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Abstract— Over the years, proposals have been made to
employ line segments to build 2D maps of indoor environments.
One of the basic steps of these approaches is the matching
between scans (or, more generally, sets) of line segments, which
is usually addressed using variants of the Iterative Closest
Line (ICL) paradigm. ICL is based on the idea of associating
closest line segments belonging to the two scans and of reducing
the distance between them. In this paper, we propose two
algorithms that go beyond this approach by exploiting the
mutual compatibility between associations of line segments.
Experimental results show that our algorithms significantly out-
perform, in terms of matching accuracy, traditional algorithms
based on ICL, at the cost of a slightly longer execution time.

I. INTRODUCTION

Building 2D maps of indoor environments is often per-
formed by acquiring environmental data with laser range
scanners and integrating these scans with a SLAM frame-
work [18]. While scans composed of raw points are usu-
ally considered, an alternative approach exploits higher-level
geometric features like line segments [5, 7, 15], which are
extracted from point data [13]. The advantages consist in
more compact representations for maps (which also mean
faster methods) and in better capturing and leveraging on
the regular structures of indoor environments [5].

An enabling step in building line segment maps is the
matching between two scans composed of line segments.
The scan matching problem can be described as that of
finding a rototranslation that maximizes the overlap between
the line segments of the two scans, according to some
distance measure. The dominant paradigm for scan matching
is Iterative Closest Line (ICL) [10], which iteratively finds
the rototranslation that minimizes the distance between pairs
of nearest (associated) line segments belonging to the two
scans. Neira and Tardós [12] provide a sound argument that
nearest neighbor associations do not guarantee that corre-
lations between the underlying features will be preserved.
This is especially true for ICL: due to the small number
of line segments which usually compose a scan, even a
single failed association may have devastating effects on the
alignment quality. The effect is most evident when a line
segment in a scan has no corresponding line segment in the
other scan, as usually happens in incremental map building.
An example is shown in Fig. 1, where trying to minimize
the distance between nearest line segments leads to a wrong
rototranslation estimate.
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Fig. 1. On the left, the red scan is matched against the black scan by
using the associations represented by the dashed blue arcs. The absence of
mutual compatibility between associations results in a failed rototranslation
estimate, on the right.

In this paper, we propose an approach for matching scans
composed of line segments that considers the mutual compat-
ibility of associations. Informally, two associations between
line segments are mutually compatible if they “induce” the
same rototranslation. The same idea can be found in the work
of Tardos et al. [17].

We formulate a constrained optimization problem that
captures the idea of mutual compatibility and we introduce
two algorithms for solving this problem. Experimental results
show that our algorithms significantly outperform, in terms
of matching accuracy, state-of-the-art algorithms based on
ICL, at the cost of slightly longer execution times.

II. RELATED WORK

The current state of the art in line segment based mapping
efforts encompasses various subjects but, considering SLAM
applications, three major topics can be identified: line extrac-
tion, scan matching, and global alignment.

Line extraction deals with determining line segments from
point scans and sports a plethora of different approaches
such as split and merge and Hough transform. See [13] for
a survey.

Scan matching between sets of line segments has been
mainly tackled by algorithms belonging to the ICL class.
ICL is heavily inspired by Iterative Closest Point (ICP)
[6], with point-to-line ICP [4] in particular sharing many
dualities. Given two point scans, a query and a reference,
along with an estimate of their relative pose, first, a set of
associations between points and surface lines belonging to
different scans is determined on a nearest neighbor basis.
Then, a rototranslation is computed by minimizing point-to-
line distances, according to these associations. This transfor-
mation is applied to the query set of line segments and the
process is iteratively repeated until convergence. ICL adopts
the same four-step optimization process, the only differences
being that points are replaced with line segments and that the
notions of distance and rototranslation estimation change.

Numerous efforts based on this paradigm can be found
in the literature, all of which differ either on the distance



function adopted or on the procedure for the computation
of the rototranslation. For example, Li and Griffiths [10]
measure the distance between line segments according to
a weighted sum of their differences in position, direction,
and length. At each iteration of their ICL algorithm, they
find the translation in closed form and the rotation using an
eigen- or a single-value decomposition algorithm. Amigoni
et al. [2] use a distance between line segments inspired
by the Hausdorff distance and calculate the rototranslation
with an algorithmic approach that minimizes a function
defined ad hoc. Alshawa [1] does not specify explicitly a
distance function but provides a means of computing, at each
iteration, the rotation and the translation in closed form. With
our work, we both extend those algorithms by considering
mutual compatibility, and move to a new paradigm, which
goes beyond their iterative nature altogether.

Global alignment of line segments has been dealt with
both probabilistic and ad hoc formulations. The basic prob-
abilistic form has been proposed by Vandorpe et al. [19],
although, due to absence of correlation between line seg-
ments, their work is unable to deal with incremental errors.
This probabilistic formulation is extended by Castellanos et
al. [3], Garulli et al. [7], and Pfister [15], who correlate
line segments with a Kalman filter, although they provide
evaluation either on simplistic test scenarios or synthetic
data altogether. Nguyen et al. [14] provide, perhaps the first,
line segment based approach consistently evaluated on a real
dataset, although in doing so they introduce orthogonality
constraints. A further work worth of notice is that of Elseberg
et al. [5], who provide an iterative method for aligning line
segment scans, based on a powerful distance function that
can be also adopted in ICL applications.

The work by Tardos et al. [17] first introduced the concept
of mutual, or joint, compatibility in the context of line seg-
ment approaches. They do so by using the joint compatibility
branch and bound algorithm [12], which, contrary to our
work, requires an underlying probabilistic representation and
may result in computational requirements exponential in the
number of line segments.

III. THE PROPOSED APPROACH

In this section we illustrate our method for matching pairs
of line segment scans while ensuring mutual compatibility
between associations. First, we introduce a general optimiza-
tion problem aimed at computing the optimal set of associ-
ations, followed by the definition of possible objective and
constraint functions for such problem. Then, we introduce
two algorithms that ensure mutual compatibility. One adds
a filtering step to ICL, while the other one deals away with
the ICL paradigm altogether. Finally, a method for computing
the rototranslation from a set of associations is introduced.
The method ensures favorable properties when dealing with
singular environments, although the proposed scan matchers
are theoretically independent of such method. Note also that
both algorithms are independent of the particular interpola-
tion procedure and distance measure adopted.

When matching a pair of scans, we assume their line
segments to be expressed in a global reference frame. We
further assume one scan to be fixed, while the other to be
observed from a pose in a locality of an initial guess. We call
assignment any set of associations between line segments.

A. An optimization problem for mutual compatibility

In order to account for mutual compatibility between
associations, we define a constrained optimization problem
that describes how a mutually compatible assignment should
behave. Under such a model we will seek an assignment
where each association is constrained to provide a rototrans-
lation close to all others, while at the same time maximizing
the quality of the assignment.

Suppose that two collections of line segments (two scans,
or a query scan and a map), indexed by the integer sets R and
Q1, are given; then an optimal assignment S∗ with respect
to a threshold η ∈ Rk is defined as the one that maximizes
the following:

arg max
S⊆R×Q

∑
(i,j)∈S

wij(S)

s.t. disp(S) ≤ η

(1)

Where disp : P(R × Q) → Rk is a vector function
that evaluates the “dispersion” of the assignment over k
dimensions (P(·) is the power set) and wij(S) is a particular
importance weight for the association of line segments i
and j, given the full assignment set S. Note that, although
the problem is defined for a generic k, in this work we
will consider only the case k = 2. Dispersion and weight
functions will be detailed in the next section. Note also that,
in general, (1) is an NP-hard problem.

Although R × Q represents the set of all possible asso-
ciations, the solution can be sought only across a subset of
R × Q, as line segments which are exceedingly dissimilar
will not be considered as plausible associations. This can be
achieved by a pre-processing step, using a distance function
or a statistic test, such as the one proposed in [5] or in [15].

B. Dispersion and weight functions

In order to apply the problem (1) to actual data, it is
necessary to define both dispersion and weight functions,
which are non-unique and subjective, at least to some extent.

In order to determine a dispersion function that accounts
for mutual compatibility, we first consider a single associa-
tion (i, j): enforcing these two line segments to overlap in-
troduces two constraints, which allow to uniquely determine
a rotation θ(i, j) around the origin and a translation t(i, j)
along the axis normal to one of the lines. We call H(i, j) the
rototranslation obtained composing θ(i, j) and t(i, j). Thus,
in the ideal case, the associations (i, j) in an assignment
S are exactly mutually compatible if all the rotations θ(i, j)
are equal and each t(i, j) is the projection (on the axis along
which t(i, j) is defined) of the same overall translation.

1With a slight abuse of notation, in the following we will denote a line
segment both using its integer index (e.g., i) and as a set of points Si, when
we would like to emphasize its geometrical nature.



Fig. 2. Our deviation measure from a geometrical point of view.

For the rotation, a deviation from this ideal model can be
easily quantified by means of a subtraction, the same is not
true for the translation. For the latter, we define a deviation
measure ε, of a translation vector v ∈ R2 with respect to
another w ∈ R2:

ε(v,w) =

∣∣∣∣‖v‖ − vTw

‖v‖

∣∣∣∣
This deviation can be geometrically interpreted as the amount
of length by which v should be changed in order for the
projection of w on v to be equal to v. A sample of such
deviation is shown in Fig. 2.

Suppose now that, given an assignment S, we know the
“best” rotation θ(S) and translation t(S) (we address their
actual definition and computation in Section III-E). It is then
reasonable to consider as dispersion of an assignment S
the maximum deviation in rotation and translation of each
association (i, j) of S. We thus define the maximum deviation
function:

dispm(S) =

[
max(i,j)∈S |θ(i, j)− θ(S)|
max(i,j)∈S ε (t(i, j), t(S))

]
(2)

For the weights wij(S) in the objective function of (1)
we consider the amount of overlap between the pair of line
segments (i, j). The main motivating factor is that, often,
for perfectly aligned scans, the mutual overlap is maximized.
More formally, let L denote the line obtained by fusing line
segments Si and Sj with a procedure such as those of [9]
or [11]. Projecting Si and Sj onto L yields two collinear
line segments, which, when intersected, provide a (possibly
empty) line segment So. Let O(Si,Sj) be the length of So
(which represents the overlap between projections of Si and
Sj), we choose as weight function between two line segments
Si and Sj the value:

wij(S) = O(Si,H(S) · Sj) (3)

Where H(S) · Sj denotes that the rototranslation induced by
the assignment S (assumed, for now, to be provided by an
oracle) is applied to Sj .

C. Approximate solution by Filtered ICL

Solving problem (1) can be done directly by an appropriate
algorithm (see next section) or by re-adapting existing ICL
algorithms to at least ensure that the computed associations
satisfy the dispersion requirement. We discuss this latter
option in this section.

Starting from an initial assignment S̄, determined in a
nearest neighbor fashion (according to any distance function,

such as the one in [5] or in [10]), it is possible to provide a
greedy algorithm which computes an assignment S ⊆ S̄ such
that disp(S) ≤ η, while also approximately minimizing
|S̄| − |S|. Thus, we formulate a vanilla ICL algorithm with
this aim, called Filtered ICL, by adding a filtering step before
computing the rototranslation from the associations in the
assignment.

Intuitively, this can be done by iteratively removing the
“most deviant” association in S̄ and repeating the process
until the resulting assignment satisfies the dispersion con-
straint. Such an approach is approximate and greedy, hence
does not guarantee an optimal solution.

This kind of formulation requires the definition of an
order relation over the associations, based on their devia-
tion. Considering that (2) defines a two dimensional vector
subspace, determining which association is the most deviant
effectively results in a multi-criteria decision problem. As an
order statistic for (2) we propose a simple linear combination
of the deviations:

ξ((i, j), S) = λT

[
|θ(i, j)− θ(S)|
ε (t(i, j), t(S))

]
(4)

Where λ ∈ R2 is a weighting vector chosen experimentally.
Note that (4) is scale-dependent, since the translational and
rotational part have different units, which need to be taken
into account when selecting λ.

D. A polynomial-time approximation algorithm

While the Filtered ICL algorithm provides a simple ap-
proach to account for mutual compatibility of associations,
in this section we introduce a feasible algorithm to solve the
full optimization problem (1). We first introduce a theoretical
property of the optimization problem, and then we exploit
this aspect to provide an alternative non-iterative algorithm.

In absence of noise, scans acquired in strongly structured
environments are characterized by the fact that a pair of
associated corners (or, more generally, a pair of non-parallel
line segments) allows to unambiguously identify a rototrans-
lation. Thus, the search for an assignment can be reduced to
the search for a pair of associations between line segments,
and we can state the following proposition.

Proposition. Let the dispersion function be dispm, let
the importance weights wij(S) be such that the resulting
objective function is monotone non-decreasing with respect
to the addition of an association, and let S∗ be the optimal
solution to (1). Then, if there exists a pair of associations
a1 = (i, j) and a2 = (i′, j′) such that θ({a1, a2}) = θ(S∗)
and t({a1, a2}) = t(S∗), the optimization problem (1) can
be solved optimally in polynomial time.

By assumption, the addition of an association to an as-
signment cannot decrease the value of the objective function,
therefore, if {a1, a2} are known, the optimal assignment S∗

will be given by the largest set of associations which are
compatible with {a1, a2} within an η threshold. This is a
consequence of the max operator in the definition of dispm.
The optimal assignment S∗ can be then found by checking
each pair of associations against all remaining ones and



Algorithm 1 RANSAC-based matching algorithm
Require: A set of plausible associations S′ ⊂ R×Q
1: Sbest, zbest, i, j ← ∅, 0, 0, 0
2: while i ≤ k ∧ j ≤ w do
3: a1, a2 ← SamplePair(S′)
4: Stry ← {a1, a2}
5: j ← j + 1
6: if dispm(Stry) > η then
7: continue
8: end if
9: for each a3 ∈ S′ ∧ a3 6= a1 ∧ a3 6= a2 do

10: if [ |θ(a3)− θ({a1, a2})| ε(t(a3), t({a1, a2})) ]T ≤ η then
11: Stry ← Stry ∪ {a3}
12: end if
13: end for
14: ztry ← ObjectiveFunction(Stry)
15: if ztry > zbest then
16: Sbest, zbest ← Stry, ztry
17: end if
18: i← i+ 1
19: end while
20: return Rototranslation(Sbest)

adding to S∗ the pair that maximizes the objective function,
along with all other compatible associations. If n is the
number of possible associations to be considered, this results
in a Θ(n3) algorithm.

When dealing with a real scan matching problem, however,
the assumptions made, in general, need to be relaxed and,
while no optimality guarantee can be given, the results are
expected to be close to the optimum. For instance, the
best associated corners may provide a very noisy estimate
of the rototranslation, and while constant weights ensure
the monotonicity assumption, the weights defined in (3) do
not. Nevertheless, we experimentally found that, in indoor
environments, the rototranslation estimate does not change
significantly for associations which are mutually compatible,
therefore, the objective function roughly approximates a sum
of constant weights.

An improvement in the computational effort can be
achieved by adopting a RANSAC formulation: rather than
evaluating all possible pairs of associations, we randomly
samples just a subset of them. This is a reasonable choice
because, often, indoor domains present many corners. More-
over, two sampled associations a1 = (i, j) and a2 = (i′, j′)
may already be incompatible and can be safely discarded.
This naturally leads to a double-bound RANSAC formu-
lation: rather than sampling always k times, we run the
procedure at least k times but up to w times. Then, w − k
would represent the “grace window” allowed for the discards;
if less than w−k discards happen, the double bound ensures
that exactly k “meaningful” samplings are considered. This
results in an algorithm with an improved time complexity of
Ω(k n) and O(wn), which is outlined in Algorithm 1.

E. Computing the rototranslation

Up until now we have assumed that an oracle provides the
best rototranslation for a particular assignment (Section III-
B). In order to implement this feature in practice we adopt a
technique similar to that of Zhang and Ghosh [20]. We con-
sider the estimation of the rotation and translation separately.
The first is obtained by solving a weighted least squares

problem, while the latter by minimizing the weighted sum
of squared point-to-line distances, after having applied the
rotation. Mathematically, given an assignment S, we seek to
minimize, with respect to θ and t, the cost functions:

J(θ, S) =
∑

(i,j)∈S

uij(αi − αj − θ)2 (5)

J(t, S) =
∑

(i,j)∈S

vij D2 (cj − t,R(θ) · Si) (6)

Where uij and vij are particular chosen weights, R(θ) is a
rotation by θ around the origin, D(p,S) is the point-to-line
distance of point p from line S, and αi and ci are the angular
orientation and centroid, respectively, of line segment Si.

The minima of (5) and (6) are given by the values (proof
is rather straightforward and thus omitted):

θ̂ = −

( ∑
(i,j)∈S

uij

)−1 ∑
(i,j)∈S

uij(αi − αj) (7)

t̂ = −

( ∑
(i,j)∈S

vij nin
T
i

)+ ∑
(i,j)∈S

vij nin
T
i (pi − cj) (8)

Where A+ denotes the Moore-Penrose pseudoinverse of A,
ni is the unit vector normal to R(θ) · Si, and pi is one
of its end points. Notice that when S consists of a single
association (i, j), t̂ correctly simplifies to a translation by
the point-to-line distance along the normal vector ni:

t̂ = nin
T
i (pi − cj) = niD (cj ,R(θ) · Si) (9)

The values uij and vij provide an effective way to weight
the importance of associations, as spurious line segments
tend to corrupt the estimate. While it is possible to provide
a maximum likelihood formulation with particular values of
uij and vij , we have found that this choice often gives results
inferior to even a simple uniform weighting approach. This
outcome is possibly explained by the inadequate estimation
of the covariance of a line segment, when the interpolated
points do not follow a consistent linear model (e.g., clutter).

Beyond a maximum likelihood or uniform approach, we
propose adopting the following weights for cost functions
(5) and (6) (`i is the length of Si):

uij = vij =
(
`−1i + `−1j

)−1
(10)

This formula takes into account the fact that the length of
a line segment roughly correlates with a measure of its
information. Therefore, if we assume the presence of an
abstract variance σ2

S , we can argue that `−1 ∝ σ2
S , in which

case uij and vij would represent a value proportional to the
combined information of the two line segments.

As a final note, if the rotation R(θ) in (6) is carried
out around the initial guess (rather than around the origin
of the global frame), then it is possible to ensure that in
a corridor-like environment no translation will occur along
the axis tangent to the walls. This comes as a favorable
consequence to the use of the Moore-Penrose pseudoinverse.
Rotation along the initial guess should be also employed in



the computation of the dispersion function (2), as rotating
closer to the line segments helps reduce the effect of the
lever arm when their orientation is subject to non-negligible
errors.

IV. EXPERIMENTAL RESULTS

In order to evaluate quantitatively the performance of the
proposed algorithms we assume the presence of ground truth
data in the form of an exact map and of a set of scans which
are known to have been recorded at certain poses relative
to that map. Under this framework, the quality of a scan
matcher can be then tested by picking a scan, corrupting
its pose with Gaussian noise, and evaluating the accuracy,
namely the frequency of how often the rototranslation com-
puted by the scan matcher is in a neighborhood of the real
recorded pose.

We consider as ground truth the pre-aligned versions of
two datasets, the Rawseeds Bicocca 25b dataset2 and MIT
CSAIL dataset3, which represent a considerable challenge to
line segment methods, due to the large amount of clutter and
the many non-linear obstacles. Each dataset is composed of
a sequence of 2D scans acquired by laser range scanners.
We approximate the points in a scan with line segments:
we segment the points with a split and merge approach
and interpolate the resulting point clusters with a Theil-
Sen estimator [16]. We then perform a realistic incremental
matching test that requires algorithms to match a scan Vm
acquired at time m against a ground truth map composed by
the union of all preceding scans Vl l < m. This process is
repeated 500 times for each scan, each time with a different
corrupted pose.

We evaluated the following algorithms: Li and Grif-
fiths ICL [10], ICL without filtering, point-to-line ICP [4]
(computed on the original point-based map), Filtered ICL
(Section III-C), and RANSAC matcher (Algorithm 1). In
the results we will shorten these names to: L&G, Standard,
PLICP, Filtered, and RANSAC, respectively.

The Standard, Filtered, and RANSAC algorithms deter-
mine the potential set of associations with a modified Else-
berg et al. distance [5] that penalizes line segments which
are tangentially distant, while the rototranslation is calculated
with the method proposed in Section III-E, for both uniform
(U) and length-based (L) weighting. We set the η dispersion
threshold to 4.5◦ in rotation and 8 cm in translation, while
the λ vector parameter for the Filtered ICL to [0.3 0.7]T .
The RANSAC iterations range from k = 4000 to w = 4500
for maximum accuracy (generally much less iterations are
required, e.g., reducing them to 200-250 affects the accuracy
by less that 3%).

Table I reports the accuracy results on the two datasets.
We considered as acceptability threshold 5◦ in rotation
and 10 cm in translation, although it should be noted that
the results remain roughly consistent by either reducing

2http://www.rawseeds.org/rs/capture_sessions/view/5
3http://kaspar.informatik.uni-freiburg.de/

~slamEvaluation/datasets.php

TABLE I
ACCURACY RESULTS FOR DIFFERENT SCAN MATCHERS.

MIT CSAIL Dataset
Error L&G Standard/U Filtered/U RANSAC/U
Small 38.3% 38.6% 88.8% 96.1%

Medium 31.4% 34.6% 83.9% 90.6%
Large 16.8% 26.0% 66.8% 72.7%
Error PLICP Standard/L Filtered/L RANSAC/L
Small 89.3% 58.3% 91.6% 96.4%

Medium 79.1% 55.2% 87.3% 91.1%
Large 54.6% 45.4% 69.2% 72.7%

Rawseeds Bicocca 25b Dataset
Error L&G Standard/U Filtered/U RANSAC/U
Small 27.7% 58.1% 91.3% 93.9%

Medium 31.4% 50.2% 80.1% 80.5%
Large 13.2% 39.1% 64.4% 64.8%

Error PLICP Standard/L Filtered/L RANSAC/L
Small 93.0% 72.3% 92.4% 94.0%

Medium 80.5% 63.7% 81.4% 80.5%
Large 54.2% 51.6% 65.4% 64.6%

or enlarging these thresholds. The three error profiles re-
ported in Table I refer to the covariance of the Gaus-
sian noise by which the pose was corrupted, with Σs =
diag(0.002, 0.002, (π/120)2) for the small profile, 10 Σs for
the medium profile, and 100 Σs for the large profile. The
errors are expressed in meters, i.e., a variance of 0.002 results
in a standard deviation of approximately 4.5 cm.

The results show that the proposed methods provide a
valid alternative to point-based scan matchers even in heavily
cluttered environments. Although there is no substantial gain
in accuracy when dealing with smaller errors, for larger
errors the proposed methods provide, with confidence greater
than 95%, statistically significant improvements with respect
to PLICP. It should also be noted that, not only Filtered ICL
improves the accuracy of the Standard ICL, but also reduces
the average number of iterations required for convergence.
Depending on the error profile, in the MIT CSAIL dataset
we achieved a reduction in the number of iterations between
25.2% and 28.2%, while in the Bicocca 25b dataset between
12.3% and 16%.

We repeated the experiments of Table I assuming to
know all the ground truth map (and not only the scans
acquired before the corrupted one). In these localization-
only tests, the Standard ICL algorithm behaves comparably
close to the proposed methods, even in the absence of a
mutual compatibility constraints. This is because any query
line segment (almost) always has a corresponding map line
segment, which is not the case for incremental matching.

Table II provides a comparison of the single-threaded
average execution times for the two datasets with small
errors, as computed on an Intel R© CoreTM i7-3770K 3,5
GHz processor. The execution times of our algorithms are
currently larger than those of both PLICP and L&G, although
this is mostly due to the time required for the lookup of
plausible associations. The lookup was implemented with
a trivial Θ(k n) algorithm, where k and n are the number
of line segments in the scan and in a reduced locality of
the map, respectively, which provides significant slow-downs
due to the complexity of the Elseberg et al. distance [5].



TABLE II
AVERAGE EXECUTION TIMES FOR DIFFERENT SCAN MATCHERS.

Scan matcher MIT CSAIL Bicocca 25b
L&G 5.0 ms 1.0 ms

Standard 88.8 ms 11.8 ms
Filtered 63.2 ms 10.3 ms

RANSAC 52.1 ms 45.1 ms
PLICP 7.9 ms 3.9 ms

Fig. 3. Incremental RANSAC matching on the MIT CSAIL (top) and
Bicocca 25b (bottom) datasets. Due to the absence of a SLAM framework
it is impossible to close the highlighted loops in the Bicocca 25b dataset.

Our PLICP implementation, on the other hand, adopts k-d
trees for association lookup, which achieve a much lower
complexity of Θ(k log n), while L&G relies on a much
less complex distance. While this aspect could be definitely
improved, the proposed RANSAC scan matcher is still fast
enough to be executed in real time.

Finally, a qualitative evaluation of the RANSAC matcher
is provided in Fig. 3, where the MIT CSAIL and Bicocca
25b datasets are matched incrementally, with no SLAM
framework. Clearly, exact convergence is not possible due
to incremental errors, nevertheless, the MIT CSAIL dataset
results in only minor imperfections when closing the loop,
while in the Bicocca 25b dataset two failed loop closures
can be witnessed. This overall favorable performance can
be explained by the ability of our approach to exploit the
structure of indoor environments.

V. CONCLUSIONS

In this paper we introduced an approach for matching
scans composed of line segments with mutual compatibility

between associations. Mutual compatibility allows to better
exploit the structure of indoor environments while triggering
the development of scan matching algorithms that go beyond
the traditional iterative model of ICL. Experimental results
are encouraging, showing that our algorithms are signifi-
cantly more accurate (although slower) than those usually
employed in building line segment maps. Moreover, by
pure scan matching, we can reconstruct the maps of rather
complex indoor environments with reasonable quality.

Future works will address the further enhancement of
our approach, especially by extracting more reliable line
segments from laser scans. Moreover, the use of our scan
matchers in a complete SLAM framework, such as [8], and
their extension to 3D will contribute to further assess their
significance and utility.
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