspond to the observed stages [12].

The postulation of three different mechanisms is not necessary to account for the
observed patterns of behavior, however. Let us take a closer look at the geometry
of gaze following. Following somebody’s gaze in order to establish joint attention is
a non-trivial task in cluttered environments. By observing someone’s head pose, one
can only infer the person’s direction of gaze, rather than the distinct focus of the
person’s attention. Gaze following therefore requires scanning for an object along an
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1 Introduction

estimate of a person’s line of sight. For a precise estimate, infants have to evaluate
the orientation of the caregiver’s head and eye, as well as their own relative position
to the caregiver.

An important line of research is concerned with the specific features that infants use
to estimate the adult’s direction of gaze. There is evidence that younger infants rely
exclusively on the caregiver’s head pose [13], while between 12 and 14 months there
is a significant increase in the reliance on the eye orientation [14]. By 18 months,
gaze following is reliably produced on the basis of eye movements alone [12]. The
models described in this paper do not explicitly differentiate between head and eye
orientations. We will therefore use the term ‘head pose’ in a general meaning, referring
to both head or eye orientations.

The better the infants can discriminate different head poses, the better they can
narrow down the region in space where they expect the caregiver’s gaze target to be.
Accurate depth perception can help to judge if objects are in the estimated line of
gaze, and seems to be critical in situations where objects are in the projection of the
caregiver’s line of gaze but at different distances, as in Butterworth’s experiments.
There is evidence that infants’ perception of some depth cues continues to develop
until at least 7 months [15]. Thus, limitations in both head pose discrimination and
depth perception could have an impact on infants’ ability to acquire advanced gaze
following skills and may be part of an explanation of the staged development of gaze
following.

1.3 Contribution of this work

In order to explain the emergence of gaze following one has to explain the underlying
dynamical processes of development, rather than just the snapshots provided by cross-
sectional studies. In the remainder of this paper we propose a computational model in
which the infant acquires sophisticated gaze following skills and is able to overcome the
Butterworth error by utilizing depth perception. It demonstrates that the observed
behaviors can emerge from a single learning mechanism and thus provides a more
parsimonious account for the emergence of gaze following than the three different
mechanisms proposed by Butterworth and Jarrett.

5



2 Previous computational models

Two different kinds of theories of the emergence of gaze following have been proposed.
Modular or nativist theories posit the existence of innate modules, which are typically
thought to be the product of evolution rather than to emerge from learning (e.g. [16]).
Learning based accounts explain the emergence of gaze following by postulating that
infants learn that monitoring their caregiver’s direction of gaze allows them to predict
where interesting visual events occur. This idea goes back to Moore & Corkum [17]. At
present, the experimental evidence for or against a learning account of the emergence
of gaze following in infants is still inconclusive, but computational models have shown
that it is possible to acquire gaze following skills through learning.

Several computational models have been developed that address different aspects of
the gaze following problem. Two of them show how infants can learn gaze following
without an external supervisor giving rewards for accomplished joint attention. Both
are discussed in the remainder of this section.

Carlson and Triesch recently proposed a computational model for the emergence of
gaze following [18]. Their model infant predicts where salient objects are on the basis of
the caregiver’s head pose. They use a temporal difference (TD) learning approach [19]
to show how an infant can develop these skills only driven by visual reward. The infant
receives different rewards for looking at the caregiver and looking at salient objects.
This reward structure can be adjusted to simulate certain symptoms of developmental
disabilities like Autism or Williams Syndrome. Experiments with the model make
predictions about the emergence of gaze following in children with those disabilities.
Further experiments with this model were conducted by Teuscher and Triesch [20],
focusing on the effect of different caregiver behaviors on the emergence of infants’ gaze
following skills.

The Carlson and Triesch model operates on a finite set of possible object locations
without any spatial relationships. Each location has a one-to-one correspondence with
a distinct caregiver head pose. One object is located at any time at any one of these
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2 Previous computational models

positions. The caregiver agent has a certain probability of looking at that object. The
model infant consists of two reinforcement learning agents: the ‘when-agent’ decides
whether to continue fixating on the same location or to shift gaze, while the ‘where-
agent’ determines the target of each gaze shift. Both agents try to maximize the long
term reward obtained by the infant through temporal difference learning. The infant
perceives the caregiver’s head pose whenever it attends to the caregiver, and learns to
exploit the correlation between the head pose and the location of salient objects. This
model supports the theory of the acquisition of gaze following by learning. However,
it is not adequate for explaining the stages observed by Butterworth and Jarrett since
it does not deal with geometric relationships and spatial ambiguities.

A model by Nagai et al. has been implemented on a robotic platform [21]. The
robot learns to follow the gaze of a human caregiver by offline training with recorded
examples. Two separate modules, one for visual attention and one for learning and
evaluation, output motor commands for turning the robot’s camera head. A proba-
bilistic gate module decides which of the two proposed motor commands gets executed.
The probability for selecting the output of the learning module is changed from zero
to one according to a predefined sigmoid function during the learning process. The
visual attention module locates faces and salient objects by extracting color, edge, mo-
tion, and face features from the camera images. It uses a visual feedback controller to
shift the robot’s attention towards interesting objects. The learning module consists
of a three-layered neural network that learns a mapping from gray-level face images to
motor commands by backpropagation. The network is trained with the current motor
position as teacher signal and the caregiver image as input, whenever a salient object
is fixated.

The authors mention that every head pose only specifies a line of gaze rather than
a distinct location in space. They deal with this ambiguity by moving the cameras
incrementally towards the learned coordinates and stopping the movement at the first
encountered object. Their model does not include depth perception and cannot resolve
situations where distracting objects lie in the projection of the caregiver’s line of gaze
in the camera images, but at a different distance (compare Fig. 1.1, right). The
model is not able to overcome the Butterworth error, which seems to be an essential
characteristic of advanced gaze following skills in infants.

In conclusion, none of the models in the literature can correctly capture how infants
eventually learn advanced gaze following skills as observed in 18-month-old infants.
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3 A new gaze following model

Our new model specifically addresses the spatial ambiguities in the learning of gaze
following, and is able to faithfully reproduce infants’ abilities to resolve them. It
consists of a simulated environment and two different agents, an infant (Inf) and
its caregiver (CG). The infant learns to follow the caregiver’s gaze by establishing
associations between the caregiver’s head pose and positions in space where interesting
objects or events are likely to be present. This online learning mechanism is driven
by visual feedback, based on the infant’s preference for looking at the caregiver’s face
and salient objects in its environment. The infant exploits the correlation between
the caregiver’s line of gaze and the locations of salient objects to learn associations
between the two. The perceptual preferences and the ability to shift gaze to interesting
objects are important prerequisites for the learning process. We assume that both are
operating before infants show simple gaze following behavior (i.e., before an age of six
months).

The environment is similar to the setups in the experiments by Butterworth and
Jarrett [12], with both agents’ eyes and all objects being at the same height from
the floor. The learning process is divided into trials: objects are placed at random
positions in the environment in every trial. One of them is selected as the caregiver’s
focus of attention. The object locations and the caregiver direction of gaze do not
change during a trial. The infant is looking at the caregiver at the beginning of every
trial but can change its direction of gaze. The model operates in discrete time steps
t = 0, . . . , T . Each trial lasts for T = 10 time steps.

3.1 Environment, objects, and a caregiver

The environment is represented by a two-dimensional 7x9 grid with cartesian coor-
dinates. Objects indexed with i = 1, . . . , N are introduced by specifying their grid
coordinates (xi, yi) and a scalar saliency si ∈ [0.5, 1]. Both agents a ∈ {Inf, CG} are
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3 A new gaze following model

defined by their positions in space (xa, ya), a base orientation ϕ0
a and the current di-

rection of gaze ϕa(t) ∈ [−180◦, +180◦], relative to ϕ0
a. In addition to the current angle

of gaze we introduce the function da(t), which measures the distance from an agent to
the point that the agent is currently looking at. The caregiver also has an associated
saliency sCG = 0.1. All angles and distances are discretized. We use 16 different values
for angles (each corresponds to a range of 22.5◦), and 6 different values for distances
(covering all possible distances in the 7x9 grid).

Since we focus on the spatial aspects of the learning problem and the infant’s ability
to learn gaze following without external task evaluation, we use a simple caregiver
agent that does not react to the infant’s actions. In every learning trial we let the
caregiver look at the object i with the highest saliency si by setting its head/eye
rotation ϕCG(t) to the appropriate value.

3.2 The infant agent

The infant has to use its limited visual perception to gain information about the
environment. The architecture of the infant agent is shown in Figure 3.1. It can
be divided into three parts: a vision system for the perception of objects and their
saliencies, a system for determining the caregiver’s head pose and estimating its line of
sight, and a memory and action selection system for shifting gaze to potential object
locations. Across these three parts, there are different layers of neurons: the visual
input V , the encoded caregiver head pose h, an interest layer I, two memory layers M

and Mgate, and an action layer A. Their activations are represented with scalar values.
All layers use a body-centered polar coordinate system with discretized angle θ and
radius r. The only exception is the representation of caregiver’s head pose h, which
contains a representation of the caregiver’s head orientation. Connections between the
layers using body-centered representations link only neurons encoding the same area
of space. Finally, there is a map of the saliencies of objects in the environment S and
a focus of attention F , which is used to model foveated vision with a limited field of
view in the infant. S and F should not be thought of as layers of neurons, but they
also use the same body-centered representation. The activations shown in Fig. 3.1
correspond to the state of the model shown in Fig. 5.3.

9



3 A new gaze following model

CG head pose
 φCG

New gaze
φ'Inf 

, d'Inf
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Inf gaze φInf , dInf

Focus of attention F

R

“Soft”
gate

Vision System

Gaze Estimation

Memory & Action Selection

Memory M

Memory Gate Mgate

Action A

Figure 3.1: The infant agent with spatial representations in body-centered coordinate
systems. Dark shading in the grid cells stands for high activation. The
visual input V is the product of the object saliencies S and the focus of
attention F . If the infant looks at the caregiver it estimates the caregiver’s
head pose h. This is mapped to an estimate of the caregiver’s line of gaze,
which is fused with the visual input into the interest map I. The infant
shifts its gaze to the area with the highest activation in the action map
A. Mgate is a memory representing which areas the infant has already
inspected during the current trial, whereas M is a memory for the rewards
received at these locations. Note that the discretization of space in the
figure is coarser than the one actually used in the simulations.

3.2.1 Infant Vision System

Visual Perception is the infant’s only source of information about its environment. It
receives two different kinds of visual data: the caregiver head pose, encoded in the
layer h(θ, t) described below, and visually observed object saliencies, encoded in the
visual input layer V (θ, r, t). In several places we use discretized probability density
functions Gσ(x) of the normal distribution as tuning curves for encoding input data
for the infant agent. Extra normalization is necessary to ensure that the sum of the
probabilities under the discrete gaussians over all integers x is equal to one. We define:

Gσ(x) =
1

Z
exp

(
− x2

2σ2

)
, with Z chosen such that

∑
x∈X

Gσ(x) = 1 . (3.1)
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3 A new gaze following model

The locations (x, y) of the salient objects and the caregiver are expressed as body-
centered polar coordinates (θ′, r′). The saliency value for each grid cell in S is the
sum of all saliencies sk, k ∈ {1, ..N, CG} falling into the particular area of space. The
infant’s limited accuracy in depth perception is modeled by a gaussian tuning curve
that “blurs” the saliencies in S:

S(θ, r, t) :=
∑

k | θ′
k
=θ

sk(t) ·Gσd
(r′k(t)− r) . (3.2)

The effect of the gaussian can be seen in the illustration of S in Fig. 3.1: There are
three salient objects in the room (dark cells), but the infant is not absolutely sure
about their distance. By changing the variance σd

2 of the gaussian we can control the
infant’s accuracy in depth perception.

We model the infant’s vision as having a limited field of view and being foveated.
Also, the infant’s “depth of field” is limited, i.e. objects at distances other than the
infant’s current viewing distance are less salient than they would be at the right
distance. To this end, we introduce the focus of attention F , which is encoded in the
same body centered coordinate system as the neural layers. F is a product of two
gaussians (not normalized):

F (θ, r, t) := exp

(
−(θ − ϕInf(t))

2

2σθ
2

)
· exp

(
−(r − dInf(t))

2

2σr
2

)
. (3.3)

It has its highest value at the center of gaze θ = ϕInf(t), r = dInf(t) and values close
to zero for angles and distances further away from the infant’s current center of gaze.
The variances σθ

2 and σr
2 influence the sharpness of the foveation and the size of the

field of view. In this paper we use σθ
2 = 1 and σr

2 = 3.5. The infant’s visual input V

is the product of the object saliencies S and the focus of attention F , which acts as a
foveation function:

V (θ, r, t) := S(θ, r, t) · F (θ, r, t) . (3.4)

For locations far from the current center of gaze V is practically zero — these locations
are outside of the infant’s field of view.

In every time step the infant generates a scalar “reward” signal R from the visual
input at the infant’s center of gaze:

R(t) := V (ϕInf(t), dInf(t))(t) . (3.5)
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3 A new gaze following model

This reward is used as a gate in the learning mechanism for the connections between
layers h and I described below.

3.2.2 Estimation of caregiver’s line of gaze

The caregiver’s head pose ϕ̃CG is encoded with a population of neurons h with gaussian
tuning curves. The variance σh

2 models the level of accuracy in head pose discrim-
ination. The activation in h is updated whenever the infant looks directly at the
caregiver, using the following equation:

h(ω, t) := Gσh
(ϕCG(t)− ω) . (3.6)

The infant’s interest in the different locations in space is encoded by the interest layer
I(θ, r, t). The activation of I is the sum of the visual input V and the estimate of the
caregiver’s line of gaze, which is generated from the encoded caregiver head pose h.
The neurons in h are fully connected to the neurons in I via adjustable weights. The
activation in h is fed forward via these weights and added to the visual input:

I(θ, r, t) := V (θ, r, t) +
∑
ω

wθ,r,ω(t) · h(ω, t) . (3.7)

3.2.3 Memory and Action Selection

To prevent the infant from repeatedly checking the same location for interesting tar-
gets, we are introducing a simple memory mechanism, that allows the infant to keep
track of which locations it has already looked at (layer Mgate) and what the observed
saliencies at these locations were (layer M).

Without inaccuracy in depth perception, the perceived saliencies could simply be
memorized by defining:

M(ϕInf, dInf)(t) := R(t) , (3.8)

for every location inspected by the infant. Since the infant’s depth perception can be
inaccurate, a perceived saliency can be located at a distance not equal to dInf(t), and
still cause a positive reward R for the distance dInf(t) because of the gaussian blurring
in S. Thus we need to apply the same blurring for the memory of the perceived
saliencies. This requires us to not only update the memory for the location inspected
but also the memory for nearby locations — albeit to a lesser extent.

12



3 A new gaze following model

Concretely, we define for all r:

M(ϕInf, r, t) := (1−Gσd
(dInf(t)− r)) ·M(ϕInf, r, t− 1) (3.9)

+ Gσd
(dInf(t)− r) ·R(t) .

The parameter σd
2 modeling the spatial accuracy of the memory is identical to the

one used in (3.2). The memory gate Mgate is used to keep track of the locations the
infant has already looked at during this trial. Its activation is defined analogously to
the one for M :

Mgate(ϕInf, r, t) := (1−Gσd
(dInf(t)− r)) ·Mgate(ϕInf, r, t− 1) (3.10)

+ Gσd
(dInf(t)− r) · 1 .

The action map A(θ, r, t), finally, determines where the infant will look next. It is
defined as:

A(θ, r, t) := Mgate(θ, r, t) ·M(θ, r, t) + (1−Mgate(θ, r, t)) · I(θ, r, t) . (3.11)

When a location has already been visited (Mgate(θ, r, t) > 0), the memory of the pre-
viously observed reward stored in M(θ, r, t) will contribute to the activity in A(θ, r, t)

at this location. If the location has not been visited before (Mgate(θ, r, t) = 0), then
the activity A(θ, r, t) is driven purely by the interest I for that location. Thus, Mgate

functions as a “soft” gate mediating between the interest I and the memory of observed
rewards M .

At every time step t the infant shifts its gaze to the area in space that corresponds
to the highest activation in A. This is done by setting its gaze orientation ϕInf(t) and
looking distance d(t) to the coordinates θ and r with the highest activation:

(ϕInf (t + 1), dInf (t + 1)) := arg max
(θ,r)

A(θ, r, t) . (3.12)

To understand the interplay of the interest I on the one hand, and the memory
and action selection on the other hand, it is best to look at an example. Consider
the situation depicted in Figure 3.1. The infant has just looked at the caregiver and
obtained the pose. Due to prior learning of the connections from the head pose to
the caregiver’s estimated line of gaze, there was a stronger activation in I where the
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3 A new gaze following model

caregiver is potentially looking (the left side) compared to the right side. Consequently
the infant subsequently made two small gaze shifts to the left. During these gaze shifts,
however, no significant reward was observed because the distractor in the upper left
is at the wrong depth. At this point, the memory gate indicates which positions have
been looked at, the memory represents the observed saliencies at these locations. The
memory of the poor reward at these locations prevents the infant from looking there
again: the soft gating mechanism will discount the high interest I for these locations
due to the low values in M . As a consequence, the infant will keep scanning in the
same direction until it finds the target object in the lower left.

3.2.4 Learning

The model acquires gaze following skills by learning associations between the care-
giver’s head pose h and locations in space, forming the estimate of the caregiver’s
line of gaze that is fed into I(θ, r, t). The associations are represented as connections
with variable weights. We use a Hebbian learning rule that strengthens all connec-
tions from each active input neuron encoding a specific caregiver head pose to those
locations where the infant saw a salient object shortly after observing the same head
pose (activation in I). The reward R(t) is used as a gate so that associations are only
strengthened when the infant had really attended to a salient object. The synaptic
weight between a neuron in the head pose representation with activation h(ω, t) and
a neuron in the interest layer with activation I(θ, r) is given by wθ,r,ω(t) and adapted
with the following learning rule:

wθ,r,ω(t + 1) := (1− αforget) · wθ,r,ω(t) + αHebb · h(ω, t) · I(θ, r, t) ·R(t) . (3.13)

The gated Hebbian learning with learning rate αHebb = 0.015 is combined with a
slow decay of all synaptic weights, where we use αforget = 5 × 10−4. This enables the
network to “forget” wrong associations that could be established when multiple objects
are present during the training.
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4 Our simulation environment

We have implemented the computational model presented in this paper completely
in Matlab. It has been written from scratch, since the previous gaze following model
did not include any spatial properties. The simulation environment consists of the
model itself with an infant and a caregiver agent, scripts to generate the stimuli and
to evaluate experiments. A set of visualization tools has been designed to complement
the evaluation of numerical and statistical data. It consists of polar plots as used in
Fig. 3.1, a three-dimensional display of the mapping matrix and a two-layer view that
shows the interest I and the orientation of the agents in the room. The visualization
was very important during the design process of the model to really see how the agents
are reacting to the stimuli.

4.1 Implementation

During the development of this model we had to run it a lot of times, because we tested
different model architectures with different parameter settings, each setting with 10
to 20 repetitions. The experiments also utilize parameter sweeps, with 20 runs per
combination. Although not critical, a rather fast simulation of the model is therefore
desirable. In the final version of the model the simulation takes roughly 20 seconds
for one experimental run with 104 time steps, the first versions took more than 10
times as long. This improvement was achieved by optimizing the pure Matlab code,
as we did not use any pre-compiled C-Functions. Matlab is comparatively fast when
executing calculations on vectors or matrices, doing the same computation step by
step in loops takes much longer. For functions that have to be called several times
with different arguments we have used a little trick: All arguments are stored in a
vector, which is then passed to the function in a single execution. This significantly
shortened the computation of the gaussian functions, that we use all throughout our
model to represent uncertainty. Examples for this can be found in the following code
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4 Our simulation environment

Name Value Explanation
inf.visResolution(1) 16 #bins for discretizing angles
inf.visResolution(2) 6 #bins used for discretizing distances
inf.visRange(1) 2pi angle that the infant can see with head rotation
inf.visRange(2) 6.7 euclidean distance from the infant to a far corner
inf.headPose(1) ϕInf infant’s current direction of gaze (bin number)
inf.headPose(2) dInf infant’s current viewing distance (bin number)
fovHP, fovD σθ

2, σr
2 Variances for sharpness of foveation

dNorm, hpNorm Z normalization factors for discrete gaussians
env matrix representing the room with saliencies
maxObjects N number of random objects used during training

Table 4.1: Names of variables used in the code excerpts and their equivalent value or
identifier in chapter 3, along with a short explanation.

excerpts. Table 4.1 lists a definition of the relevant variables that we use.

All discrete polar maps that we use to represent the neural layers in our model are
stored in regular matrices, using the row index for the radius and the column index
for the angle. For the matrices, gaussians are computed directly in the domain of row
and column numbers. The mean of a gaussian thus is the indices of the matrix cell
where it is centered on. In Matlab, indices for rows and columns always start with 1.

Coordinate transformations that are used regularly in the code of the model are
implemented as seperate functions. Three different coordinate systems come to use
here. First, cartesian coordinates (x, y) specify an absolute or relative position of an
object or agent in the room. These coordinates directly index a cell in the matrix env

that represents the room. Second, continuous polar coordinates (p, d) with a rotation
angle p (pan)and a distance value d are used to specify the orientation and distance of
an object or person relative to a person. The angle is measured in radiant and ranges
from −π to π, the distance is the euclidean distance taken from the cartesian space.
Last, the discretized equivalents of the polar coordinates are used for the actual imple-
mentation of the polar maps. The discrete coordinates are natural numbers starting
with 1 and index the discrete bins or cells in the matrices. For the discretization of
the angles we want an orientation of 0◦ to fall into the “center” of a bin, rather then
being on the border between two bins. In the conversion we therefore add 0.5 in the
case there is an even total number of bins. A coordinate pair in this system is often
called hp (for head pose) in the code excerpts.

The following two functions convert a relative room coordinate pair (x, y) to a (p, d)
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pair, and a (p, d) pair to a head pose hp:

%%% convert relative room coordinates to polar coordinates

function x = xy2pd(pos)

depth = sqrt(pos*pos’); % distance

if depth==0 pan = 0;

else

if pos(2)>0 pan = -acos(pos(1)/depth);

else pan = acos(pos(1)/depth);

end

end;

x = [pan, depth];

%%% discretize pan and depth values (returning index numbers)

% according to the persons visual resolution and range

function hp = pd2hp(pd, person)

% make sure the pan angle is in -pi..pi

if pd(1) > pi

pd(1) = pd(1) - 2*pi;

end

if pd(1) < -pi

pd(1) = pd(1) + 2*pi;

end

if (pd(2)>0) % if distance > 0

% convert angle (in radiant) and distance (in gridcells) to bins

hp1 = ((pd+[person.visRange(1)/2, 0])./(person.visRange));

hp1 = hp .* (person.visResolution - [0 1]);

% correction for an even total number of bins for pan

hp1(1) = hp1(1) + 0.5*(mod(person.visResolution(1),2)==0);

hp1(1) = mod(hp1(1), person.visResolution(1));

% bring the values into 1..N range and discretize

hp = floor(hp1+[1,1.499]);

else

hp = [0, 0];

end
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4 Our simulation environment

To obtain the focus of attention F according to (3.3) we initialize two arrays xhp and
xd by assigning each cell its own index value. The size of these arrays are determined by
the number of bins that are used for quantization. The two gaussians are generated for
the index values, with the bin number for head pose and discretized viewing distance
as mean. The function gauss is called with a mean, a variance and an argument vector
as parameters, and returns the values of the gaussian for the given arguments. The
product of the two gaussians yields F :

%%% compute the focus of attention F

% generate index arrays (x_hp(i)=i, x_d(i)=i)

x_hp = [1:inf.visResolution(1)]’;

x_d = [1:inf.visResolution(2)]’;

% compute the gaussian functions

g_hp = gauss(inf.headPose(1), fovHP, x_hp);

g_d = gauss(inf.headPose(2), fovD, x_d);

g_hp = g_hp;

g_d = g_d;

F = g_hp*g_d’;

To compute the polar map of object saliencies S perceived by the infant according
to (3.2) we first obtain a list of all saliencies that are present in the room. For all
these saliencies we transform the object’s room coordinates X and Y to a continuous
polar coordinate pair polc, specifying the direction polc(1) and distance polc(2) of the
object relative to the infant. This pair is then discretized and transformed to a bin
number pair hp, indexing the cell in the saliency matrix S that the saliency has to
be assigned to. To account for uncertainty in the infant’s depth perception we use
a gaussian function that blurs the saliency in the matrix S. The object’s distance
hp(2) is used as mean for the scaled gaussian that is added to the column of S that
represent the direction of the object hp(1) relative to the infant. The normalization
factor dNorm corresponds to a Z described in (3.1) to account for the discretization
of the gaussian density function.

The infant’s visual input V is the elementwise product of the saliencies and matrix
representing the infant’s focus of attention as in (3.4). The reward is computed exactly
according to (3.5):
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4 Our simulation environment

%%% get a map of the perceived saliencies

[X Y s] = find(env);

S = 0*S; % reset S

for i=1:size(X) % for all objects

% coordinate transformations

polc = xy2pd([X(i), Y(i)] - inf.pos) - inf.dir;

hp = pd2hp(polc, inf);

if hp>0

% smudge for bad depth perception

a = gauss(hp(2),dVariance,[1:person.visResolution(2)]’) / dNorm;

S(hp(1),:) = S(hp(1),:) + s(i)*a’;

end

end

V = F .* S;

R = V(inf.headPose(1), inf.headPose(2));

If the infant is looking at the caregiver, it renews its estimate of where the caregiver’s
line of gaze is. The estimated head pose is represented by an array with activation
values for all discretized head poses. Again an index array is used to feed a gaussian
functions with values. The bin number of the caregiver’s head pose is used as mean,
the variance defines the infant’s accuracy in head pose discrimination. The result is
an array with the blurred head pose estimate. Each activation value in the head pose
estimate is now multiplied with the respective weight vector in the mapping matrix.
The results are added up in the actHP matrix, which contains the estimate of the line
of gaze. This matrix is added to the visual input to yield the infant’s interest I:

%%% renew the gaze estimate

cgLoc = pd2hp(xy2pd(cg.pos-inf.pos)-inf.dir,inf);

if inf.headPose == cgLoc

h = gauss(cg.headPose(1), hpVariance, [1:size(h,1)]’);

h = h / hpNorm;

actHP = actHP*0; % reset the head pose estimate

for i=1:size(h)

actHP = actHP + w(:,:,i)*h(i);
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4 Our simulation environment

end

end

I = actHP + V;

The next code excerpt implements equations (3.9) to (3.12). The update of the polar
memory and memory-gate maps according to (3.9) and (3.10) is based on the same
gaussian g that models the distance component of the infant’s focus of attention. For
determining the infant’s new head pose according to (3.12) we compute the maximum
of the matrix A and search for cells in A with this value. Although the search could
be stopped after one cell has matched the criterion, using the vectorized version of the
find function is a lot faster. The indices of the first cell in the result yield the new
head pose:

%%% memory and action selection

g = gauss(inf.headPose(2),dVariance,[1:inf.visResolution(2)]’);

g = g / sum(g);

M(inf.headPose(1), :) = (1-g’).*M(inf.headPose(1), :) + g’*R;

M_gate(inf.headPose(1), :) = (1-g’).*M_gate(inf.headPose(1), :) + g’;

A = M_gate.*M + (1-M_gate).*I;

% get the cell index with the highest activation in the action matrix

maxAct = max(max(max(A)));

[p,d] = find(A==maxAct);

% set the infant’s head pose represented with discretized bin numbers

inf.headPose = [p(1),d(1)];

The learning of the mapping from head poses to regions in space happens through
the adaptation of the weights w. The update is only done during the learn trials:

%%% adapt the weights

if learning

for i=1:size(h)

w(:,:,i) = (1-a_forget) * w(:,:,i) + h(i)*I*R*a_hebb;

end

end
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After each trial all activations in the infant are reset to zero, only the learned
weights w stay the same. The infant’s head pose is set such that the infant looks
at the caregiver. One random object is generated and placed in the room in every
learning trial. For test trials the objects are generated by the individual experiment
scripts.

%%% initializes a new trial

actHP = actHP*0;

h = h*0;

I = I*0;

M_gate = M_gate*0;

M = M*0;

inf.headPose = cgLoc;

objects(:,3)=0;

env = env*0;

if learning

for i=1:maxObjects

% random x and y coordinates

objects(i,1:2) = floor([rand, rand].*(roomsize))+1;

% random saliency

objects(i,3) = 0.5+0.5*rand;

env(objects(i,1), objects(i,2)) = objects(i,3);

end

end

After the initialization of a trial, the caregiver has to react and shift his gaze. For
the regular learning trials the caregiver attends to the most salient object in the room.
During testing trials we use a target with saliency 0.9 (see chapt. 5 for details):

%%% caregiver turns to the most salient object during learning,

% and to the target object with the saliency 0.9 during testing

if learning

[x,y] = find(env==max(max(env)));

else

[x,y] = find(env==0.9);
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end

cg.target = [x(1),y(1)];

angle = xy2pd(cg.target - cg.pos) - cg.dir;

cg.headPose = pd2hp(angle, cg);

4.2 Modelling platforms for embodied models

The infant agent in our new model is in some ways an abstract form of an embodied
model: it lives in an environment, senses and learns about its environment and acts
according to its sensations and knowledge. On the other hand, there is no actual
body of the model that has more characteristics than the position and orientation of
the infant in the environment. Different platforms for the implementation of embod-
ied models have been designed for research on developmental phenomena and, more
specific, the emergence of shared attention.

Simulations in Virtual Reality (VR) allow to subtly make selective simplifications
from real world scenarios, depending on the aspects of the model one wants to analyze.
A good example for such a VR-platform has been developed in the scope of the MESA-
project by our lab [22]. Robotic platforms have been designed to socially interact with
humans. In the context of gaze following there have been attempts to let robots take
the role of the infant or the role of the caregiver. Nagai et al. developed such a robotic
child that learns to follow a human person’s gaze (see chapt. 2). A research group at
the UC San Diego constructed a robot that interacts with children and conducts for
example gaze following tests [23]. A robotic head that can also be used as a platform
for implementing developmental models has been developed in our lab [24].
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5 Experiments

A number of experiments is presented to show that our model infant is able to ac-
quire gaze following skills and learns to overcome the Butterworth error. We also
demonstrate how a cluttered training environment affects the infant’s gaze following
performance. Each experiment is run 20 times under the same conditions for 1000
learning trials. The performance is measured in testing periods interposed every 50
trials during which no learning takes place. Every testing period consists of several
trials with 10 time steps each, one trial for every tested object location. A trial is
considered successful when the infant is looking where the caregiver is looking at the
last time step of the trial. The performance of the model is measured with the Gaze
Following Index (GFI), which is defined as the number of successful trials divided by
the total number of trials.

5.1 Testing gaze following performance

This experiment is designed to measure the model infant’s gaze following performance
separately for frontal, lateral and rear targets. We therefore split the testing trials in
three groups, depending on the position of the caregiver’s target object relative to the
infant: a trial is considered a frontal target trial, when the caregiver’s target is in the
infants field of view while watching the caregiver. When the target object is initially
out of view but not behind the infant, this is considered a lateral target trial. All
other conditions are rear target trials. In this experiment there is only one random
object present during the training trials to provide the infant an “optimal” training
environment.

Even the untrained model infant is able to locate frontal targets and to attend to
them by simply using its peripheral vision. In order to eliminate this influence of
simple preferential looking on the gaze following performance we present two targets
on opposite sides of the room with a small difference in their saliency during the testing

23



5 Experiments

InfantCaregiver

0 250 500 750 1000
0

0.25

0.5

0.75

1

Learning trials

G
F

I

frontal targets
lateral targets
rear targets

Figure 5.1: Gaze following performance for frontal, lateral and rear targets. Left:
geometrical setup of a trial. The individual directions of the gaze of in-
fant and caregiver are displayed with pairs of solid lines. The dotted lines
indicate the agent’s base orientation, the dashed lines display the borders
of the infant’s field of view. Right: Gaze Following Index for the dif-
ferent regions as functions of learning trials. The infant quickly learns to
follow gaze to frontal and lateral targets. Gaze following to rear targets
is acquired slowly. Data points are averaged from 20 runs, the error bars
indicate the standard error.

trials (we use 1.0 and 0.9 as saliencies). Different from the learning trials we constrain
the caregiver to look at the slightly less salient object in the testing trials, just by
setting its head/eye rotation ϕCG(t) to the appropriate value. The infant will turn to
the other, more salient object unless it reacts to the caregiver’s direction of gaze.

All individual target positions in space are tested, except the line connecting infant
and caregiver. The setup is shown in Fig. 5.1 (left). We use tuning curves with small
variances for encoding the caregiver head pose and the infant’s perception of distances
(σh

2 = σd
2 = 0.1) in order to test the gaze following performance independent from

limitations in depth perception or face processing.

The result of this experiment is displayed in Fig. 5.1 (right). Averaged for all target
groups, our infant learns to reliably follow the caregiver’s gaze (GFI > 0.75) in about
200 learning trials. Gaze following for frontal objects is learned in about 100 learning
trials, to lateral objects in about 200 learning trials, and to rear targets in about 550
trials. This corresponds to the results of the experiments by Butterworth and Jarrett,
where only the infants in the oldest age group shifted their gaze to rear targets.

Even though the infant attends to the correct target for nearly all frontal locations
after 100 learning trials, it has not necessarily learned the complete set of associations
for all positions at that time. A slight bias for shifting gaze to the correct side is
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mostly sufficient to find the frontal targets: turning the head in the correct direction
moves the infant’s focus of attention (the maximum in F ) closer to the target and
further away from the other, originally more salient object, on the other side. This
causes a higher activation in V and I for the cell representing the caregiver’s target,
and the infant will attend to this object. This corresponds to the ecological stage in
the development in real infants.

A similar effect is exploited when the infant learns associations between a head pose
and rear objects, outside the infant’s field of view: turning in the correct direction
brings lateral targets into the infant’s field of view and enables the infant to learn
the corresponding associations. Learning to follow the caregiver’s gaze to objects that
are behind the infant requires a prior ability to follow gaze to lateral targets. This
explains why it takes longer for the infant to achieve reliable gaze following skills for
rear targets than for frontal and lateral targets, as seen in real infants.

The results are robust with respect to scaling of the learning rates. If we increase or
decrease both learning rates αHebb and αforget by an order of magnitude while leaving
their ratio constant, the results are qualitatively the same for learning to follow gaze
to frontal and lateral targets, although the absolute number of trials that is necessary
for the infant to achieve reliable gaze following will change. Gaze following to rear
targets is more sensitive, since it requires more than just a small bias for turning into
the correct direction to achieve gaze following.

5.2 Overcoming the Butterworth error

In this experiment we test the infant’s gaze following performance in the presence of
distractor objects. Two salient distractors are placed as a pair of frontal targets behind
the caregiver like shown in Fig. 5.3 (left). The internal state of the infant agent in
this situation can be seen in Fig. 3.1. The slightly less salient target object, which
the caregiver is attending to, is placed at different lateral, frontal, and rear locations.
We test the gaze following performance with different settings for the infants ability
to discriminate distances and head poses by varying the variances σh

2 and σd
2 for

the tuning curves encoding the head pose and the distances of the objects. Since we
want to isolate the effects that these two different limitations have on the infant’s gaze
following performance, we again provide an “optimal” training environment without
clutter, and use only one random object during training.
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Figure 5.2: Overcoming the Butterworth error. Gaze Following Index for trials with
two frontal distractor objects, tested with different levels of accuracy in
depth perception and head pose discrimination. High accuracy corresponds
to using low variances for the tuning curves encoding object distances and
caregiver head pose. Data points are averaged from 20 runs, the error bars
indicate the standard error.

The results of this experiment are displayed in Fig. 5.2. The infant is able to
overcome the Butterworth error and to ignore the distractor objects in the background
for the majority of target positions, if depth perception and the discrimination of head
poses are sufficiently accurate (σh

2 = σd = 0.12). A higher variance (less accuracy) for
depth perception or head pose discrimination leads to significantly worse gaze following
performance. Unlike our model infant we assume real infants to gradually improve
their skills of depth perception and face processing over time. Unfortunately, very
little is currently known about the exact time course of these processes, so we chose
not to incorporate such a gradual improvement into our model. However, the present
experimental results strongly suggest that an infant cannot acquire geometric gaze
following skills before its depth perception and face processing skills are sufficiently
developed. It is important to note that those skills seem to be critical not only for
the actual gaze following, but for the acquisition as well, i.e., the infant can only
start to learn advanced gaze following skills, when head pose discrimination and depth
perception are sufficiently well developed.

Our model infant needs around 500 learning trials to achieve reliable gaze following
performance in the presence of distractors, compared to 200 trials in the simple setup
without distractors. In both cases the model used high accuracy in depth perception
and face processing from the first learning trial on. With only gradually developing
depth perception skills the model would overcome the Butterworth error even later.
These results correspond to the results of Butterworth where only older children are
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Figure 5.3: Left: Setup for experiment with distractor objects. The infant has already
turned towards the target and has ignored the more salient distractors.
Right: Gaze Following Index for testing trials with different numbers of
random objects in the room during training. Data points are averaged
from 20 runs, the error bars indicate the standard error.

able to follow their caregiver’s gaze correctly in ambiguous situations. Note that in
the experiments of Butterworth and Jarrett even 18-month-olds did not reliably follow
gaze to rear targets in the presence of lateral distractors. The model eventually learns
to do so, however. Thus, the model predicts that infants older than 18 month should
eventually learn to follow gaze to rear targets in the presence of frontal distractors,
too. To our knowledge, this experiment has not been attempted yet.

In this experiment the model is more sensitive to changes of the learning rates (only
robust for scaling by up to a factor of 3, with slightly lower final performance): when
the learning rate is too low, the distractor object causes a higher activity in I than
the learned associations. On the other hand, a very high learning rate yields very high
activations for the estimate of the caregiver’s line of gaze in I, which will overpower
the memorized rewards in the computation of A as in (3.11). Thus, the infant does
not stop shifting gaze after finding the target object, but continues to scan for targets
at all locations “slightly” associated with the caregiver’s head pose. In this case, the
infant might still return to the target after eliminating all other hypothesized target
locations, but this would take significantly longer than the 10 time steps in the test
trials, and is inconsistent with the behavior of real infants.
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5.3 Learning in cluttered environments

In this experiment we test the robustness of the model with respect to the number
of random objects present during the training trials. In the following we neglect the
caregiver’s own saliency, because it is significantly smaller than the saliency of the
objects. If there is only one object present at a time, the caregiver always looks at
this target. Since there are only “correct” stimuli, the infant associates the caregiver’s
head pose only with locations of objects that the caregiver has actually observed. With
multiple targets being present during training the caregiver still reliably looks at the
most salient object, but due to the foveated vision the infant will often shift its gaze
to one of the other random objects, if the caregiver’s more salient target is outside its
field of view. This way, the infant also associates locations with the caregiver head
pose that do not correspond to it. However, there is still a correlation between the
caregiver’s head pose and the location of salient objects, and we expect the infant to
acquire gaze following skills at least to some degree.

Like in the first experiment, we test the gaze following performance with target pairs
on all possible locations. Again, the caregiver turns to the slightly less salient object.
This time there is no seperation into different target groups.

The result of this experiment is displayed in Fig. 5.3 (right). As expected, the more
targets are present during training, the lower is the gaze following index that the infant
achieves after 1000 learning trials. But even with a number of 10 objects, which can
cover about 15% of the possible 9x7 locations in the room, the infant still shows gaze
following behavior. This demonstrates that it is possible for the infant to acquire gaze
following skills based on the correlation between head poses and locations of objects,
even if not all training stimuli are “correct”. On the other hand, in cluttered training
environments the gaze following performance is significantly worse than it could be.
Real infants learn gaze following in their everyday life, and their environment contains
a lot more interesting things to see than just a few designated targets. In many cases,
a child’s home is cluttered with salient objects in many different colors. However,
motion can let certain things like people, cars or moving toys stick out from the rest.
Also, in social interactions, e.g. when playing with their children, caregivers tend to
draw their infants’ attention to the objects they currently look at, for example by
slightly shaking a toy or moving their hands. It seems likely that this makes these
targets temporarily more salient than other objects in the environment, thus relatively
thinning out the clutter and enhancing the training conditions for the infant.
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We have analyzed the gaze following problem with an emphasis on its spatial charac-
teristics, and presented a new model for the emergence of gaze following. The infant
in our model learns to follow the caregiver’s gaze by learning associations between
observed head poses and positions in space, even in cluttered environments. These
associations form an ambiguous mapping from every head pose to several locations
where salient objects are likely to be present. Compared to a previous version of the
model [2], we have only used strictly local learning rules in the current model. We
demonstrated in experiments that our model is able to reach all stages of gaze follow-
ing: first it is able to resolve spatial ambiguities when distractor objects are present
in the background by using depth perception, and second it follows the caregiver’s
gaze to locations even behind its back. Furthermore, the temporal progression of the
different stages is similar to the development observed in real infants: gaze following
to frontal targets early in the development, overcoming the Butterworth error and
finding lateral targets later, and locating rear targets even later.

The model also makes predictions about the effect of limitations in depth perception
and face processing on infants’ ability to gain advanced gaze following skills: the better
an infant can discriminate different head poses and object distances, the smaller is the
region in space that will be associated with each head pose. If one of these two skills
is not sufficiently developed, the model cannot overcome the Butterworth error. This
suggests that children who are late to acquire accurate face processing and/or depth
perception may develop geometric gaze following skills later than their peers. At
present, only little is known about the head pose discrimination accuracy of infants in
this age range and how it develops over time. Regarding depth perception, available
evidence makes it seem likely that it was not the limiting factor in the experiments of
Butterworth and Jarrett (e.g. [25], chap. 3).

Butterworth and Jarrett proposed that the development of a representation of space
that contains infant, caregiver, and objects corresponds to the infants’ ability to follow

29



6 Conclusion

gaze to rear targets. The body-centered coordinate systems that we use in the infant
agent provide such a spatial representation. The results of our first experiment show
that gaze following to rear targets might occur later, even with such a representation
of space already in place. Hence, it is premature to conclude that a lack of such a
representation is responsible for failures to follow gaze to rear targets. While this is
certainly a possibility, it is also conceivable that such a representation is already in
place, but that it simply has not been properly connected to a representation of the
caregiver’s head pose.

Our model, like all models, makes many abstractions and simplifications. While
focusing on the spatial problems of gaze following we especially simplified the dynamic
aspects of the problem by running the simulation in discrete trials. Different problems
occur with a continuous time line in a dynamic environment: the longer the infant
turns away from the caregiver, the more likely it is that the caregiver has already
shifted its gaze again, causing a growing uncertainty in the infant’s estimate of the
caregiver head pose. The memory model for remembering the saliency of previously
fixated locations suffers from a similar problem.

Our present model uses Hebbian learning. A re-formulation in the language of more
modern learning approaches from the research areas of reinforcement learning, active
vision or machine learning could be desirable. One can understand the infant’s search
for salient targets as a state estimation process, based on limited observations of the
real state, which is the actual distribution of salient objects in the room. Research on
Partially Observable Markov Decision Processes (POMDPs) deals with the problem
of decision making in environments with hidden states (e.g. [26]). Denzler and Brown
developed an information theoretic approach to optimal sensor parameter selection
in object recognition [27]. A similar approach could be used in the infant agent
to learn how to efficiently integrate information from the available sources, namely
accurate visual perception with a limited field of view and ambiguous information
from evaluating the caregiver’s head pose.
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