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Learning gaze following in space: a computational model
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Abstract and which we view as an important precursor to the emer-

gence of true shared attention. While initially, joint visual
Following another person’s gaze in order to achieve joint attention is mostly initiated by the caregiver, young infants
attention is an important skill in human social interactions. soon acquire gaze following skills and initiate joint atten-
This paper analyzes the gaze following problem and pro- tion themselves [2]. There has been a significant body of
poses a learning-based computational model for the emer-research studying how these skills develop since the pio-
gence of gaze following skills in infants. The model acquires neering work by Scaife and Bruner [10].
advanced gaze following skills by learning associations be-  Two different kinds of theories of the emergence of gaze
tween caregiver head poses and positions in space, and utifollowing have been proposed. Thedular or nativist the-
lizes depth perception to resolve spatial ambiguities. ories posit the existence of innate modules, which are typ-
ically thought to be the product of evolution rather than to
emerge from learning (e.g. [1]Learning based accounts
1 Introduction explain the emergence of gaze following by postulating that
infants learn that monitoring their caregiver’s direction of
gaze allows them to predict where interesting visual events
occur. This idea goes back to Corkum & Moore [5]. At
present, the experimental evidence for or against a learning
The capacity for shared attention or joint attention is a account of the emergence of gaze following in infants is still
cornerstone of social intelligence. It refers to the match- jnconclusive, but computational models have shown that it

ing of one’s focus of attention with that of another person, s possible to acquire gaze following skills through learning
which can be established for example by gaze following. (see Sect. 2).

The importance of attention sharing in infancy and early

childhood is hard to overstate. It plays an important role in 1 o Developmental stages in gaze following
the communication between infant and caregiver [8]. It al-

lows infants to learn what is important in their environment, Different distinguishable stages and effects during the
based on the perceived “distribution of attention” of older, development of gaze following have been discovered in

more ex_pert |nd|V|dL_1aIs. In conjunction W't.h a shared lan- cross-sectional studies: Butterworth and Jarret tested gaze
guage, it makes children able to communicate about Whatfollowing abilities of 6-, 12- and 18-month-old infants in

they perpeive and think about, a”‘?' to constr_uct mental '®P-3 controlled environment [3]. In their experiments the in-
resentations of what others perceive and think about. Con- .« \vare seated facing their mothers at eye level in an

sequently, episodes of shared attention are crucial for lan-

guage learning [13]. L . . shape and color were presented at the same time as pairs
Some authors _make a subtle _d|st|nct|on bgtween joint opposite sides of the room, also at the infants’ eye level.
and shared attention: Joint attention only requires that WO 1other and infant were facing each other in every trial, un-

individuals attend to the same object, whereas shared aty \he mother shifted her gaze to a designated target. The
tention also implies that each have knowledge of the othernt, o' reactions were monitored and analyzed. Figure 1
individual's attention to this object. In this paper, we will oty shows a typical setup of the experiments. Al tested
only be goncerned W_'th joint visual attention, W_h'Ch hf'is infants could shift their gaze to the correct direction and
been defined as looking where somebody else is 100king, yere aple to locate targets presented within their field of
*An earlier version of this paper has been presented at the workshopViIEW. However, only the 18'm0nt_h'0|d infants followed
SOAVE2004 Gelf-organization ofdaptive behavior), llmenau, Germany.  gaze to rear targets, while younger infants would not turn to

1.1 Shared attention and gaze following

undistracting laboratory. Two or four targets of identical
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Figure 1. Left: Gaze following experiment with frontal (F), lateral (L) and rear (R) objects. Caregiver
(C) and infant (I) are facing each other. Right: The caregiver looks at the lateral target. Six-month-old
infants shift their gaze in the correct direction, but will most likely attend to the first object along
their scan path (Butterworth error). 18-month-olds follow gaze to the correct lateral object, second
in their scan path.

search for targets behind them. When multiple target pairsanalyze the gaze following problem more carefully with an
were presented at the same time, for example the frontalemphasis on its spatial properties, and isolate the different
and lateral targets in Fig. 1, 6-month-old infants were not effects observed in the experimental studies. We propose a
able to tell which target their mother was looking at: when computational model, in which the infant acquires sophisti-
the mother turned to look at a lateral object, they shifted cated gaze following skills and is able to overcome the But-
their gaze in the correct direction, but were likely to end the terworth error by utilizing depth perception. It shows that
gaze shift at the first (frontal) object along their scan path, the observed behaviors can emerge from the same learning
as shown in Fig. 1 (right). We call this effect the “Butter- mechanism and thus provides a more parsimonious account
worth error”. The infants in the 12 month group attended for the emergence of gaze following than the three different
significantly more often to the correct object, but only the mechanisms proposed by Butterworth and Jarrett.
18-month-old infants reliably followed their mother's gaze
to the second (lateral) target.

Butterworth and Jarret associate a developmental stag
with each of the age groups: Infants in the “ecological
stage” around 6 months follow gaze in the right direction  Following somebody’s gaze in order to establish joint at-
but locate only frontal targets correctly, and only if they are tention is a non-trivial task in cluttered environments. By
the first along the scan path. 12-month-old infants in the observing someone’s head pose, one can only infer the per-
“geometric stage” are able locate the target objects more acson’s direction of gaze, rather than the distinct focus of the
curately and overcome the Butterworth error in some of the person’s attention. Gaze following therefore requires scan-
trials. Infants that have reached the “representational stage’hing for an object along an estimate of a person’s line of
around 18 months reliably overcome the Butterworth error sight. For a precise estimate, infants have to evaluate the
and are also able to reliably locate targets behind them. Theorientation of the caregiver's head and eye, as well as their
emergence of those stages is explained with three differentown relative position to the caregiver. We will use the term
mechanisms of gaze following that become effective in a ‘head pose’ in a general sense, referring to both head or eye
sequential order and correspond to the observed stages [3]orientations. The better the infants can discriminate differ-

ent head poses, the better they can narrow down the region
1.3 Contribution of this paper in space where they expect the caregiver's gaze target to be.
Accurate depth perception can help to judge if objects are in

In order to explain the emergence of gaze following one the estimated line of gaze, and seems to be critical in situ-
has to explain the underlying dynamical processes of devel-ations where objects are in the projection of the caregiver’'s
opment, rather than just the snapshots provided by crossline of gaze but at different distances, as in Butterworth’s
sectional studies. In the remainder of this paper we will experiments. There is evidence that infants’ perception of
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some depth cues continues to develop until at least 7 monthgion, output motor commands for turning the robot’s camera
[14]. This could have an impact on infants’ ability to ac- head. A probabilistic gate module decides which of the two
quire advanced gaze following skills and may be part of an proposed motor commands gets executed. The probability
explanation of the staged development of gaze following. for selecting the output of the learning module is changed

We believe that infants typically learn the ambiguous from zero to one according to a predefined sigmoid function
mapping from caregiver head poses to locations in spaceduring the learning process. The visual attention module
without explicit supervision. Our goal is to plausibly ex- locates faces and salient objects by extracting color, edge,
plain this learning process by developing computer modelsmotion, and face features from the camera images. It uses
that show how these skills can be acquired. In general, com-2 Visual feedback controller to shift the robot's attention to-
putational models have been developed that address differwards interesting objects. The learning module consists of
ent aspects of the gaze following problem. To our knowl- a three-layered neural network that learns a mapping from
edge, two of them show how infants can learn gaze fol- gray-level face images to motor commands by backpropa-
lowing without external task evaluation (no special reward gation. The network is trained with the current motor po-
for establishing joint attention) in a self-organizing manner. sition as teacher signal and the caregiver image as input,
Both are discussed in the remainder of this section. whenever a salient object is fixated.

Carlson and Triesch recently proposed a computational 1€ authors mention that every head pose only speci-
model for the emergence of gaze following [4]. Their model fies a line of' gaze rather th'an a dlstlnct location in space.
infant predicts where salient objects are on the basis of the! "€y deal with this ambiguity by moving the cameras in-
caregiver’s head pose. They use a temporal difference (TD)crementaIIy towards the learned coordmgtes and stopping
learning approach [11] to show how an infant can develop the movement at the first encogntered object. Their model
these skills only driven by visual reward. The infant re- d0€s notinclude depth perception and cannot resolve situ-
ceives different rewards for looking at the caregiver and &tions Wherg dlstractlng objects lie in the projection of.the
looking at salient objects. This reward structure can be ad-caregivers line of gaze in the camera images, but at a differ-
justed to simulate certain symptoms of developmental dis- €Nt distance (compare Fig. 1, right). The model is not able
abilities like Autism or Williams Syndrome. Experiments [0 overcome the Butterworth error, which seems to be an
with the model make predictions of the emergence of gaze¢s§entlal characteristic of geometrical gaze following skills
following in children with those disabilities. Further ex- N infants.
periments with this model were conducted by Teuscher and
Triesch [12], focusing on the effect of different caregiver 3 A model of gaze following in space
behaviors on infants’ gaze following skills.

The model operates on a finite set of possible object lo-  Our new model specifically addresses the spatial ambi-
cations without any spatial relationships. Each location hasguities in the learning process of gaze following, and is able
a one-to-one correspondence with a distinct caregiver heado faithfully reproduce infants’ abilities to resolve them.
pose. One object is located at any time at any one of theset consists of a simulated environment and two different
positions. The caregiver agent has a certain probability of agents, an infant (Inf) and its caregiver (CG). The infant
looking at that object. The model infant consists of two |earns to follow the caregiver's gaze by establishing asso-
reinforcement learning agents: The ‘when-agent’ decidesciations between the caregiver’s head pose and positions in
whether to continue fixating on the same location or to shift space where interesting objects or events are likely to be
gaze, while the ‘where-agent’ determines the target of eachpresent. This online learning mechanism is driven by vi-
gaze shift. Both agents try to maximize the long term re- sual feedback, based on the infant's preference to look at
ward obtained by the infant. The infant perceives the care-the caregiver's face and salient objects in its environment.
giver's head pose whenever it attends to the caregiver, andrhe infant exploits the correlation between the caregiver’s
learns to exploit the correlation between the head pose andine of gaze and the locations of salient objects to learn asso-
the location of salient objects. This model supports the the-ciations between those two. The perceptual preferences and
ory of the acquisition of gaze following by learning. How-  the ability to shift gaze to interesting objects are important
ever, it is not adequate for simulating or explaining the But- prerequisites for the learning process, which we assume to
terworth stages since it does not deal with geometrical re|a-begin before infants show simple gaze following behaviour
tionships and spatial ambiguities. (i.e. before an age of six months).

Nagai et al. proposed a model for an infant agent that The environment is similar to the setups in the experi-
has been implemented on a robot platform [9]. The robot ments by Butterworth and Jarrett [3], with both agents’ eyes
learns to follow the gaze of a human caregiver by offline and all objects being at the same height from the floor. The
training with recorded examples. Two separate modules,learning process is divided into trials. Objects are placed at
one for visual attention and one for learning and evalua- random positions in the environment in every trial. One of
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Figure 2. The infant agent with spatial representations in body-centered coordinate systems. Dark
shading in the grid cells stands for high activation. The visual input V is the product of the object
saliencies S and the focus of attention  F'. If the infant looks at the caregiver, the estimated caregiver
head pose h is mapped to an estimate of the caregiver’s line of gaze E. Otherwise the activation in
FEis held, inhibited by  F' to decrease the activation of locations along the line of gaze that the infant

has already observed. FE and V are summed up to the infant's combined interest in space C. The
infant shifts its gaze to the area with the highest activation in C.

them is selected as the caregiver’s focus of attention. Thegiver agent that does not react to the infant’s actions. In
object locations and the caregiver direction of gaze do notevery learning trial we let the caregiver look at the object
change during a trial. The infant is looking at the care- with the highest saliency; by setting its head/eye rotation
giver at the beginning of every trial but can change its di- ¢cg(t) to the appropriate value.

rection of gaze. The model operates on discrete time steps

t =0,...,T. Each trial lasts for 10 time steps. 3.2 Theinfant agent

3.1 Environment, objects, and a caregiver , o ) ) )
The infant has to use its limited visual perception to gain

The environment is represented by a two-dimensional information about the environment. The architecture of the
p, infant agent is shown in Figure 2. It consists of different
layers of neurons: the visual inpit, the estimate of the
CG line of gazeF, the combined interest’ and the en-
coded caregiver head pose Their activations are repre-
sented with scalar values, assigned to the grid cells of a
gazep, (t) € [~180°, +180°], relative toz?. In addition to body-centlered polar coordipate grid with discretized angle
the current angle of gaze we introduceathe functigft), f and radius-. The gonnectmns betwee_n those layers Im_k
which measures the distance from an agent to the point thaf)nl_y neurons encoding the same area in space. The object
the agent is currently looking at. The caregiver also has salienciesS a.nd the encoded focus O.f attenhEharg alsc? .
a saliencyscg = 0.1. All angles and distances are dis- repres_ented n body-centered c.oordlnate_s. The infant's in-
cretized. We use 16 different values for angles (each Cor_terest' in th.e different locations in space is e.ncoded .by the
combined interest layef' (6, r,t). The activation ofC' is

responds to a range @R.5°), and 6 different values for h f the visual i dth ) fh
distances (covering all possible distances in the 7x9 grid). the sum of the visual Input” and the estimate of the care-
giver’s line of gazel:

Since we focus on the spatial aspects of the learning
problem and the infant’s ability to learn gaze following
without external task evaluation, we use a simple care- c,rt):=V(0,rt)+ E,r1t). 1)

7x9 grid with cartesian coordinates. Objects indexed wit
1 = 1,..., N are introduced by specifying their grid co-
ordinates(x;, y;) and a scalar saliency;, € [0,1]. Both
agents: € {Inf, CG} are defined by their positions in space
(74,va), @ base orientatiop® and the current direction of



The infant shifts its gaze in every time stepo the area Our model acquires gaze following skills by learning as-
in space it is most interested in. This is done by setting sociations between the caregiver’'s head pbsand loca-
its gaze orientatiorp ¢ (¢) and looking distancd(t) to the tions in space, forming the estimate of the caregiver’s line of
coordinate® andr with the highest activation i6’(6, r, t). gazeE(0,r,t). The associations are represented as connec-

Visual Perception is the infant’'s only source of informa- tions with variable weights. We use a Hebbian-like learning
tion about its environment. It receives two different kinds of rule that strengthens all connections from each active input
visual data: The caregiver head pose, encoded in the layeneuron encoding a specific caregiver head pose to those lo-
h(6,t), and the actual visual inpdt (8, r,t), which is the cations where the infant saw a salient object shortly after
foveated transformation of the object’s saliencies into the observing the same head pose (activatioip A small
discretized polar coordinate systei.is used as a gate in  learning ratenpepy, = 0.1 combined with a slow decay of
the learning mechanism. all synaptic weights, given byorger = 0.9999, enables the

Generally we use discrete gaussian distributiéGi$z) network to ‘forget’ wrong associations that could be estab-
as tuning curves for encoding input data for the infant agent. lished when multiple objects are present during the train-
Extra normalization is necessary to ensure that the sum ofing. The synaptic weight between a neurpwith activa-
the discrete distributions over all integerss equal to one:  tion h(w, t) and a neuron with activationE (6, r) is given

by w;;(t) and adapted with the following learning rule:

- 1 2
Go = - 2
(-T) o 27_[_ exp < 20‘2) ( ) ’LU”(t—i—]_) = Ckforget"wij(t)+aHebb'h(w,t)'V(e,'f', t) (8)
Go(z) = Go()/ Z Go(2). ©) The activation associated with the head pose encoded in
€2 h overwrites the activity i’ whenever the infant is looking

The caregivers head pose is encoded with a popula- at the caregiver. When the infant has shifted its gaze away

tion of neurong: with gaussian tuning curves. The variance Tom the caregiverf keeps its activation and is used as a
5,2 models the level of accuracy in head pose discrimina- short-t_erm memory: the _act|vat|on of the neurons encpdlng
tion: areas in space that the infant has already observed is sup-
WO, 1) = Gy, (os(t) — 0). ) pressed by the activations of the neurong’irencoding the
focus of attention:
The locationgz, y) of the salient objects and caregiver
are expressed in the infant’s body-centered polar coordi- )
nates(¢’,r'). The saliency value for each grid cell kis E(.r1) = { > {wij(t) - h(w, 1)}, if Inflooks at CG,

the sum of all saliencies;,, &k € {1,..N,CG} falling into E@,rt—1)- (1 _ %F(gm t)) otherwise.

the particular area of space. The infant’s accuracy in depth

perception is modeled with the varianeg? of the tuning The selective inhibition of activity iy causes the infant

curve encoding the distance of the objects: to shift its gaze to unobserved locations, because it always
attends to the area with the highest activatiorCin This
“scanning” continues as long as the activation along the line

S0,r,t) = Z sk(t) - Goy (rp(t) — 7). (B) of gaze is higher than the activation due to the foveated vi-
k|o,=0 sual input. It usually ends when the infant looks directly at

] . . ) . an object.
The infant’s visual inpul/ is the product of the object

salienciesS and the focus of attentiof', which is encoded

in the same body centered coordinate system as the neur
layers. It is a product of two gaussians (not normalized).
It has its highest value at the focused point in the center of
gazed = ¢ini(t), r = dint(t) and values close to zero for
angles and distances further away from the infant’s curren
focus of attention. This causés to be a foveated view.
The variancesr,? ando,2 influence the sharpness of the

az} Experiments

We present a number of experiments to show that our
model infant is able to acquire gaze following skills and
tlearns to overcome the Butterworth error. Each experiment
is run 20 times under the same conditions for 1000 learn-
ing trials. The performance is measured in testing periods
interposed every 25 trials during which no learning takes

foveation: i 4 s i '
place. Every testing period consists of several trials with 10

time steps each, one trial for every tested object location.

V(b,rt) = S(0,rt)-F(6,r1t) (6) A trial is considered successful when the infant is looking

Ot ()2 (r—diy (1)) where the caregiver is looking at the last time step of the

Fl,rt) = e 202 e 20" _  (7) trial. The performance of the model is measured with the
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Figure 3. Gaze following performance for frontal, lateral and rear targets. Left: Geometrical setup and

situation at the end of a successful trial. The individual directions of the gaze of infant and caregiver

are displayed with pairs of solid lines. The dotted lines indicate the agent’s base orientation. The
dashed lines display the borders of the infant’s field of view. Right: Gaze Following Index for frontal,
lateral and rear target pairs as functions of learning trials. The infant quickly learns to follow gaze to
frontal and lateral targets. Gaze following to rear targets is acquired slowly. Data points are averaged
from 20 runs, the error bars indicate the standard error.

Gaze Following Index (GFI), which is defined as the num- gaze following performance independent from limitations
ber of successful trials divided by the total number of trials. in depth perception or face processing.

. The result of this experiment is displayed in Fig. 3
4.1 Gaze following performance (right). The infant learns to reliably follow the caregiver’s
gaze to frontal objects in about 100 learning trials, to lateral

This experiment is designed to measure the model in-objects in about 200 learning trials, and to rear targets (with
fant's gaze following performance separately for frontal, a little lower GFI) in about 500 trials. This corresponds
lateral and rear targets. We therefore split the testing trialsto the results of the experiments by Butterworth and Jarret,
in three groups, depending on the position of the caregiver'swhere only the infants in the oldest age group shifted their
target object relative to the infant: a trial is considered a gaze to rear targets.
front target trial, when the caregiver’s target is in the infants
field of view while watching the caregiver. When the target
object is initially out of view but not behind the infant, this
is considered a lateral target trial. All other conditions are
rear target trials.

Even the untrained model infant is able to locate frontal
targets and to attend to them by simply using its periph-
eral vision. In order to eliminate this influence of sim-
ple preferential looking on the gaze following performance
we present pairs of targets with a small difference in their
saliency during the testing trials. Different from the learn-
ing trials we constrain the caregiver to look at the slightly A similar effect is exploited when the infant learns asso-
less salient object in the testing trials, just by setting its ciations between a head pose and rear objects, outside the
head/eye rotatiopcg(t) to the appropriate value. The in- infant’s field of view: Turning in the correct direction brings
fant will turn to the other, more salient object unless it fol- |ateral targets into the infant’s field of view and enables the
lows the caregiver’s gaze. infant to learn the corresponding associations. Learning to

All individual target positions in space are tested, except follow the caregiver’s gaze to objects that are behind the in-
the line connecting infant and caregiver. The setup is shownfant requires a prior ability to follow gaze to lateral targets.
in Fig. 3 (left). We use tuning curves with small variances This explains why it takes longer for the infant to achieve
for encoding the caregiver head pose and the infant’s per-reliable gaze following skills for rear targets as seen in real
ception of distancessf, = o4 = 0.1) in order to test the  infants.

The infant has not necessarily learned the complete set
of associations for the frontal targets and every caregiver
head pose until trial number 100. In fact, turning the head
in the correct direction moves the target object closer to the
infant's focus of attention and the other one further away.
This can cause a higher activation in the foveated visual per-
ception for the correct object than for the originally more
salient distractor. In this case the infant will attend to the
correct object. This corresponds to the ecological stage in
the development in real infants.



‘ — od:O.‘l Different oy in depfh perceptioﬁ, 5 :0_‘1 Differeﬁt o, in heaa pose disc‘rimination, ‘
1F|--- 005 fixed oh=0.1 in head pose discrimination. - L 0::1 fixed 0d=0.1 in depth perception.
d =2
= 0.8 =
SERES TR
T E3-T T4 %06 711
Tr-pI-rx i 0.4 }}I”I
rrrrIITTH
0.2 R
360 460 5(50 0 0 160 260 360 460 560
Learning trials Learning trials
Figure 4. Overcoming the Butterworth error. Gaze Following Index for trials with lateral targets and
frontal distractor objects, tested with different levels of accuracy in depth perception and head pose
discrimination. High accuracy corresponds to using low variances for the tuning curves encoding
object distances and caregiver head pose. Data points are averaged from 20 runs, the error bars
indicate the standard error.
4.2 Overcoming the Butterworth error ception skills the model would overcome the Butterworth

error even later. These results correspond to the results of
Butterworth where only older children are able to follow

In this experiment we test the infant's gaze following ) L : . o
their caregiver’s gaze correctly in ambiguous situations.

performance in the presence of distractor objects. Two
salient distractors are placed as a pair of frontal targets be-
hind the caregiver like shown in Fig. 1 (left). The slighty 5 Discussion
less salient target object, which the caregiver is attending to,
is placed at different lateral and frontal locations, but notbe-  \we have analyzed the gaze following problem with an
hind the infant or the caregiver. We test the gaze following emphasis on its spatial characteristics, and presented a new
performance with different settings for the infants ability to model for the emergence of gaze following. The infant in
discriminate distances and head poses, by varying the varigur model learns to follow the caregiver's gaze by learn-
ancesr,” ando,* for the tuning curves encoding the head jng associations between observed head poses and positions
pose and the distances of the objects. in space. These associations form an ambiguous mapping
The results of this experiment are displayed in Fig. 4. from every head pose to several locations where salient ob-
The infant is able to overcome the Butterworth error and jects are likely to be present. We demonstrated in experi-
to ignore the distractor objects in the background for the ments that our model is able to reach all stages of gaze fol-
majority of target positions, if depth perception and the dis- lowing: first it is able to resolve spatial ambiguities when
crimination of head poses are sufficiently accuratg & distractor objects are present in the background by using
o4 = 0.1). A higher variance (less accuracy) for depth per- depth perception, and second it follows the caregiver's gaze
ception or head pose discrimination leads to significantly to locations even behind its back. Furthermore, the temporal
worse gaze following performance. Unlike our model in- progression of the different stages is similar to the develop-
fant we assume real infants to improve their skills of depth ment observed in real infants: gaze following to frontal tar-
perception and face processing over time. Our experimen-gets early in the development, overcoming the butterworth
tal results suggest that an infant cannot acquire geometricakrror and finding lateral targets later, and locating rear tar-
gaze following skills before its depth perception and face gets even later.
processing skills are sufficiently developed. Itis important  The model also makes predictions about the effect of
to note that those skills seem to be critical not only for the |imitations in depth perception and face processing on in-
actual gaze following, but for the acquisition as well. fants’ ability to gain advanced gaze following skills: The
Our model needs more than 200 learning trials to achievebetter an infant can discriminate different head poses and
reliable gaze following performance in the presence of dis- object distances, the smaller is the region in space that will
tractors, compared to 100 trials in a simple setup with only be associated with each head pose. If one of these two skills
one pair of objects. In both cases the model used high accuis not sufficiently developed, the model cannot overcome
racy in depth perception and face processing from the firstthe Butterworth error. This suggests that children who are
learning trial on. With only gradually developing depth per- late to acquire accurate face processing and depth percep-



tion may develop geometric gaze following skills later than
their peers.

Butterworth and Jarrett proposed that the development
of a representation of space that contains infant, caregiver,
and objects corresponds to the infants’ ability to follow gaze
to rear targets. The body-centered coordinate systems that
we use in the infant agent provide such a spatial represen-
tation. The results of our first experiment show that gaze
following to rear targets might occur later, even with such a [4]
representation of space already in place.

Our model, like most models, makes many abstractions
and simplifications. While focusing on the spatial problems
of gaze following we especially simplified the dynamic as-
pects in this problem by running the simulation in discrete [5]
trials. Different problems occur with a continuous time line
in a dynamic environment: The longer the infant turns away
from the caregiver, the more likely it is that the caregiver has
already shifted its gaze again, causing a growing uncertainty
in the infant’s estimate of the caregiver head pose.

Popular approaches from the research areas of active vi-
sion and machine learning could be applied to the gaze fol-
lowing problem. One can understand the infant’s search for
salient targets as a state estimation process, based on limitedr;
observations of the real state, which is the actual distribution
of salient objects in the room. Research on Partially Observ-
able Markov Decision Processes (POMDPSs) deals with the
problem of decision making in environments with hidden [8]
states (e.g. [7]). Denzler and Brown developed an informa-
tion theoretical approach to optimal sensor parameter selec-
tion in object recognition [6]. A similar approach could be
used in the infant agent to learn how to efficiently integrate
information from the available sources, namely accurate but
visual perception with a limited field of view and ambigu-
ous information from evaluating the caregiver’s head pose. [10]
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