
ALBERT-LUDWIGS-UNIVERSITÄT
FREIBURG

INSTITUT FÜR INFORMATIK

Arbeitsgruppe Autonome Intelligente Systeme

Prof. Dr. Wolfram Burgard

Learning Sample-Based Maps for
Mobile Robots

Master Thesis

Daniel Meyer-Delius di Vasto

September 2005 – May 2006

Erkl ärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und ohne Benutzung anderer
als der angegebenen Hilfsmittel angefertigt und alle Stellen, die wörtlich oder sinngemäß aus
veröffentlichten oder unveröffentlichten Schriften entnommen wurden, als solche kenntlich
gemacht habe. Außerdem erkläre ich, dass die Masterarbeitnicht, auch nicht auszugsweise,
bereits für eine andere Prüfung angefertigt wurde.

(Daniel Meyer-Delius di Vasto)
Freiburg, den April 12, 2007

Acknowledgment

First of all, I would like to thank Prof. Wolfram Burgard for giving me the opportunity to work
in his research group. I would like to thank him for his guidance, support, and motivation.

Many thanks to the members of the group: Cyrill Stachniss, Christian Plagemann, Rudolph
Triebel, Patrick Pfaff, Kai Arras and Giorgio Grisetti. Thanks to Axel Rottmann for his ad-
vises, ideas, and proof-reading part of this work. A very special thanks toÓscar Martı́nez
Mozos for his guidance and friendship.

La vida no es la que uno vivió, sino la
que uno recuerda y cómo la recuerda

para contarla.

Gabriel Garćıa Márquez

Contents

1. Introduction 1
1.1. Related Work . 2

2. Sample-Based Maps 5
2.1. Evaluation Criteria .. . 6

2.1.1. Likelihood of the Data . 8
2.1.2. Sum of Squared Error . 9

2.2. Estimating the Size of the Model 12

3. Dataset Simplification 15
3.1. Grid-based Sampling .. 15

3.1.1. Occupancy Grid Sampling . 17
3.2. Incremental Clustering 19
3.3. Farthest Point Sampling 22

4. Iterative Optimization 27
4.1. Maximum-Likelihood Estimation 27

4.1.1. Thek-Means Algorithm . 30
4.1.2. The Fuzzyk-Means Algorithm . 33

4.2. Optimization by Simulated Annealing 36
4.2.1. Annealing Schedule . 37

5. Experimental Results 41
5.1. Dataset Simplification 41
5.2. Evaluation of thek-Means Algorithm . 46
5.3. Evaluation of the Fuzzyk-Means Algorithm 51
5.4. Likelihood Optimization by Simulate Annealing 53
5.5. Memory Requirements of the Representation 58

6. Conclusion 63

A. Datasets 67
A.1. Intel Research Lab .67
A.2. Austin ACES . 68
A.3. Bruceton Mine . 69

i

Contents

A.4. Sieg Hall . 70

B. Additional Experimental Results 71

List of Algorithms 85

Bibliography 87

ii

1. Introduction

Mobile robots differentiate themselves from other types ofrobots in being able to go from one
place to another in order to execute a given task. During the last decade, mobile robots have
performed successfully in a wide range of different environments such as indoor, outdoor, un-
derwater, and even on other planets. For most robotic applications a model of the environment
is a fundamental part of the system. A representation of how the world looks like is neces-
sary for performing basic tasks such as localization, path planing, and exploration. Without a
model of the environment those tasks would be impossible, limiting the practical applications
of such a robot.

The way in which the environment is represented has an important impact on the perfor-
mance of the robot. Accurate maps are fundamental for navigation. One way to describe the
environment is to use a detailed geometrical description ofall the objects in it. These spa-
tial representations can be very accurate and are well suited for various important tasks like
motion control and accurate localization. A fundamental question when representing the en-
vironment geometrically is the choice of geometrical primitive to be used. Using lines, for
example, imposes a linear structure on the underlying environment. This is well suited for
some environments such as an office, but can be inappropriatefor others. Points are the most
general geometrical primitive. Using points allows different environments to be accurately
represented without imposing any geometrical structure onthem.

To construct a map, the information about the environment perceived by the robot is used.
This information can be, for example, the distance to the objects detected by the robot’s sen-
sors while moving through the environment. Using the distance measurements directly in the
way they are produced by the sensors is straight-forward andgeneral since it does not rely
on the environment having some specific features. By converting these measurements into a
set of points in an absolut coordinate system asample-basedmap is constructed. Such a map
constitutes a point-based geometrical representation of the environment where each point or
sample corresponds to a measurement made by the robot. Thus,beside their accuracy and
generality, sample-based maps are also consistent with theobservations.

This thesis investigates the idea of using samples to model the environment and presents
different techniques for generating sample-based maps from the distance measurements ac-
quired by the robot. We seek to find an efficient representation to accurately describe the
environment. Obviously, if all the measurements acquired by the robot are used, the resulting
map would be the best representation of the environment given that data. Distance measure-
ments, however, come in large amounts and may lead to too large models. Additionally, not
every sample contributes in the same way to the representation, and we may be interested in
representing the environment using fewer samples. Thus, our goal is to find a subset of the

1

1. Introduction

complete dataset to efficiently represent the environment.
The contribution of this thesis are the various approaches to generate sample-based geomet-

rical maps from range measurements gathered with a mobile robot as an efficient representa-
tion of the environment. Sample-based maps are general in the sense that they are not limited
to a specific type of environment and by using points as primitives for the representation do
not impose any structure to the environment that is being represented. Additionally, sample-
based maps are consistent with the data since they do not contain spurious points. Every point
in a sample based map can be explained by an existing measurement.

1.1. Related Work

In the robotic literature many different strategies have been proposed to learn efficient geo-
metric representations from range data. One of the first strategies was described by Crow-
ley [1989] who uses a Kalman filter to fit lines on range measurements obtained from sonar
sensors. In the paper by Gonzales et al.[1994], point clusters are computed from each range
scan based on the distance between consecutive points. Linear regression is then applied to
fit lines to these clusters. Arras and Siegwart[1997] use a hierarchical clustering approach to
extract lines from the points obtained from laser data. The strategy proposed by Leonard et
al. [2001] uses a Hough transform to extract linear features from a sequence of consecutive
sonar measurements. The approach presented by Schröter etal. [2002] clusters scans using the
split-and-merge algorithm and combines nearby segments using a weighted variant of linear
regression.

In a recent work, Sack and Burgard[2004] present two approaches for extracting lines from
laser data. They use the Hough transform and the EM algorithmto extract lines out of the set of
points obtained from the range measurements. Both approaches work on the complete dataset
in contrast to techniques that work on individual scans. Similar to these approaches, our
techniques work also on the complete dataset. However, we donot depend on the extraction
of features to construct a representation of the environment.

The EM algorithm has also being used by Liu et al.[2001] to learn planar structures from
3D data, and by Anguelov and colleagues[2004] apply the EM algorithm to cluster different
types of objects like walls and doors from sequences of rangedata. Burgard et al.[1999] use
the EM algorithm for learning maps using sonar data, and Bennewitz et al.[2002] to learn
motion behaviors of persons. Thek-means and fuzzyk-means algorithms we used in our
work to improve the quality of a sample-based map are instances of the EM algorithm.

A different approach for improving a given model is to use thesimulated annealing al-
gorithm. This algorithm was used by Kirkpatrick et al.[Kirkpatrick et al., 1983] to solve
optimization problems associated to the design of integrated circuits like component place-
ment and wiring. They also apply the algorithm to the classicoptimization problem of the
traveling salesman. In our work we state the problem of generating a sample-based map as an
optimization problem and apply the simulated annealing algorithm to find the solution.

Beside lines, other geometrical primitives have being explored for describing the environ-

2

1.1. Related Work

ment. González-Baños and Latombe[2000] use polylines as primitives for the representation.
A polyline is a sequence of line segments that are connected at their endpoints. In their work,
polylines are extracted from range scans exploiting the order of the individual laser beams.
Veeck and Burgard[2004] describe an approach for learning polyline maps that operates on
an arbitrary set of points and does not assume any ordering ofthe points.

In the computer graphics field, Levoy and Whitted[1985] proposed points as a universal
meta-primitive for geometric modeling and rendering applications for 3D geometry. Pauly et
al. [2002] explore the usage of points as primitives for modeling three-dimensional objects,
and presents several techniques for modifying and reducingthe size of the original set of
points. However, these techniques are approximative in thesense that the resulting set of
points are not necessarily a subset of the original dataset.Alexa et al.[2001] works on a set of
samples that is a subset of the original dataset.

This thesis investigates the idea of using samples to efficiently represent the environment
and presents various approaches to generate sample-based maps from the range measurements
gathered with a mobile robot. The rest of this thesis is organized as follows. Chapter 2
introduces sample-based maps. It describes how the range measurements are used to obtain
the points used in the representation and presents the evaluation criteria for the models used
throughout the rest of the work. Chapter 3 presents several techniques used to reduce the
number of points in the original dataset. In Chapter 4 we present thek-means and fuzzyk-
means algorithms as maximum-likelihood optimization techniques for improving the quality
of a given model. This chapter also describes the simulated annealing algorithm as a stochastic
solution for the optimization problem. In Chapter 5 we present several experiments designed
to evaluate the different algorithms presented in this work. Finally, in Chapter 6 we present
the conclusions of out work.

3

1. Introduction

4

2. Sample-Based Maps

A sample-based map is a spatial representation of the environment that uses points as model
primitives. These points are obtained by projecting the range measurements of the robot’s
sensors into a global Cartesian coordinate system. The resulting set of points constitutes a
two-dimensional spatial model of the environment and represents a two-dimensional floor
plan, or a two-dimensional slide of the three-dimensional environment. Using points as the
model’s primitives complex environments can be accuratelyrepresented and no structure is
imposed on the underlying environment. Besides its generality and accuracy, sample-based
maps are also consistent with the data. There are no spuriouspoints in the representation,
since every point can be associated to an originating measurement.

Throughout this work, we assume the range measurements fromwhich the samples are
obtained are generated using a laser-range finder. Laser-range finders are very common in
robotics and currently state-of-art for distance measurements given their high accuracy. At
each timet, a laser-range finder generates a set ofM range measurementszt = {z1

t , . . . , z
M
t }

referred to asscan. Each measurementzi
t = (di

t, ϕ
i
t) in a scan, corresponds to a laser beam

and consists of a distance measurementdi
t, and directionϕi

t relative to the robot’s orientation.
A measurementzi

t can be projected into a pointx = (px, py) in Cartesian coordinates using
the following equation

(

px

py

)

=

(

rt
x

rt
y

)

+

(

di
t cos(rθ − ϕi

t)
di

t sin(rθ − ϕi
t)

)

, (2.1)

wherert
x andrt

y correspond to thex-y coordinates of the robot at the momentt of the mea-
surement, andrt

θ corresponds to its bearing. Figure 2.1 shows a complete scanconsisting of
361 measurements covering a180 degree area in front of the robot. The figure also shows the
points generated by projecting the measurements using Eq. (2.1).

According to Eq. (2.1), in order to project a measurementzi
t, the pose of the robot(rt

x, r
t
y, r

t
θ)

at the moment of taking the measurement must be known. Unfortunately, this is, in general,
not the case. The problem of building a map without knowing the pose of the robot, is known
as thesimultaneous localization and mappingproblem (SLAM), and is one of the most fun-
damental problems in robotics. An extensive literature forthe field of SLAM can be found
in [Thrun, 2002]. We do not address SLAM is our work, and it is assumed that the scans are
aligned. That is, the pose of the robot at the moment of making a measurement has already
being estimated using some scan matching technique.

For the purpose of creating a map, the robot travels through the environment gathering a set
of scansz1, . . . , zK . Knowing the pose of the robot, all these scans, can be projected using

5

2. Sample-Based Maps

Figure 2.1.: The left image shows a complete scan consistingof 361 range measurements with
an angular resolution of0.5 degrees. The points obtained by projecting the range
measurements into Cartesian coordinates are shown on the right image.

Eq. (2.1) producing a setD = {x1, . . . , xn} of points. We refer to these points assamples. The
measurement of the environment can be viewed as a sampling process, in which discrete points
are selected from a continuous space. The set of samplesD creates a two-dimensional spatial
representation of the environment as shown in Figure 2.2. The line in the figure indicates the
trajectory of the robot, and the points indicate the positions of the robot at the moment of
making a measurement.

The way in which the robot gradually moves through the environment, and the frequency at
which scans are made, cause consecutive scans to partially overlay. Consecutive scans mea-
sure to some extend the same region in the environment. The set of samplesD obtained by
projecting all the gathered measurements, can be used as a representation of the environment.
However, such a representation would contain, in general, many redundant samples. Addi-
tionally, since measurements come in large numbers, such a representation may be too large.
Instead, we are interested in an efficient representation that uses a less redundant and reduced
set ofD. Throughout this thesis, we present several techniques forselecting a good subset
of D to represent the environment according to some evaluation criterion. The next section
describes two evaluation functions used to measure the goodness of a given subset.

2.1. Evaluation Criteria

In the next section, we present two evaluation functions that can be used to compare different
subsets of samples. We would like to be able to select the bestsubset for a given dataset.
Therefore, we need an evaluation criterion to compare the subsets with. Throughout this
work, thelikelihood of the dataand thesum of squared errorare used as evaluation functions
for the subsets. The likelihood of the data is usually preferred given its solid probabilistic
framework, whereas the sum of square error has the advantageof being easier to compute.

6

2.1. Evaluation Criteria

Figure 2.2.: Representation of the Intel Research Lab in Seattle based on the projection of
range measurements gathered by a robot while moving throughthe environment.
A total of 910 scans were made, each scan consisting of 180 measurements. Only
measurements shorter than 10 meters were taken into accountresulting in 155648
samples. The line indicates the trajectory of the robot, andthe points indicate the
positions where a scan was made.

7

2. Sample-Based Maps

2.1.1. Likelihood of the Data

A subsetX of samples out of the complete datasetD can be interpreted as a probabilistic
model. The parameters of this model are denoted byΘ = {θ1, . . . , θk} wherek is the number
of samples inX , andθj represents the parameters associated to componentωj for j = 1, . . . , k.
Each samplexi ∈ D is assumed to be generated by first selecting a model component ωj

with probabilityP (ωj), and then generatingxi according to a certain probability distribution
p(xi|ωj, θj). Throughout this work, the following assumptions about theprobabilistic structure
of the model are made:

1. The numberk of componentsωj in the modelΘ is known.

2. Each model componentωj has the same prior probabilityP (ωj) = 1/k, j = 1, . . . , k.

3. The probabilityp(xi|ωj, θj) for samplexi of being generated by componentωj is nor-
mally distributed,p(xi|ωj, θj) ∼ N(µj,Σj).

The complete parameter vectorΘ can be written asΘ = {(µ1,Σ1), . . . , (µk,Σk)} according
to these assumptions. Eachµj in Θ corresponds to a samplexj in the subsetX . Additionally.
if we assume that each normal distribution inΘ has the same symmetric covariance matrix
Σ, and the standard deviationσ is known. That is,Σj = σ2I, for all j = 1, . . . , k. Then, the
parameter vector can simply be written asΘ = {µ1, . . . , µk}. The probability density function
for a samplexi of being generated by componentωj is then given by

p(xi|ωj, θj) =
1√
2πσ

exp
[

− (xi − µj)
2

2σ2

]

, (2.2)

and the probability density function for a samplexi is given by the following mixture density:

p(xi|Θ) =

k
∑

j=1

p(xi|µj, θj)P (ωj). (2.3)

Since the prior probabilityP (ωj) is the same for allk components in the model, replacing
p(xi|ωj, θj) in Eq. (2.3) with Eq. (2.2), we obtain

p(xi|Θ) =
1

k
√

2πσ

k
∑

j=1

exp
[

− (xi − µj)
2

2σ2

]

. (2.4)

Treating a sample-based map as a probabilistic model, enables us to cope with measurement
and pose estimation errors in an elegant way. The points in the dataset that belong to the
model are considered the “real” points. The remaining points are the result of Gaussian errors
in the measurements and pose estimation centered around these “real” points. The standard
deviationσ of this error, is related to the accuracy of the range sensor and pose estimation.
Small values forσ indicate a small measurement error and a high accuracy in pose estimation.

8

2.1. Evaluation Criteria

Large values forσ, on the other hand, should be use for large measurement errors and pour
pose estimations.

As a result of the Gaussian interpretation of the model, every samplexi in the complete
datasetD is assumed to be drawn independently according top(xi|ωj, θj) ∼ N(µj ,Σj). If
D containsn samples, then the likelihood of the modelΘ with respect to the samples inD is
given by

L(D|Θ) =

n
∏

i=1

p(xi|Θ). (2.5)

An usual practice when dealing with likelihoods, is to use the logarithm instead. The logarithm
is a strictly monotonic function, so, the greater the logarithm of the likelihood, the greater the
likelihood itself. The logarithm of the likelihood can be computed as

lnL(D|Θ) = ln

n
∏

i=1

p(xi|Θ)

=
n

∑

i=1

ln p(xi|Θ). (2.6)

For convenience throughout this work we will refer to the logarithm of the likelihood of the
dataD given a modelΘ as log-likelihood, or simply as likelihood, and we will denote it as
LL(D|Θ). Substitutingp(xi|Θ) in Eq. (2.6) with Eq. (2.4) we obtain

LL(D|Θ) =
n

∑

i=1

ln

[

1

k
√

2πσ

k
∑

j=1

exp
[

− (xi − µj)
2

2σ2

]

]

. (2.7)

The likelihood is a measure of the goodness of the model. It indicates, for a fixed datasetD,
that the modelΘ for whichL(D|Θ) is large is more likely to be the true model. It is important
to consider the value ofσ at the moment of interpreting the likelihood values. If the value ofσ
is too large, every model will have high likelihood, and the difference between the likelihood
of different models will be small. The opposite is also true.If the value ofσ is almost zero,
every model will have an almost identical low likelihood. Figure 2.3 plots the likelihood of
too different models for different values ofσ. When the values ofσ are nearly zero or too
large, the likelihood of the models become almost identical.

2.1.2. Sum of Squared Error

Another way to evaluate the quality of a given subsetX for a given set of samplesD is the
sum of squared errorE(D|X) defined as follows

E(D|X) =

n
∑

i=1

(xi − x∗i)
2, (2.8)

9

2. Sample-Based Maps

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

 0

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

LL

σ

Figure 2.3.: Plot of the likelihood value of two different models for different values ofσ.
Observe how when the value ofσ is too large or almost zero, the likelihood of the
two models are almost identical.

wheren is the number of samples inD, (xi − x∗i) is the Euclidean distance betweenxi andx∗i
and

x∗i = argmin
xj

(xi − xj)
2 ∀xj ∈ X . (2.9)

This function measures the total squared error incurred in representing then samples inD
with thek samples inX .

Both the model likelihood and the sum of squared error are strongly related. From Eq. (2.7)
it can be seen that the likelihood of a samplexi is large when the squared error(xi − µj)

2 is
small. The key difference between the two evaluation functions lies in the fact that for each
samplexi in D the sum of squared error considers only the closest samplex∗i in X to calculate
the error, whereas the likelihood of the data takes all the samples inX into account. That
is, the likelihood of the data evaluates the subsetX as a whole, and therefore provides more
information about the quality of the representation.

To illustrate the two evaluation functions, we will used thetoy dataset presented in Fig-
ure 2.4(a). The dataset consist of 8 distinct samples represented with empty circles. There are
(

8

4

)

= 70 possible ways of selecting models with 4 points out of a dataset with 8 points. For
each of these models, we computed the likelihood according to Eq. (2.7). Figure 2.4(b) plots
these likelihoods sorted in ascending order. Figure 2.5(a)shows the maximum-likelihood
model. The filled circles represent the points in the model. Figure 2.5(a) shows one of the
minimum-likelihood models. Figure 2.6(a) plots the sum of squared errors for all the possible

10

2.1. Evaluation Criteria

models. As expected, models with high likelihoods have a corresponding low sum of squared
errors, and models with low likelihood values have a corresponding high sum of squared er-
rors. This can be clearly seen in Figure 2.6(b) where both likelihoodLL and sum of squared
errorE spaces are aligned for comparison. It can also be observe that small differences inLL
are not reflected in the values ofE.

0 1 2

1

2

0

(a)

-110

-100

-90

-80

-70

-60

 10 20 30 40 50 60 70

LL

model

(b)

Figure 2.4.: Figure 2.4(b) shows the sorted likelihood of all the 70 models of size 4 for the
dataset shown in Figure 2.4(a).

11

2. Sample-Based Maps

0 1 2

1

2

0

(a)

0 1 2

1

2

0

(b)

Figure 2.5.: Figure 2.5(a) shows the maximum-likelihood model for the dataset shown in Fig-
ure 2.4(a). One of the minimum-likelihood models is shown inFigure 2.5(b).

2.2. Estimating the Size of the Model

Another key issue when selecting a model for a given dataset,is the number of model compo-
nents. BothLL andE are directly affected by the size of the model. In general, the likelihood
of the model increases as new components are added to the model, while E decreases as the
size of the model increases. Clearly, a model which has a component for each data point,
would be an optimal fit for the dataset. We are interested in finding a balance between the
number of components and the quality of the model.

A commonly used measure that balances the accuracy of the model with its complexity is
theBayesian Information Criterion[Schwarz, 1978]

BICE(D|Θ) = αE(D|Θ) + k logn,

wherek is the number of components in the modelΘ, andn is the total number of points in
the dataset. The constantα is a scaling factor for the error measureE. TheBICE represents
a compromise between the approximation error, the size of the model, and the size of the
dataset. When using theBICE criterion to determine the size of a model, we choose the
sizek∗ for which theBICE is minimal. According to theBICE, adding a point to a model
with a minimalBICE value would increase the complexity of the model without increasing
its accuracy. Removing a point from such a model would decrease its accuracy. Figure 2.7
plots theBICE value for a dataset with 10687 points using three different values forα. Points
where added to the models incrementally, by selecting the point with the greatest distance to
all other points already in the model. Observe how for small values forα, the resulting models
are smaller, since more weight is given to the complexity of the model. Large values ofα give
more weight to the error measure and less to the complexity ofthe model, generating then,
larger models.

12

2.2. Estimating the Size of the Model

 3

 4

 5

 6

 7

 8

 9

 10 20 30 40 50 60 70

E

model

(a)

 10 20 30 40 50 60 70

model

LL
E

(b)

Figure 2.6.: Figure 2.6(a) shows the sorted sum of squared error of all the 70 models of size 4
for the dataset shown in Figure 2.4(a). Figure 2.6(b) compares the likelihood and
the sum of squared error for these models.

13

2. Sample-Based Maps

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 2000 4000 6000 8000 10000

B
IC

E
 (

lo
g

sc
al

e)

model size

α = 50
α = 100
α = 200

Figure 2.7.:BICE values using three different values forα as a function of the size of the
model for a dataset of 10687 points. Forα = 50, 100, and200, the optimal model
sizes are2048, 2861, and4550 respectively.

14

3. Dataset Simplification

In the previous chapter we introduced sample-based maps as arepresentation of the environ-
ment that uses samples as model primitives. These samples were obtained by projecting the
end point of the range measurements made by the robot into a two-dimensional global Carte-
sian system. We argument that given the redundancy involvedin the data acquisition process,
using all the projected samples to represent the environment would produce an unnecessarily
large model. In this chapter we present various techniques for selecting a subset of samples
from the complete dataset. These techniques are quite simple, and are aimed at reducing the
number of points in the dataset, rather than at finding a good subset according to some evalua-
tion criteria. In our work, the techniques presented in thischapter are usually used to generate
an initial model that will be improved later, using the iterative improvement algorithms dis-
cussed in the next chapter. Still, the resulting set of samples constitutes a representation of
the environment and can be perfectly used as a map. Dataset simplification ordownsampling
techniques are also important since, given the high dimensionality of the problem of learning
a map from the data, reducing the size of the data is often of utmost importance in order to
solve this problem in a reasonable time.

All the algorithms presented throughout this chapter create a setX of samples that is a
subset of the complete datasetD. In Section 3.1 we present two algorithms based on a grid
representation of the environment. These algorithms divide the space into cells of equal size,
and then replace all the samples that fall within each cell with a common representative. The
representatives from all the non-empty cells constitute the resulting set of samples. This basic
approach is extended in Section 3.1.1 to associate an occupancy probability to each cell. This
probability value indicates how likely it is for the cell to be occupied and can be used to
filter out samples caused by spurious measurements. In Section 3.2 we present a clustering
algorithm that groups together samples that lie close to each other. The resulting set of samples
is created by selecting a representative sample from each cluster. Finally, in Section 3.3 we
present an incremental approach, in which samples are addedto the resulting set by selecting
the point that has the greatest distance to all the points already in the set.

3.1. Grid-based Sampling

Grid-based sampling techniques divide the space into cellsof equal size and then replace all
the samples that fall within the same cell with a common representative. The resolution of the
grid, that is the size of the cells, affects the number of points that will contain the resulting set.
A fine-grained grid will produce a larger set, than a coarse-grained grid. However, the exact

15

3. Dataset Simplification

 40

 42

 44

 46

 48

 88 90 92 94 96 98

(a)

 40

 42

 44

 46

 48

 88 90 92 94 96 98

(b)

 40

 42

 44

 46

 48

 88 90 92 94 96 98

(c)

Figure 3.1.: Grid-based sampling. Figure 3.1(a) shows a fraction of the original map of the
Bruceton Mine containing 129936 samples. The map in Figure 3.1(b) contains
35702 samples and was generated using a grid resolution of 5 centimeters. The
map in Figure 3.1(c) contains 15688 samples and was generated using a grid res-
olution of 10 centimeters.

number of points the will contain the resulting set can not bedirectly specified. The size of the
cells, can be chosen as to represent the error associated with the measurements. The greater
the error, the bigger the cells can be without loosing too much information. Figure 3.1 shows
a part of a map generated using two different grid resolutions. The complete dataset contains
129936 samples and is shown in Figure 3.1(a). The map shown inFigure 3.1(b) was generated
using a grid resolution of 5 centimeters and contains 35702 samples. The map in Figure 3.1(c)
was generated using a grid resolution of 10 centimeters and contains 15688 samples. For this
specific environment using a 5 and 10 centimeter grid resolution the dataset was reduced by
87.93% and 72.52% respectively. How much the dataset is reduced depends not only on the
resolution of the grid but also in the sampling density. For afixed grid resolution, dataset with
higher sample densities will suffer a larger reduction thandatasets with lower densities.

All the points that fall within the same cell are replaced by acommon representative. The

16

3.1. Grid-based Sampling

representative sample of each non-empty cell is selected byfirst calculating the center of mass
of all the samples in the cell. LetCi,j = {x1, . . . , xm} be the set of all samples that fall within
the cell indexed by〈i, j〉. The center of mass̄ci,j of the cell〈i, j〉 is computed as

c̄i,j =
1

|Ci,j|
∑

xi∈Ci,j

xi. (3.1)

Sincec̄i,j does not necessarily belong to the dataset, the pointc′ ∈ Ci,j that is closest tōci,j
is used instead. If the center of mass were to be used as cell representative, the resulting
representation would contain spurious samples. These samples would be inconsistent with the
data since they would not correspond to any measurement. Thegeneral grid-based sample
approach is described in Algorithm 3.1. The input of this algorithm is the set of all samplesD,
and the resolutionr of the grid. In line 1, a grid for the dataset is generated. Lines 2 through
6 select samples from the grid, by first computing the center of massc̄ of each non-empty
cell and then selecting the point inCi,j closest toc̄. Despite its simplicity, it is difficult to
describe the time complexity of the grid-based sampling algorithm. The number of operations
needed depends on four factors: the numbern of samples inD, the resolution of the gridr, the
number of samples that fall within each cell, and the size of the underlying environment. Still,
the results of our experiments have shown that the determinant factor in the time complexity
of the algorithm is the size of the datasetn.

Algorithm 3.1 Grid-based Sampling

Input: set of samplesD = {x1, . . . , xn},
grid resolutionr.

1: generate grid forD with resolutionr
2: for each cell〈i, j〉 do
3: if cell 〈i, j〉 is not emptythen

4: c̄ =
1

|Ci,j|
∑

xi∈Ci,j

xi

5: c′ = closest point for̄c in Ci,j

6: addc′ toX
7: end if
8: end for
9: return X

3.1.1. Occupancy Grid Sampling

Until now we have implicitly assumed that at the moment of gathering the measurements the
robot is the only moving object in the environment. This strong assumption can be justified,
for example, if the robot is allowed to measure the environment under controlled conditions.
This is, however, not always possible and we must take into account the dynamic nature of the

17

3. Dataset Simplification

environment at the moment of building a map of it. Failing to do this, will produce a represen-
tation that, though consistent with the data, will not be consistent with the environment. For
example, if the measurements corresponding to a person walking by the robot are included in
the representation, this person will be considered as an structural part of the environment in
the final map (see Figure 3.3(a)).

Dynamic objects are not the only source of spurious measurements. Other erroneous mea-
surements can be produced by noise in the sensors. To alleviate these problems, we present an
approach calledoccupancy grid sampling, which associates to each cell a value representing
the probability of being occupied. These approach is based on occupancy grid maps intro-
duced by Elfes[Elfes, 1989]. Discarding the cells with low probability of being occupied
effectively eliminates samples caused by spurious measurements.

The probability value associated to each cell lies between 0and 1, where 0 indicates that
the cell is definitely free, and 1 indicates that the cell is definitely occupied. The approach
used in this work to compute the occupancy probability for the cells, is known as thecounting
model[Hähnelet al., 2003]. This model, associates to each cell(i, j) the probabilitypi,j for a
range measurement of being reflected by the cell. The valuepi,j is computed as

pi,j =
hitsi,j

hitsi,j +missesi,j

, (3.2)

wherehitsi,j is the number of times a range measurement was reflected, or ended up in cell
(i, j), andmissesi,j is the number of times a range measurement passed through(i, j) without
being reflected. To obtain thehitsi,j andmissesi,j values for each cell, a ray-casting operation
is used. For each range measurementzi

t, all the cells traversed by the beam are evaluated.
Figure 3.2 illustrates the ray-casting operation. The graycells are traversed by the laser beam
and must be updated accordingly. The cell that contains the end point of the beam gets its
hits value is incremented therefore incrementing its occupancyprobability. The remaining
traversed cells get theirmisses value is incremented and their occupancy probability reduced.
Figure 3.2 also illustrates the importance of the grid resolution at the moment of computing the
probability value associated to each cell. Large cells makethe beams “thick” whereas small
cells make the beams “thin”. Figure 3.2(a) and Figure 3.2(b)represent the same situation using
two different grid resolutions. The filled circles represent structural parts of the environment.
The beam in Figure 3.2(a) is too thick and will decrease the occupancy probability of cells
that represent structural parts of the environment. If the cells are too small, beams will be too
“thin” and most of the cells will be visited only once. This reduces the corrective effect of
integrating multiple observations at the moment of computing the occupancy values.

As in the grid-based sampling approach described above, allthe samples that fall within
the same cell are replaced by a common representative. In contrast to grid-based sampling,
occupancy grid sampling only takes into account the cells whose occupancy values lie above
a specified threshold. This thresholdψ is a value between 0 and 1, and indicates the smallest
occupancy value a cell must have in order to be considered at the moment of sampling. All the
samples in each non-empty cell whose occupancy values is greater than the specified threshold,
are replaced by a common representative. This representative is selected in the same way as in

18

3.2. Incremental Clustering

(a) (b)

Figure 3.2.: Illustration of the ray-casting operation fortwo different grid resolutions. Observe
how a coarse resolution (a) makes the beam “thick” and a fine resolution makes
the beam “thin”

the grid-based sampling algorithm described above. First the center of mass̄ci,j for the cell is
computed and then its closest pointc′ in the cell is selected. Figure 3.3(b) shows the result of
applying occupancy grid sampling on the dataset shown in Figure 3.3(a). The samples were
gathered in the corridor of the building 79 at the Universityof Freiburg. The spurious samples
were caused by a person moving around the robot during the data acquisition process.

The general occupancy grid sampling approach is described in Algorithm 3.2. This algo-
rithm requires as input the set of aligned scansz1, . . . , zK , as well as the resolutionr of the
grid and the minimum occupancy thresholdψ. The measurements are needed in order to cal-
culate the occupancy probability for the cells. Lines 2 through 8 of the algorithm generate the
projected points, add them to the grid, and update the occupancy value of the cells. Lines 9
through 15 select the samples from the grid, taking only intoaccount the cells whose occu-
pancy value lies aboveψ. The determinant factor in the time complexity of the occupancy
grid sampling algorithm is the ray-casting operation. The number of times the ray-casting op-
eration must be carried out is given byS ∗M , whereS is the number of scans gathered during
data acquisition, andM is the number of beams per scan. The number of cells that must be
updated for each beam depends on the underlying environmentand the resolution of the grid.

3.2. Incremental Clustering

A different approach for reducing the number of samples in a dataset is to used a clustering
technique. These techniques, divide the dataset into groups or clusters of similar samples. By
selecting a representative sample from each cluster, the original dataset can then be represented
in a simplified way. For our specific case, the samples in the dataset are grouped using the
distance to the other samples as similarity measure. Samples that lie close to each other will
be grouped together into a single cluster.

19

3. Dataset Simplification

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

-1.5 -1 -0.5 0 0.5 1 1.5 2

(a)

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

-1.5 -1 -0.5 0 0.5 1 1.5 2

(b)

Figure 3.3.: The map shown in Figure 3.3(a) presents spurious samples caused by a person
walking around the robot during data acquisition. The map shown in Figure 3.3(b)
was generated using occupancy grid sampling with a grid resolution of 1 cm and
an occupancy threshold of 0.5.

20

3.2. Incremental Clustering

Algorithm 3.2 Occupancy Grid Sampling

Input: set of aligned scansz1, . . . , zK ,
grid resolutionr,
occupancy thresholdψ.

1: for each scanzt do
2: for each beamzi

t in scanzt do
3: project beamzi

t into a pointx and add it to its corresponding cell〈i, j〉
4: update all cells traversed by beamzi

t

5: end for
6: end for
7: for each cell〈i, j〉 do
8: if cell 〈i, j〉 is not empty andpi,j >= ψ then

9: c̄ =
1

|Ci,j|
∑

xi∈Ci,j

xi

10: c′ = closest point for̄c in Ci,j

11: addc′ toX
12: end if
13: end for
14: return X

The incremental clustering algorithm[Paulyet al., 2002] starts by a choosing randomly a
samplex0 from D creating a clusterC0 = {x0} with a single sample. The algorithm then
successively adds toC0 the nearest neighbors ofx0 in D until no more neighbors are found
within a maximum allowed cluster radiusrmax. The next clusterC1 is then created by selecting
the nearest neighbor ofx0 in D excluding all the samples that have already been assigned
to C0. This process is repeated until all the samples inD have been assigned to a cluster.
As representative for each cluster, the sample used for initialization is selected. Figure 3.4
illustrates how incremental clustering groups the samples. The circular regions represent the
different clusters. The numbers indicate the order in whichthe clusters where created. This
order depends on the sample selected to initialize the first cluster. Since this sample is selected
randomly, incremental clustering will produce different results even if the datasetD and the
maximum cluster radiusrmax remain fixed on repeated executions of the algorithm. These
results may differ in the samples selected and also in the resulting number of samples.

The incremental clustering algorithm is described in Algorithm 3.3. Thermax parameter
specifies the maximum radius of the clusters and therefore indirectly influences the number
of clusters that will be created. In general, using a small value for rmax will produce more
clusters than using a larger value. However, the exact number of clusters that will be produce,
can not be specified directly. Line 2 of the algorithm select arandom sample out ofD and
uses itseedto create the initial cluster. The while-loop in lines 4 through 14 keeps adding
to the last created cluster the nearest neighbors of the cluster’s seed. After no more samples
can be found within the specified radiusrmax, a new cluster is created in lines 9 through 11,

21

3. Dataset Simplification

1
2

3
4

5

Figure 3.4.: Diagram illustrating how incremental clustering partitions the samples. The cir-
cular regions represent the different clusters. The numbers indicate the order in
which the clusters where created.

using as seed the nearest unassigned neighbor of the previous seed. The time complexity of
the algorithm is governed by the nearest neighbors searches. Using a kd-tree[Bentley, 1975]
as data structure, each nearest neighbor search can be carried out inO(logn). The algorithm
can be optimized by exploiting the structure of the kd-tree and searching for multiple nearest
neighbors in each search. The general time complexity of theincremental clustering algorithm
depends mostly on the distribution of the samples inD, the maximum radius of the clusters
rmax, and the structure of the underlying environment. In the worst case where all samples are
separated by more thanrmax, the algorithm has a time complexity ofO(n logn).

3.3. Farthest Point Sampling

The last algorithm presented in this chapter is called farthest-point sampling. This sampling
technique generates a model in an incremental way. The first point is selected randomly.
Further points are added by selecting the point with the greatest distance to all those already
in the model. The sampling process terminates when a specified number of points is reached.

Farthest point sampling is an approximative strategy for finding a model that minimizes the
sum of squared error criterionE, discussed in Chapter 2, and repeated here for convenience

E(D|X) =
n

∑

i=1

(xi − x∗i)
2, (3.3)

wheren is the number of samples inD and

x∗i = argmin
xj

(xi − xj)
2 ∀xj ∈ X . (3.4)

22

3.3. Farthest Point Sampling

Algorithm 3.3 Incremental Clustering

Input: set of samplesD = {x1, . . . , xn},
maximal radiusrmax.

1: i = 0
2: randomly selectxi ∈ D and create clusterCi = {xi}
3: addxi toX
4: while unassigned samples remaindo
5: x′ = nearest unassigned neighbor ofxi in D
6: if distance fromxi to x′ ≤ rmax then
7: assignx′ to Ci

8: else
9: i = i+ 1

10: xi = nearest unassigned neighbor ofxi−1 in D
11: create clusterCi = {xi}
12: addxi toX
13: end if
14: end while
15: return X

At the moment of adding a sample to the model, farthest-pointsampling adds the samplexfp

that satisfies

xfp = argmax
xi

(xi − x∗i)
2 ∀xi ∈ D

= argmax
xi

[argmin
xj

(xi − xj)
2] ∀xi ∈ D, xj ∈ X (3.5)

In other words, farthest-point sampling adds the pointxi ∈ D that has the largest distance to its
closest samplexj ∈ X . The farthest point sampling approach is described in Algorithm 3.4.
Lines 4 through 10 compute for eachxi ∈ D the distance to its closest samplexj ∈ X , keeping
track at the same time of the largest distance. This is repeated for each of thek samples that
is added toX . Using a kd-tree as data structure, the time complexity of a closest point search
in the model isO(log k). Before adding a new point to the model, a closest point search must
be carried out for each one of then points in the data set. Sincek points must be added to
the model, the final time complexity of the algorithm isO(kn log k). In comparison, a greedy
strategy that always adds the point that minimizes the errorE, would have a time complexity
of O(kn3). The greedy approach requires(n − i)(n − i − 1) calculations of the error, when
adding thei-th component to the model. Computing the errorE has a time complexity of
O(n log k), thus, generating a model of sizek in a greedy way has a total time complexity of
O(kn3 log k). The implementation of the farthest-point algorithm used in this work is actually
faster since each time a samplexi is added toX , only the distance of the samples that have a
xi as closest sample is recomputed. However, here we describedthe algorithm in its simplest
form for clarity and to be able to analyze its time complexityformally.

23

3. Dataset Simplification

Algorithm 3.4 Farthest-Point Sampling

Input: set of pointsD = {x1, . . . , xn},
sizek of the looked-for model.

1: select a random pointxr from D and add it toX
2: while size ofX ≤ k do
3: dmax = −∞
4: for i = 1, . . . , n do
5: x∗i = closest point forxi in X
6: if (xi − x∗i)

2 > dmax then
7: dmax = (xi − x∗i)

2

8: xfp = xi

9: end if
10: end for
11: addxfp toX
12: end while
13: return X

Figure 3.5 plots the likelihoodLL of the a model obtained using farthest-point sampling and
a model obtain the greedy approach as a function of the size ofthe model. When the models
are small, the likelihood of the model obtained using the greedy strategy increases more rapid
than the likelihood of the model obtained using farthest-point sampling. But as the models
reach a certain size the likelihood of both models becomes almost identical. This is a property
of the likelihood function and is independent of the strategy used to generate the model. Large
models are all almost equally likely. x

24

3.3. Farthest Point Sampling

-500000

-450000

-400000

-350000

-300000

-250000

-200000

-150000

-100000

-50000

 0 500 1000 1500 2000

LL

model size

greedy sampling
farthest-point sampling

Figure 3.5.: Likelihood of a model generated using farthest-point sampling and another using
a greedy algorithm as a function of the size of the model.

25

3. Dataset Simplification

26

4. Iterative Optimization

Learning a sample-based map can be stated as the problem of finding the best subset of sam-
ples for a given dataset according to a given evaluation criterion. Since the number of possible
subsets is extremely large an exhaustive search in which each possible subset is evaluated is
only feasible for very small problems. Even if we restrict ourselves to the case where the size
k of the model is known, there are

(

n

k

)

possible ways to selectk out ofn samples. For a trivial
problem wheren = 30 andk = 15 we would have to evaluate over 155 million subsets in
order to find the optimal one. For real datasets wherenmay be over a million samples we need
to rely on approximative methods for finding a model for the data. The dataset simplification
techniques presented in the previous chapter generate a subset of samples from a given dataset,
starting with an empty set and adding samples to it accordingto some algorithm-dependent
built-in heuristic. In contrast to that, we consider in thischapter the problem of iteratively
improving an already given subset.

We present two different approximative iterative optimization approaches. In Section 4.1
we describe a maximum-likelihood strategy based on local derivatives of the likelihood func-
tion. We first describe analytically the idea behind maximum-likelihood estimation and then
present thek-meansandfuzzyk-meansalgorithms as concrete implementations. In Section 4.2
we present a stochastic approach for solving the optimization problem known assimulated an-
nealing, in which random modifications of a model are evaluate, and are accepted or rejected
according to some probability.

4.1. Maximum-Likelihood Estimation

Maximum-likelihood estimation interprets a sample-basedmap as a probabilistic model whose
parameters are fixed but unknown. The idea behind maximum-likelihood estimation is to use
all the samples in the dataset to select the parameters of themodel that maximize the likelihood
of the data.

In Section 2.1.1 it was mentioned that a subsetX of samples can be interpreted as a proba-
bilistic model for the complete datasetD. This model is represented by the parameter vector
Θ = {θ1, . . . , θk} wherek is the number of samples inX andθj represents the parameters
associated to model componentωj. We are assuming that each samplexi ∈ D is generated
independently by first selecting a model componentωj with probabilityP (ωj) and then pro-
ducingxi according to a Normal distributionp(xi|ωj, θj) ∼ N(µj ,Σj). The parametersθj

associated to the model componentωj are the parametersµj andΣj of the corresponding
Normal distribution. We further assume that each model componentωj has the same prior

27

4. Iterative Optimization

probabilityP (ωj) and that each Normal distributionp(xi|ωj, θj) has the same symmetric co-
variance matrixΣ with known standard deviationσ. The only unknown parameters in the
model are the values of the meansµj. Our problem is then simplified to estimating the values
of the parameterŝΘ = {µ̂1, . . . , µ̂k} that maximize the likelihood ofD.

Recalling from Section 2.1.1 that given a modelΘ the likelihood of the dataD is defined as

L(D|Θ) =

n
∏

i=1

p(xi|Θ), (4.1)

(4.2)

the maximum-likelihood estimation problem can then be formally stated as

Θ̂ = argmax
Θ

L(D|Θ). (4.3)

The values of the parametersΘ̂ are found by the standard methods of differential calculus,
computing the values forΘ where the gradient of the likelihood functionL(D|Θ) is zero.
There may be many values ofΘ that make the gradient ofL(D|Θ) zero. This values can
represent a global maximum, a local maximum or minimum, or aninflection point ofL(D|Θ).
Thus, each solution must be tested in order to find which one represents the global maximum.

When dealing with likelihoods, an usual practice is to used the logarithm of the likelihood
instead of the likelihood itself. Thus our problem is to find the values ofΘ = {θ1, . . . , θk}
that make the gradient oflnL(D|Θ) zero. In our specific case, we need to find the values of
the meansµι ∈ Θ that satisfy

∂

∂µι

lnL(D|Θ) = 0, ι = 1, . . . , k. (4.4)

The derivative oflnL(D|Θ) with respect toµι shown in the left part of the above expression
can be computed as

∂

∂µι

lnL(D|Θ) =
∂

∂µι

ln

n
∏

i=1

p(xi|Θ)

=
∂

∂µι

n
∑

i=1

ln p(xi|Θ)

=
n

∑

i=1

∂

∂µι

ln p(xi|Θ)

=

n
∑

i=1

1

p(xi|Θ)

∂

∂µι

p(xi|Θ). (4.5)

From Section 2.1.1 we known that

p(xi|Θ) =

k
∑

j=1

p(xi|ωj, θj)P (ωj). (4.6)

28

4.1. Maximum-Likelihood Estimation

Therefore Eq. (4.5) can then be written as

∂

∂µι

lnL(D|Θ) =
n

∑

i=1

1

p(xi|Θ)

∂

∂µι

k
∑

j=1

p(xi|ωj, θj)P (ωj)

=

n
∑

i=1

P (ωι)

p(xi|Θ)

∂

∂µι

p(xi|ωι, θι)

Derivative of ln
=

n
∑

i=1

p(xi|ωι, θι)P (ωι)

p(xi|Θ)

∂

∂µι

ln p(xi|ωι, θι). (4.7)

As in [Dudaet al., 2000] let us define the posterior probability of componentωι givenxi

P (ωι|xi,Θ) =
p(xi|ωι, θι)P (ωι)

p(xi|Θ)
, (4.8)

so that the derivative oflnL(D|Θ) with respect toµι can be written as

∂

∂µι

lnL(D|Θ) =

n
∑

i=1

P (ωι|xi,Θ)
∂

∂µι

ln p(xi|ωι, θι). (4.9)

Since the component conditional probabilitiesp(xi|ωι, θι) are Normally distributed with mean
µι and covariance matrixΣι = σ2I we get

∂

∂µι

ln p(xi|ωι, θι) =
∂

∂µι

ln

[

1√
2πσ

exp
[

− (xi − µι)
2

2σ2

]

]

(4.10)

=
∂

∂µι

[

ln
[1√

2πσ

]

− (xi − µι)
2

2σ2

]

(4.11)

= − 1

2σ2

∂

∂µι

(xi − µι)
2

=
(xi − µι)

σ2
. (4.12)

Substituting the above expression in Eq. (4.9) we get

∂

∂µι

lnL(D|Θ) =
n

∑

i=1

P (ωι|xi, Θ̂)
(xi − µ̂ι)

σ2
. (4.13)

According to expression (4.4) the derivativeslnL(D|Θ) with respect toµι must be zero at
the values ofµι that maximize the likelihood of the data. We can multiply Eq.(4.13) byσ2

and rearrange the terms to obtain the solution

µ̂ι =

∑n

i P (ωι|xi, Θ̂)xi
∑n

i P (ωι|xi, Θ̂)
. (4.14)

29

4. Iterative Optimization

Expression (4.14) leads to a set ofk interlaced nonlinear equations which usually do not
have a unique solution. These solutions correspond to the values of the modelΘ for which the
gradient of the likelihood functionL(D|Θ) is zero and it is necessary to test each solution to
see whether it corresponds to the global maximum. One technique that can be used to obtain a
solution, is to use an initial estimate for the priorsP (ωι|xi, Θ̂) and then use Eq. (4.14) to iter-
atively update the estimates. This technique can be viewed as an instance of theExpectation-
Maximizationalgorithm which can be shown to converge to a local optimum[Dempsteret al.,
1977]. In the following section we present thek-meansandfuzzyk-meansalgorithms as two
concrete implementations of this strategy.

4.1.1. The k-Means Algorithm

Expression (4.14) can not be used to obtainΘ̂ = {µ̂1, . . . , µ̂k} explicitly, but can be used to
improve an initial estimateΘ = {µ1, . . . , µk} as follows

µ̂ι =

∑n

i P (ωι|xi,Θ)xi
∑n

i P (ωι|xi,Θ)
ι = 1 . . . , k. (4.15)

If we approximate the posteriorP (ωι|xi,Θ) as

P (ωι|xi,Θ) =

{

1 if ||xi − µι|| < ||xi − µι′|| for all ι 6= ι′

0 otherwise,
(4.16)

the posteriorP (ωι|xi,Θ) is 1 whenωι is the closest model component forxi. Then Eq. (4.15)
givesµ̂ι as the average or mean of the samples that haveωι as closest component. If we define
Dι as the set of all samples that haveωι as closest model component, then Eq. (4.15) can be
stated as

µ̂ι =
1

|Dι|
∑

xi∈Dι

xi. (4.17)

Starting with an initial modelΘ0 = {µ0
1, . . . , µ

0
k} we can divide the datasetD into k parti-

tionsD0
1, . . . ,D0

k where eachD0
j is the set containing all samplesxi ∈ D that haveωj as closest

model component. UsingD0
1, . . . ,D0

k we can compute an improved modelΘ1 = {µ1
1, . . . , µ

1
k}

according to Eq. (4.17). The the newly computed modelΘ1 is used to partitionD again and
the resulting partitions are then used to computed an improved modelΘ2. This process is
repeated until no more changes take place between two consecutive iterations. The resulting
procedure is known as thek-meansalgorithm[MacQueen, 1967]. In its original version, the
k-means algorithm computes eachµ̂j as the mean of the samples that haveωj as closest model
component. The resulting set of points is not necessarily a subset ofD since the means may
not correspond to an existing sample. In order to solve this problem, after the algorithm has
converged each one of the computed meansµ̂j is replaced by its closest sample inD.

Thek-means procedure is presented in Algorithm (4.1). Lines 4 through 7 associate to each
samplexi its closest component inΘ. In line 9 the estimateŝµj are computed as specified in

30

4.1. Maximum-Likelihood Estimation

Algorithm 4.1 k-Means

Input: set of pointsD = {x1, . . . , xN},
initial modelΘ = {µ1, . . . , µk}

1: repeat
2: changes = 0
3: Dj = ∅, j = 1, . . . , k
4: for all xi ∈ D do
5: µj = nearest neighbor ofxi in Θ
6: addxi toDj

7: end for
8: for all µj ∈ Θ do

9: µ̂ =
1

|Dj |
∑

xi∈Dj

xi

10: if µ̄ 6= µj then
11: µj = µ̂
12: changes+ +
13: end if
14: end for
15: until changes = 0
16: for all µj ∈ Θ do
17: µ′ = nearest neighbor ofµj in D
18: µj = µ′

19: end for
20: return Θ

Eq. (4.15) based on the posterior defined in Eq. (4.16). Lines16 through 19 assign to each
µj ∈ Θ its closest sample inD. By using a kd-tree as data structure for the model nearest
neighbor searches can be carried out inO(log k), wherek is the number of components in
Θ. The partitioning of the samples has a complexity ofO(n log k). Computing the improved
values for the parameters of the model has a complexity ofO(k). This two steps are executed
T times until the algorithm converges. Finally, replacing all the computed means with its
closest point inD has a time complexity ofO(k log n). The total time complexity of the
algorithm is thenO(Tn log k), whereT is the number of iterations needed for convergence,n
is the number of samples in the dataset, andk is the number of components in the model.

As most greedy strategies thek-means algorithm converges to a local optimum. There is no
guarantee that a global optimum will be found. The quality ofthe model produced by thek-
means algorithm will depend strongly on the starting model.Consider for example the model
shown in Figure 4.1(a). The filled circles represents the samples that belong to the model.
This configuration would induce the partitioning shown in Figure 4.1(b), where the rectangles
represent the different partitions. The filled circles in Figure 4.1(c) represent the improved
model parameters. The next iteration does not change the model and therefore the algorithm

31

4. Iterative Optimization

0 1 2

1

2

0

(a)

0 1 2

1

2

0

(b)

0 1 2

1

2

0

(c)

0 1 2

1

2

0

(d)

Figure 4.1.: Illustration of thek-means procedure. Figure (a) shows the initial model. The
filled circles represent the samples that belong to the model. Figure (b) shows the
partitioning induced by the model shown in (a). The filled circles in Figure (c)
represent the improved values for the model components. Figure (d) shows the
final resulting model. For this particular configuration, the algorithm terminates
after just 2 iterations.

32

4.1. Maximum-Likelihood Estimation

terminates. The final model is shown in Figure 4.1(d). If a different initial model is used, the
algorithm may produce a different result. A common strategyto deal with this problem is to
run the algorithm several times using different initial models and keep the best result.

4.1.2. The Fuzzy k-Means Algorithm

Thek-means algorithm presented above associates each samplexi ∈ D to exactly one com-
ponentωj in the modelΘ. It partitionsD into k disjunct setsD = D1 ∪ . . . ∪ Dk, where
k is the number of components inΘ. In a more general version of the algorithm, known as
fuzzyk-means, samples can be associated to more than one component according to a degree
of membership. From a clustering perspective the fuzzyk-means algorithm producesfuzzy
clusters that do not poses a defined border.

The membership of samplexi to a componentωj is given by the posteriorP (ωj|xi,Θ) as
defined in Eq. (4.8). From Section 2.1.1 we know that

p(xi|Θ) =

k
∑

ι=1

p(xi|ωι, θι)P (ωι). (4.18)

Substituting the above equation in Eq. (4.8) we get

P (ωj|xi,Θ) =
p(xi|ωj, θj)P (ωj)

∑k

ι=1
p(xi|ωι, θι)P (ωι)

. (4.19)

Since we are assuming that every componentωj has the same prior probabilityP (ωj), the
degree of membership of samplexi to ωj can be computed as

P (ωj|xi,Θ) =
p(xi|ωj, θj)

∑k

ι=1
p(xi|ωι, θι)

. (4.20)

Now, according to the maximum-likelihood estimation strategy the improved value for the
parametersµι of the model are computed as

µ̂ι =

∑n

i P (ωι|xi,Θ)xi
∑n

i P (ωι|xi,Θ)
. (4.21)

This gives us the general strategy of the fuzzyk-means procedure. As in thek-means algo-
rithm, we start with an initial modelΘ0 = {µ0

1, . . . , µ
0
k}. Then for each samplexi ∈ D the

degree of membership to each componentωj ∈ Θ0 is computed. These values are used to
calculate the improved values for the parameters accordingto Eq. (4.21). The new improved
modelΘ1 is then used as starting point for the next iteration. The process is repeated until the
difference in the value of the parameters is smaller than a given thresholdǫ.

The fuzzyk-means procedure is described in Algorithm 4.2. Lines 4 through 8 compute
the normalizing constantηi =

∑k

j=1
p(xi|ωj, θj) for each samplexi ∈ D. The normalizing

33

4. Iterative Optimization

Algorithm 4.2 Fuzzyk-Means

Input: set of pointsD = {x1, . . . , xn},
initial modelΘ = {µ1, . . . , µk}

1: repeat
2: changes = 0
3: ηj = 0, j = 1, . . . , n
4: for all xi ∈ D do
5: for all µj ∈ Θ do
6: ηi = ηi + p(xi|ωj,Θ)
7: end for
8: end for
9: for all µj ∈ Θ do

10: µ̂ = 0, ρ = 0
11: for all xi ∈ D do
12: P (ωj|xi,Θ) = p(xi|ωj,Θ)/ηi

13: µ̂ = µ̂j + P (ωj|xi,Θ)xi

14: ρ = ρ+ P (ωj|xi,Θ)
15: end for
16: µ̂ = µ̂/ρ
17: if |µ̄− µj | ≥ ǫ then
18: µj = µ̄
19: changes+ +
20: end if
21: end for
22: until changes = 0
23: for all µj ∈ Θ do
24: µ′ = nearest neighbor ofµj in D
25: µj = µ′

26: end for
27: return Θ

34

4.1. Maximum-Likelihood Estimation

-643000

-642000

-641000

-640000

-639000

-638000

-637000

-636000

-635000

 0 5 10 15 20 25 30

LL

iteration

 fuzzy k-means
k-means

Figure 4.2.: Behavior of the Likelihood of a model as it is iteratively improved by thek-means
and fuzzyk-means algorithm. For this example, both algorithms converged after
the same number of iterations. The decrease in the likelihood at the last iteration is
caused by the replacement of the means by their closest component in the dataset.

constants are used in line 12 to compute the posteriorP (ωj|xi,Θ) according to Eq. (4.20).
Lines 10 through 16 reestimate the value of every model component according to Eq. (4.15).
Just as in thek-means algorithm, the resulting set of points is not necessarily a subset of
D. After the algorithm converges, lines 23 through 26 replacethe computed components with
their closest point inD. Computing the normalizing constants has a time complexityofO(nk)
and computing the improved values of the parameters of the model has too a time complexity
of O(nk). This two steps are repeatedT times until convergence. Finally, replacing each
computed means with its closest point inD has a total time complexity ofO(k log n). The
total time complexity of the fuzzyk-means algorithm isO(Tkn), whereT is the number
of iterations required for convergence,n the number of samples inD, andk the number of
components inΘ.

Figure 4.2 shows the general behavior of the likelihood of a model as thek-means and fuzzy
k-means algorithm progress. In the example shown in the figureboth algorithms converged
after the same number of iterations. The decrease in the likelihood at the last iteration is caused
by the replacement of the means by their closest component inthe dataset.

For both algorithms, the number of iterations required for convergence depends on the
dataset and the model used to initialize the algorithm. The running times for the fuzzyk-
means algorithm are in general longer than for thek-means algorithm due to the computation
of the posteriors. This is specially critical for large datasets and large models. However, fuzzy

35

4. Iterative Optimization

k-means yields better results in general, and has a more elegant probabilistic framework than
thek-means algorithm. The fuzzyk-means just like thek-means algorithm suffers too from
the local optima problem, and the results also depend on the starting model.

In the next section we present a different optimization strategy known assimulated anneal-
ing in which random modifications of a model are evaluated, and are accepted or rejected
according to some probability. The stochastic nature of this algorithm is what helps it to
overcome the local optima problem.

4.2. Optimization by Simulated Annealing

Annealing is a process used in physics in which some material, like a metal, is first melted
and then slowly cooled until it solidifies. By gradually lowering the temperature the process
allows the material to reach a state of thermodynamic equilibrium. If this is not done, the
material will solidify in an unstable state and will produce, for example, a weak metal.

Simulated annealing[Kirkpatrick et al., 1983] is motivated by these ideas from the field
of physics. It is an iterative improvement algorithm that starts with a given modelΘ0. In
each stepi the current modelΘi is modified by removing a randomly chosen component and
replacing it with a different randomly chosen component outside the model. Remember that
a modelΘ = {µ1, . . . , µk} for a datasetD is nothing more than a different interpretation for
a subsetX = {x1, . . . , xk} of the samples inD. Eachµi ∈ Θ represents axj ∈ D. Thus, in
each stepi a randomly chosen componentµj ∈ Θi is replaced with a component in{D −Θi}
to obtain a new model̄Θi. The new model̄Θi is then evaluated and the resulting change in the
likelihood of the model∆LL(Θ̄i,Θi) is computed using the following equation:

∆LL(Θ̄,Θ) = LL(D|Θ̄) − LL(D|Θ), (4.22)

whereLL(D|Θ) is the log-likelihood of the data inD given the modelΘ as described in
Section 2.1.1. If the new model̄Θi is better, the change∆LL(Θ̄i,Θi) will be positive and the
new model is accepted. On the other hand, if the resulting model is worst or equal, the new
model is accepted according to the following probability:

exp [∆LL(Θ̄i,Θi)/ti], (4.23)

whereti is called thetemperatureof the system, and is a control parameter in the same unit as
LL. The temperatureti determines the probability of accepting a lower-likelihood model at
stepi. The model selected at stepi is then used as starting model for the next stepi+ 1. The
initial temperaturet0 is set at some high, problem-specific value, and is decreasedaccording to
some predefined schedule.The algorithm terminates when thetemperature reaches a specified
lower boundtf .

During the first iterations of the algorithm when the temperature is high, the probability
of accepting a lower-likelihood model is also high. As the algorithm progresses and the
temperature decreases, the probability of accepting a lower-likelihood model decreases. At

36

4.2. Optimization by Simulated Annealing

lower temperatures the algorithm behaves in a greedy way, having a stronger preference for
higher-likelihood models. The fact that models with lower likelihood values have a positive
probability of being accepted is what allows the algorithm to escape from local optima.

In Figure 4.3(a) the acceptance probabilityexp [∆LL/t] is shown as a function in the change
of the likelihood of two models∆LL(Θ̄,Θ). Negative values for∆LL(Θ̄,Θ) indicate that the
modelΘ̄ to be evaluated has a lower likelihood than the current modelΘ. The probability of
accepting a lower-likelihood model depends on how big the change∆LL(Θ̄,Θ) is. Models
that produce big changes have a lower probability of being accepted than models that produce
only small changes. As the temperaturet decreases the probability of accepting a lower-
likelihood model also decreases. Figure 4.3(b) shows the acceptance probability as a function
of the temperaturet.

The simulated annealing procedure is described in Algorithm 4.3. In line 3 the current
modelΘi is modified by removing one randomly chosen component and replacing it with a
different randomly chosen component outsideΘi. Line 4 evaluates the new modelΘ̄i. This
new model is accepted if its likelihood is higher than the likelihood of the current modelΘi.
If its likelihood is not higher, the the new model is acceptedaccording to the acceptance prob-
ability for the computed change∆LL(Θ̄i,Θi) and the current temperatureti. The acceptance
of a model is implemented by randomly selecting a positive real numberrand[0, 1) smaller
than 1. If the acceptance probabilityexp [∆LL(Θ̄i,Θi)/ti] is larger thanrand[0, 1) thenΘ̄i

is accepted. The functiont(.) is called theannealing scheduleand controls the way in which
the temperature is decreased as a function of the number of iterations. The annealing schedule
determines the starting temperatureT (0) = t0, the number of models that are to be evaluated
before decreasing the temperature, and the rate at which this temperature decreases. The time
complexity of the algorithm isO(Tnk) whereT is the number of iterations needed until the
final temperaturetf is reached,n is the number of samples in the datasetD, andk is the
number of components in the model. The factorO(nk) in the complexity of the algorithm is
caused by the calculation of the likelihood of the models. The time complexity can be reduced
by exploiting the fact that the models to be compared are onlydifferent by one component.
This can be used to compute the likelihood in a more efficient way by only considering the
local changes.

4.2.1. Annealing Schedule

It remains to describe how the annealing schedulet(.) actually looks like. It has already being
mentioned that the initial temperaturet0 is set to some high problem-specific value and then
decreased until a final temperaturetf is reached. In general, the initial temperature must be
high enough so that every model has a positive probability ofbeing accepted. The decrease in
temperature must be slow enough to allow the algorithm to escape a local optima, and the final
temperaturetf must be low enough to minimize the probability of accepting amodel different
than a global optima in the final steps of the iteration. Beside these general guidelines, there
is no specific strategy for coming up with a schedule other than by tuning the parameters in a
problem-specific way.

37

4. Iterative Optimization

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-10 -8 -6 -4 -2 0

ex
p[

∆
L/

t]

∆ L

t = 5
t = 3
t = 1

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

ex
p[

∆
LL

 /
t]

t

∆ LL = -5
∆ LL = -3
∆ LL = -1

(b)

Figure 4.3.: Figure 4.3(a) shows the acceptance probability exp [∆LL/t] as a function of the
change in the likelihood∆LL(Θ̄,Θ) for three different values of the temperature
t. Figure 4.3(b) shows the acceptance probability as a function of the temperature
t for three different values of∆LL.

38

4.2. Optimization by Simulated Annealing

Algorithm 4.3 Simulated Annealing

Input: set of pointsD = {x1, . . . , xn},
initial modelΘ0 = {µ1, . . . , µk},
annealing schedulet(.),
final temperaturetf

1: i = 0
2: while t(i) ≥ tf do
3: generate random modelΘ̄i from Θi

4: if ∆LL(Θ̄i,Θi) > 0 or exp [∆LL(Θ̄i,Θi)/t(i)] > rand[0, 1) then
5: Θi+1 = Θ̄i

6: else
7: Θi+1 = Θi

8: end if
9: i = i+ 1

10: end while
11: return Θi

When selecting reasonable parameters for the annealing schedule, it is important to consider
the way the algorithm explores the likelihood space. In eachstepi, our algorithm evaluates
models by removing a component from the current modelΘi and replacing it with a different
component outside the model. Thus the temperature values must be selected based on the
difference∆LL between the likelihood of models that differentiate each other by only one
component. The way in which the algorithm explores the likelihood space leads to the two
following observations. First, the algorithm moves slowlythrough the likelihood space since
the transitions are between models that are identical but for a single component. This makes
the local likelihood landscapes shallow. Secondly, modelswith a high likelihoods lie far apart
in the likelihood space from models with low likelihoods.

Based on these observations a low-temperature schedule is chosen to prevent the algorithm
to wander too deep into low-likelihood regions. The initialtemperaturet0 is set empirically by
studying the local landscape for different randomly chosenmodels and observing the average
∆LL. At the beginning, the algorithm should behave in a random way with a slight preference
for high-likelihood models. The degree of randomness is controlled by the initial temperature.
As the algorithm progresses, the temperature is decreased according tot(i + 1) = αt(i) with
0 < α < 1. The parameterα controls how gradual the decrease in temperature is. Since the
algorithm moves slowly through the likelihood space, it is important to allow enough iterations
to take place so that the high likelihood regions can be reached. For this, the temperature is
not decreased after every iteration but we let the algorithmevaluate a numberm of models
before decreasing the temperature.

Figure 4.4 shows the likelihood of a model as its modified by the simulated annealing algo-
rithm. It can be observed how the likelihood of the current model can decrease during some
iterations. This occurs when a lower-likelihood model is accepted. In general, however, the

39

4. Iterative Optimization

-208250

-208200

-208150

-208100

-208050

-208000

-207950

-207900

-207850

-207800

 54000 56000 58000 60000 62000 64000 66000

LL

iterations

evaluated model
current model

Figure 4.4.: Likelihood of a model as the simulated annealing progresses. The figure also
shows the likelihood of the models that were evaluated on each iteration.

likelihood tends to increase. The figure shows how the simulated annealing algorithm moves
through the likelihood space. Also shown in the figure is the likelihood of the models that
were evaluated on each iteration.

According to the annealing schedule, the number of iterations needed for the algorithm to
terminate can be computed as

m
⌈

logα(tf/t0)
⌉

, (4.24)

wherem is the number of models to be evaluated before every temperature reduction and
⌈logα(tf/t0)⌉ is the number of times the initial temperaturet0 must be decreased until the
final temperaturetf is reached. According to (4.24), high values fort0, α, m, and a lowtf
cause the algorithm to evaluate a large number of models. This increase the probability of
finding a good solution. However, computational resources must be taken into account at the
moment of selecting the schedule parameters since the number of models to evaluate can be
restrictively large. A compromise must be reached between the probability of finding a good
model, and the needed computing time.

The simulated annealing algorithm like thek-means and fuzzyk-means algorithm is sus-
ceptible to the initial model. Different initial models produce different results. However, the
effect of the initial model is not as large as for the other twoalgorithms.

40

5. Experimental Results

The algorithms presented throughout this work have been implemented and evaluated using
various datasets. These correspond to different environments and were gathered using real
robots. A description of the datasets used can be found in Appendix A. The measurements
were recorded and aligned using the Carnegie Mellon robot navigation toolkit (CARMEN)
[Royet al., 2003]. For clarity only the results for two different datasets arepresented through-
out this chapter. However, the observations and analysis ofthe results are general and include
the results obtained using other datasets as well. These other results are presented in Ap-
pendix B. The datasets used for the results presented in thischapter where gathered at the
Intel Research Lab in Seattle and at the 4th floor of the Sieg Hall at the University of Wash-
ington.

The Intel Research Lab is shown in Figure 5.1 and has a size of 29m×29m. The measure-
ments were gathered using a Pioneer 2 robot equipped with a SICK laser range finder sensor.
A total of 910 scans were taken with 180 range measurements per scan. Only measurements
under 10 meters were considered at the moment of projecting the samples. The resulting
dataset has a total of 155648 samples and has a density of 181.41 samples per squared me-
ter. The 4th floor of the Sieg Hall at the University of Washington shown in Figure 5.2 has a
size of 50m×12m. A total of 241 scans where taken with 361 range measurements per scan.
The corresponding dataset consist of 83892 samples and has adensity of 92.53 samples per
squared meter. Here too, only ranges under 10 meters where used to obtain the samples.

5.1. Dataset Simplification

The first experiment is designed to evaluate the four different dataset simplification techniques
presented in Chapter 3. To compare the quality of the models,the likelihood of the dataLL is
used as evaluation criterion. As mentioned in Chapter 2 larger models have in general higher
likelihoods. Therefore, in order to make the comparisons fairer, we compare models having
the same number of components. To do this, we definedreference sizesfor the models to be
compared. These sizes correspond to the size of the models obtained with grid-based sampling
using different grid resolutions. We used 4 different resolutions for the different datasets used
in the experiments.

Once the reference sizes were set, we used the remaining dataset simplification techniques
to generate models according to these reference sizes. Withincremental clustering and occu-
pancy grid sampling, the size of the resulting model has to becontrolled by adjusting the input
parameters of the algorithms. These parameters are the maximum allowed radius for incre-

41

5. Experimental Results

Figure 5.1.: Intel Research Lab in Seattle.

Figure 5.2.: Sieg Hall at the University of Washington.

42

5.1. Dataset Simplification

mental clustering, and the resolution of the grid and the occupancy threshold for occupancy
grid sampling. The degree in which the size of the resulting model can be controlled adjusting
the values of these parameters is limited and the sizes of theresulting models were not always
the desired reference sizes. Farthest-point sampling is the only downsampling strategy for
which the size of the resulting model can be explicitly specified. Therefore no parameter had
to be tuned in order to obtain models of the desired size.

Incremental clustering and farthest-point sampling are stochastic algorithms since they pro-
duce different models even when given the same input parameters. Incremental clustering
not only produces different models, but also produces models of different sizes even for a
fixed maximum allowed radius. To deal with the stochastic nature of these two algorithms the
average of the results of several runs was used for the evaluations.

Figure 5.3 shows the likelihood of the models obtained usingthe different simplification
techniques: Grid-Based Sampling (gbs), Incremental Clustering (ic), Farthest-Point Sampling
(fps), and Occupancy Grid Sampling (ogs). From all these techniques, incremental clustering
produces the best results overall. Farthest-point sampling produces relatively good models
for large reference sizes, but as the size decreases the quality of the resulting models deteri-
orates in contrast to the results of the other algorithms. Grid-based sampling produces good
models for both large and small sizes. The likelihood of the models obtained with occupancy
grid sampling are in general relatively low. This is to be expected since the samples that are
discarded by this algorithm are usually outsiders which areimportant for the reduction of the
sum of squared error of the model, ultimately associated to the likelihood of the model.

In general the quality of the models obtained with the different techniques depends on how
large the models is in proportion to the complete dataset. Larger models have higher likeli-
hoods and the difference between the results of the different algorithms decreases as the size
of the models increases. This can be see in Figure 5.4 which shows the likelihood as a function
of the size of the model for the incremental clustering and farthest-point sampling algorithms.
The standard deviation shown on the figure was augmented by a factor of 10 for displaying
purposes. Observe how it increases as the size of the models decreases. This shows that the
difference in the likelihood values of the produced models is small for large models and in-
creases as the size of the models decreases. We observe on thegraphic that the incremental
clustering algorithm produces not only better models than farthest-point sampling but the vari-
ance in the quality of the produced models is smaller. The memory requirements needed to
produced large models with grid-based sampling and occupancy grid sampling prevented us
from using these two algorithms for this comparison.

Besides the quality of the resulting models the execution time of the algorithms is also
an important factor when comparing the different simplification techniques. We evaluated
the execution times of the different techniques running them on a standard PC with a 2.8
GHz processor. Figures 5.5 and 5.6 show the execution times for the Intel Research Lab
and Sieg Hall dataset respectively. It is clear that farthest-point sampling is, by far, the slowest
algorithm. For clarity, the figures also show the execution times of the other three algorithms in
detail. It can be observe that the grid-based sampling algorithm is the fastest one. Its execution
time is almost constant. In contrast occupancy-grid sampling has the overhead of the ray-

43

5. Experimental Results

-1.39e+06

-1.38e+06

-1.37e+06

-1.36e+06

-1.35e+06

-1.34e+06

-1.33e+06

-1.32e+06

-1.31e+06

-1.3e+06

60651 (39%)27752 (18%)11654 (7%)6970 (4%)

lo
g

lik
el

ih
oo

d

model size (k)

(a) Intel Research Lab

-660000

-655000

-650000

-645000

-640000

-635000

-630000

21290 (25%)9278 (11%)4028 (5%)2539 (3%)

lo
g

lik
el

ih
oo

d

model size (k)

(b) Sieg Hall

Figure 5.3.: Likelihood of the models obtained for the IntelResearch Lab and Sieg Hall
datasets. For each dataset, models of four different sizes were compared. The
models were generated using the different simplification techniques: Grid-Based
Sampling (gbs), Incremental Clustering (ic), Farthest-Point Sampling (fps), and
Occupancy Grid Sampling (ogs). The size of the compared models is indicated as
number of points and as percentage of the complete dataset.

44

5.1. Dataset Simplification

-1.36e+06

-1.35e+06

-1.34e+06

-1.33e+06

-1.32e+06

-1.31e+06

-1.3e+06

-1.29e+06

-1.28e+06

10 20 30 40 50 60 70 80 90 100

lo
g

lik
el

ih
oo

d

model size (%)

farthest-point sampling
incremental clustering

(a) Intel Research Lab

-650000

-645000

-640000

-635000

-630000

-625000

-620000

10 20 30 40 50 60 70 80 90 100

lo
g

lik
el

ih
oo

d

model size (%)

farthest-point sampling
incremental clustering

(b) Sieg Hall

Figure 5.4.: Likelihood of the models obtained with farthest-point sampling (fps) and incre-
mental clustering (ic) as a function of the size of the model.The standard devia-
tion shown on the figure was augmented by a factor of 10 for displaying purposes.

45

5. Experimental Results

casting operation which is clearly affected by the resolution of the grid. The execution times
of the incremental clustering algorithm depend both on the size of the complete dataset and
the size of the resulting model. The results of this experiment supports the theoretical analysis
about the time complexity of the dataset simplification algorithms presented in Chapter 3. As
a reminder letn andk be the size of the dataset and the model respectively. The farthest-
point algorithm has a time complexity ofO(kn log k), incremental clustering isO(k logn),
and grid-based sampling and occupancy grid sampling are both O(n) although occupancy
grid sampling has the additional overhead of the ray-casting operation. Remember that this
complexity analysis was very rough since the actual execution times depend greatly on the
distribution of the samples in the dataset and on the underlying structure of the environment.

5.2. Evaluation of the k-Means Algorithm

The second experiment is designed to show the effect of thek-means algorithm for improving
the quality of a given model. We use the models obtained usingthe different dataset sim-
plification techniques as starting point for thek-means algorithm. Figure 5.7(b) shows the
likelihood of the models obtained using thek-means algorithm together with the likelihood
of the models used as starting points. As can be seen on the figure, thek-means algorithm
actually improves the quality of the starting models increasing its likelihood. The figure also
shows the effect of the starting model on the quality of the results. For a fixed model size,
different starting models produce different results. Another observation is that the improve-
ment for lower likelihood models is in general larger than for models with higher likelihoods.
This can be seen in Figure 5.8 which compares the likelihood of the models obtained using
thek-means algorithm with the likelihood of the models used as starting point in function of
the size of the model. Observe how as the size of the model increases the difference between
the likelihood of the original model and the improved one decreases. This is a property of
the likelihood function and is independent of the strategy used to generate the model. The
difference in the likelihood between large models is small compared with the difference in the
likelihood between smaller models independent of how the models are generated.

How much a model is improved is related to the number iterations of the algorithm. Larger
improvements are in general associated to larger number of iterations. However, the amount
of improvement is also affected by the distribution of the samples in the initial model. For
example, thek-means algorithm converged after 54 iterations when starting with the model
of size 6970 obtained using grid-based sampling for the Intel Research Lab dataset. For the
same dataset and model size,k-means converged after 54 iterations too when starting with
the model obtained using farthest-point sampling. In the first case the improvement in the
likelihood of the model was of 23450. In the second case the improvement was of 49487,
more than twice as much as in the first case. These number have no absolut meaning but show
that the improvement can not be uniquely characterized by the number of iterations required
for convergence. Tables 5.1 and 5.2 show the number of iterations needed by thek-means
algorithm to converge for the Intel Research Lab and Sieg Hall datasets respectively. The

46

5.2. Evaluation of thek-Means Algorithm

 0

 10

 20

 30

 40

 50

 60

60651 (39%)27752 (18%)11654 (7%)6970 (4%)

ex
ec

ut
io

n
tim

e
(s

)

model size (k)

(a)

 0

 0.5

 1

 1.5

 2

60651 (39%)27752 (18%)11654 (7%)6970 (4%)

ex
ec

ut
io

n
tim

e
(s

)

model size (k)

(b)

Figure 5.5.: Execution times for the Intel Research Lab dataset on a standard PC with a 2.8
GHz processor. The execution times correspond to the 4 simplification tech-
niques: Grid-Based Sampling (gbs), Incremental Clustering (ic), Farthest-Point
Sampling (fps), and Occupancy Grid Sampling (ogs). For clarity Figure 5.5(b)
does not show the times for the farthest-points sampling algorithm.

47

5. Experimental Results

 0

 2

 4

 6

 8

 10

 12

21290 (25%)9278 (11%)4028 (5%)2539 (3%)

ex
ec

ut
io

n
tim

e
(s

)

model size (k)

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

21290 (25%)9278 (11%)4028 (5%)2539 (3%)

ex
ec

ut
io

n
tim

e
(s

)

model size (k)

(b)

Figure 5.6.: Execution times for the Sieg Hall dataset corresponding to the 4 simplification
techniques: Grid-Based Sampling (gbs), Incremental Clustering (ic), Farthest-
Point Sampling (fps), and Occupancy Grid Sampling (ogs). For clarity Fig-
ure 5.6(b) does not show the times for the farthest-points sampling algorithm.

48

5.2. Evaluation of thek-Means Algorithm

-1.38e+06

-1.36e+06

-1.34e+06

-1.32e+06

-1.3e+06

60651 (39%)27752 (18%)11654 (7%)6970 (4%)

lo
g

lik
el

ih
oo

d

model size (k)

(a) Intel Research Lab

-660000

-655000

-650000

-645000

-640000

-635000

-630000

21290 (25%)9278 (11%)4028 (5%)2539 (3%)

lo
g

lik
el

ih
oo

d

model size (k)

(b) Sieg Hall

Figure 5.7.: Likelihood of the models obtained using thek-means (k-m) algorithm for differ-
ent starting models. Also shown are the likelihood of the models used as starting
point generated with the different simplification techniques: Grid-Based Sam-
pling (gbs), Incremental Clustering (ic), Farthest-PointSampling (fps), and Oc-
cupancy Grid Sampling (ogs).

49

5. Experimental Results

-1.36e+06

-1.35e+06

-1.34e+06

-1.33e+06

-1.32e+06

-1.31e+06

-1.3e+06

-1.29e+06

-1.28e+06

10 20 30 40 50 60 70 80 90 100

lo
g

lik
el

ih
oo

d

model size (%)

incremental clustering
incremental clustering k-m

(a) Intel Research Lab

-645000

-640000

-635000

-630000

-625000

-620000

10 20 30 40 50 60 70 80 90 100

lo
g

lik
el

ih
oo

d

model size (%)

incremental clustering
incremental clustering k-m

(b) Sieg Hall

Figure 5.8.: Likelihood of the models obtained usingk-means (k-m) as a function of the size
of the model. The models used as starting point where obtained using Incremental
Clustering (ic).

50

5.3. Evaluation of the Fuzzyk-Means Algorithm

Initial Model 6970 (4%) 11654 (7%) 27752 (18%) 60651 (39%)
gbs 54 37 24 17
ic 55 34 21 11
fps 54 35 22 13
ogs 90 41 26 26

Table 5.1.: Number of iterations needed by thek-means algorithm for the Intel Research Lab
dataset. The initial models were generated using the different dataset simplifica-
tion techniques: Grid-Based Sampling (gbs), Incremental Clustering (ic), Farthest-
Point Sampling (fps), and Occupancy Grid Sampling (ogs).

Initial Model 2539 (3%) 4028 (5%) 9278 (11%) 21290 (25%)
gbs 72 48 29 12
ic 39 30 20 10
fps 59 38 22 14
ogs 70 42 30 18

Table 5.2.: Number of iterations needed by thek-means algorithm for the Sieg Hall dataset.
The initial models were generated using the different dataset simplification tech-
niques: Grid-Based Sampling (gbs), Incremental Clustering (ic), Farthest-Point
Sampling (fps), and Occupancy Grid Sampling (ogs).

increase in the likelihood of the models associated to theseiteration values can be clearly
observe in Figure 5.7.

The number of iterations also affects the execution times ofthe algorithm. Recall from
Chapter 4 that thek-means algorithm has a time complexity ofO(Tn log k) wheren is the
number of samples in the dataset,k is the size of the model, andT is the number of iterations
needed for the algorithm for convergence. Figure 5.9 shows the execution times of thek-
means algorithm for the Intel Research Lab and Sieg Hall datasets. The effect of the number
of iterations (Tables 5.1 and 5.2) can be clearly seen on the figure. For a given dataset and
model size the highest execution times correspond to the runs that required the largest number
of iterations.

5.3. Evaluation of the Fuzzy k-Means Algorithm

The third experiment is designed to demonstrate the capability of the fuzzyk-means algorithm
to improve the likelihood of a given model. To evaluate the results we use as staring point the
models obtained using the different dataset simplificationtechniques. Figure 5.10 shows the

51

5. Experimental Results

 0

 5

 10

 15

 20

 25

60651 (39%)27752 (18%)11654 (7%)6970 (4%)

ex
ec

ut
io

n
tim

e
(s

)

model size (k)

(a) Intel Research Lab

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

21290 (25%)9278 (11%)4028 (5%)2539 (3%)

ex
ec

ut
io

n
tim

e
(s

)

model size

gbs k-m ic k-m fps k-m ogs k-m

(b) Sieg Hall

Figure 5.9.: Execution times of thek-means (k-m) algorithm on a standard PC with a 2.8
GHz processor for the starting models produced with the dataset simplification
techniques: Grid-Based Sampling (gbs), Incremental Clustering (ic), Farthest-
Point Sampling (fps), and Occupancy Grid Sampling (ogs).

52

5.4. Likelihood Optimization by Simulate Annealing

Initial Model 6970 (4%) 11654 (7%) 27752 (18%) 60651 (39%)
gbs 18 24 20 12
ic 21 22 19 15
fps 20 24 19 16
ogs 27 20 34 21

Table 5.3.: Number of iterations needed by the fuzzyk-means algorithm for the Intel Re-
search Lab dataset. The initial models were generated usingthe different dataset
simplification techniques: Grid-Based Sampling (gbs), Incremental Clustering (ic),
Farthest-Point Sampling (fps), and Occupancy Grid Sampling (ogs).

likelihood of the models obtained using the fuzzyk-means algorithm. Also shown are the
likelihood of the models used as starting point for the algorithm. As can be seen in the figures,
using the fuzzyk-means algorithm the likelihood of the given models can be improved. It
can also be seen, how the model used as starting point affectsthe results of the algorithm.
Figures 5.11 compares the likelihood of the models obtainedusing thek-means algorithm with
the likelihood of the models obtained using the fuzzyk-means algorithm. The same starting
models were used for both algorithms. Observe that in most ofthe cases fuzzyk-means
produces better results than thek-means algorithm. However, the models produced using
k-means can be better than the ones produced with fuzzyk-means. In our specific case this
can be observed when occupancy grid sampling is used to generate the starting models. This
reason for this is that outliers in the original dataset haveonly a very small influence on the
models that fuzzyk-means produces. This negatively affects on the likelihoodof the resulting
models. On the other hand, thek-means algorithm may include in the resulting model, samples
that where previously removed by the occupancy grid sampling algorithm.

The execution times of the fuzzyk-means algorithm range from almost a minute for small
datasets to well over one hour for larger ones. The time complexity of the algorithm isO(Tkn)
whereT is the number of iterations needed by the algorithm,n the number of samples in the
dataset, andk the size of the model. The number of iterations is related to the increase in
the likelihood of the starting model. Larger increments in likelihood are associated to larger
number of iterations. Tables 5.3 and 5.5 show the number of iterations needed by the fuzzy
k-means algorithm for the Intel Research Lab and Sieg Hall datasets. Tables 5.4 and 5.6 show
the corresponding execution times.

5.4. Likelihood Optimization by Simulate Annealing

This experiment is designed to illustrate how simulated annealing can be used to improve
the likelihood of a model. In particular we show that simulated annealing can even improve
models where thek-mean and fuzzyk-mean algorithms fail. Both these algorithms get stock

53

5. Experimental Results

-1.38e+06

-1.36e+06

-1.34e+06

-1.32e+06

-1.3e+06

-1.28e+06

60651 (39%)27752 (18%)11654 (7%)6970 (4%)

lo
g

lik
el

ih
oo

d

model size (k)

(a) Intel Research Lab

-660000

-655000

-650000

-645000

-640000

-635000

-630000

-625000

21290 (25%)9278 (11%)4028 (5%)2539 (3%)

lo
g

lik
el

ih
oo

d

model size (k)

(b) Sieg Hall

Figure 5.10.: Likelihood of the models obtained using the fuzzy k-means (f) algorithm. Also
shown are the likelihood of the models obtained using the different simplification
techniques used as starting models: Grid-Based Sampling (gbs), Incremental
Clustering (ic), Farthest-Point Sampling (fps), and Occupancy Grid Sampling
(ogs).

54

5.4. Likelihood Optimization by Simulate Annealing

-1.38e+06

-1.36e+06

-1.34e+06

-1.32e+06

-1.3e+06

-1.28e+06

60651 (39%)27752 (18%)11654 (7%)6970 (4%)

lo
g

lik
el

ih
oo

d

model size (k)

(a) Intel Research Lab

-660000

-655000

-650000

-645000

-640000

-635000

-630000

-625000

21290 (25%)9278 (11%)4028 (5%)2539 (3%)

lo
g

lik
el

ih
oo

d

model size (k)

(b) Sieg Hall

Figure 5.11.: Likelihood of the models obtained using the fuzzy k-means (f) algorithm com-
pared with the likelihood of the models obtained using thek-means algorithm for
the same starting models. The starting models where generated using the dataset
simplification algorithms: Grid-Based Sampling (gbs), Incremental Clustering
(ic), Farthest-Point Sampling (fps), and Occupancy Grid Sampling (ogs).

55

5. Experimental Results

Initial Model 6970 (4%) 11654 (7%) 27752 (18%) 60651 (39%)
gbs 7.47 17.08 35.69 80.46
ic 9.08 14.35 30.78 67.72
fps 8.41 17.22 34.91 68.36
ogs 10.76 13.13 54.80 78.38

Table 5.4.: Execution times in minutes of the fuzzyk-means for the Intel Research dataset.
The initial models were generated using the different dataset simplification tech-
niques: Grid-Based Sampling (gbs), Incremental Clustering (ic), Farthest-Point
Sampling (fps), and Occupancy Grid Sampling (ogs).

Initial Model 2539 (3%) 4028 (5%) 9278 (11%) 21290 (25%)
gbs 15 16 29 12
ic 19 17 16 12
fps 17 17 13 13
ogs 20 16 25 16

Table 5.5.: Number of iterations needed by the fuzzyk-means algorithm for the Sieg Hall
dataset. The initial models were generated using the different dataset simplifica-
tion techniques: Grid-Based Sampling (gbs), Incremental Clustering (ic), Farthest-
Point Sampling (fps), and Occupancy Grid Sampling (ogs).

Initial Model 2539 (3%) 4028 (5%) 9278 (11%) 21290 (25%)
gbs 1.60 2.72 11.66 11.68
ic 1.89 2.72 6.00 11.52
fps 1.76 2.90 4.93 12.68
ogs 2.04 2.63 9.33 14.61

Table 5.6.: Execution times in minutes of the fuzzyk-means for the Sieg Hall dataset. The
initial models were generated using the different dataset simplification techniques:
Grid-Based Sampling (gbs), Incremental Clustering (ic), Farthest-Point Sampling
(fps), and Occupancy Grid Sampling (ogs).

56

5.4. Likelihood Optimization by Simulate Annealing

-211000

-210500

-210000

-209500

-209000

-208500

-208000

-207500

-207000

fuzzy k-meansk-meansfps

lo
g

lik
el

ih
oo

d

Figure 5.12.: Likelihood of the models obtained using simulated annealing (sa) for three dif-
ferent initial models after 110000 iterations. The first model (fps) was obtained
sampling 4500 points from the Sieg Hall dataset using farthest-point sampling.
The second (k-means) and third (fuzzyk-means) models were obtained with the
k-means and fuzzyk-means algorithms respectively using the first model (fps)
as starting initial model.

in models that constitute local optima in the likelihood space. Repeated applications of the
algorithms do not provide further improvements of these models. To perform this experiment
we selected an initial model and appliedk-means, fuzzyk-means and simulated annealing
to it. We then applied simulated annealing to the models obtained usingk-means and fuzzy
k-means. In order to set the initial temperature for each specific run, we ran the simulated
annealing algorithm using the different starting models and observed the average difference
in the likelihood during the first iterations. This value wasused as initial temperature. Thus
lower likelihood models would have in average a probabilityof approximately 37% of be-
ing accepted before the first decrease in the temperature. Weset the annealing schedule as
t(i+ 1) = αt(i) with α = 0.95 and allowed 4500 iterations (the size of the model) before
decreasing the temperature. The final temperature was set to0.05. Figure 5.12 shows the
likelihood of the models obtained after 110000 iterations together with the likelihood of the
models that were used as starting point. As expected from thediscussion in the previous ex-
periments,k-means and fuzzyk-means improved the likelihood of the original model. In the
figure it can be observed that the model used as starting pointdoes affect much the results
of the simulated annealing algorithm. Figure 5.13 shows thebehavior of the likelihood val-
ues for the different initial models. The figure shows how thealgorithm sometimes chooses

57

5. Experimental Results

-211000

-210500

-210000

-209500

-209000

-208500

-208000

-207500

-207000

 0 20000 40000 60000 80000 100000

lo
g

lik
el

ih
oo

d

iteration

fps
k-means

fuzzy k-means

Figure 5.13.: Likelihood for three different initial models as the simulated annealing algorithm
progresses. The final values together with their corresponding starting models
are shown in Figure 5.12.

lower likelihood models. Observe how the curve goes down on the initial iterations when
using as starting model the result of the fuzzyk-means algorithm. Given the specific anneal-
ing schedules used in the experiment we can calculate the number of iterations required by
the algorithm to terminate for each case. Using formula (4.24) we obtain that the algorithm
needs, for the best case 382500 iterations to terminate. Observe that in Figure 5.13 only the
first 110000 iterations are shown, a little over the 30% of thewhole execution. Each iteration
of the algorithm requires approximately 2 seconds, thus thecomplete execution time would
have being approximately 212.5 hours or almost 9 days. Figure 5.14(a) shows the behavior of
the likelihood values for a completed run of the algorithm using a different initial model and
greedier annealing schedule in which the initial temperature was set so that lower likelihood
models would have in average a probability of approximatelya 1% of being accepted before
the first decrease in the temperature. Figure 5.14(b) shows only the first iterations of the algo-
rithm. The figure shows the same number of iterations as the ones shown in Figure 5.13 for
comparison. Observe how by using a greedier approach the curve does not go down as much.

5.5. Memory Requirements of the Representation

In this final experiment, we compare the memory requirementsof our sample-based represen-
tation against occupancy grid maps[Elfes, 1989]. These maps divide the environment into

58

5.5. Memory Requirements of the Representation

(a)

-260000

-259000

-258000

-257000

-256000

-255000

-254000

-253000

-252000

LL

59

5. Experimental Results

cells of equal size. Each cell represents the are of the environment it covers and contains
information about the occupancy probability for that area.In this experiment, the concrete
implementation for the gird is based on thecounting model[Hähnelet al., 2003]. For each
cell (i, j) we must store information about the numberhitsi,j of times a range measurement
ended up in(i, j), and the numbermissesi,j of times a range measurement passed through
(i, j) without being reflected. Thus, for each cell2 × 4 bytes of memory are needed. For
each point in a sample-based map we need to store itsx andy coordinates. We use double
precision for this in order to obtain accurate maps. Thus, for each point2×8 bytes of memory
are needed.

Sample-based maps are not affected by the size of the environment. Only the number of
samples affect the memory requirements of sample-based maps. Occupancy grid maps, on
the other hand, are not affected by the number of samples but by the size of the environment.
Figures 5.15(a) and 5.15(b) show the memory required by a sample-based map as a function
of the number of samples in the map for the Intel Research Lab and Bruceton Mine datasets.
The figures also show the memory required by an occupancy gridmap for 4 different grid
resolutions. The Intel Research Lab is 29m×29m and the corresponding dataset has 155648
samples. The Bruceton Mine is 153m×73m and the corresponding dataset has 129936 sam-
ples. As can be seen in Figure 5.15(b) the size of the environment has a great impact on the
memory requirements for occupancy grid maps. In Figure 5.15(a) can be observe that for
some resolutions, an occupancy grid map requires less memory than a sample-based map in
certain environments. However, the memory requirements ofgrid-based representations grow
exponentially with the size of the environment, while they grow linearly with the number of
samples for sample-based maps.

60

5.5. Memory Requirements of the Representation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 10 20 30 40 50 60 70 80 90 100

20
15

10

5
m

em
or

y
re

qu
ire

d
(M

B
)

gr
id

 r
es

ol
ut

io
n

(c
m

)

model size (%)

(a) Intel Research Lab

 0

 5

 10

 15

 20

 25

 30

 35

 10 20 30 40 50 60 70 80 90 100

20
15

10

5

m
em

or
y

re
qu

ire
d

(M
B

)

gr
id

 r
es

ol
ut

io
n

(c
m

)

model size (%)

(b) Bruceton Mine

Figure 5.15.: The sloped line represents the memory required in megabytes (MB) by a sample-
based representation in function of the number of samples inthe map. Also
shown is the memory required by an occupancy grid representation for 4 differ-
ent grid resolutions.

61

5. Experimental Results

62

6. Conclusion

A model of the environment is an essential requirement for many robotic applications. In
particular, mobile robots rely on these models or maps to perform fundamental tasks like
localization, path planing, and exploration. The applications of a robot that can not perform
these tasks are very limited and of little practical use. It is therefore of great importance to
generate accurate maps of the environment.

In this thesis we presented sample-based maps as a efficient spatial description of the envi-
ronment that uses points to represent the objects detected by the robot with its sensors. Such
maps can be very accurate, and are general in the sense that they are not limited to a spe-
cific type of environment. By using points as primitives for the representation these maps do
not impose any structure to the environment that is being represented. Additionally, by using
only points that correspond to actual measurements made by the robot, sample-based maps
constitute a representation that is consistent with the data.

We presented several approaches for generating sample-based maps from the measurements
gathered by the robot. In Chapter 3 we described various techniques for reducing the number
of points in the representation. The first strategy divides the space into cells of equal size
replacing all the points that fall within a cell with a commonrepresentative. This leads to
a very fast but crude simplification of the dataset. We then extended this technique and as-
sociated to each cell a probability of being occupied. By discarding cells of low probability
we effectively eliminate points generated by spurious measurements caused by noise in the
sensor or by dynamic objects in the environment. We also describe an approach that builds
clusters in an incremental way by repeatedly adding points to the clusters until they reach a
maximum radius. This divides the dataset into a set of partitions of a specified maximum size
each of which is then replaced by one representative point. The last dataset simplification
technique presented repeatedly adds to the model the farthest point in the dataset. This is the
point that has the greatest distance to all the points already in the model. In this way, we
add to the model the point that reduces the most the spaces between the points already in the
model. None of this methods attempts to find an optimal model according to a global evalu-
ation criterion. Each technique has its own approximative heuristic. The grid-based and the
incremental clustering approaches try to partition the samples according to regions, assuming
that each region describes an equally important part of the environment. The farthest-point
sampling approach tries to minimize the sum of squared errors incurred in representing the
dataset using the points selected in the model.

The problem of generating a sample-based map can be stated asthe problem of finding the
best subset of points for a given dataset according to some evaluation criterion. By considering
the set of points as a probabilistic model the likelihood of the data can be used as evaluation

63

6. Conclusion

function for the models. Thus our problem can be restated as the problem of finding a subset
that maximizes the likelihood of the data. Since this problem is in practice intractable, we pre-
sented in Chapter 4 three approximative optimization techniques for generating a maximum-
likelihood subset. We first described thek-means and fuzzyk-means algorithms. Both of this
algorithms take a given initial model and improved it iteratively by recomputing the value of
its points. Thek-means algorithm associates each point in the dataset to itsclosest point in
the model and then recomputes the value of the points in the model based on all its associated
points. The fuzzyk-means algorithm is a more general version of thek-means algorithm.
It associates each point in the dataset to all the points in the model. These associations are
weighted according to the distance between the two points. In each iteration the points in the
model are recomputed as the weighted average of all the points in the dataset. The improve-
ments obtained using fuzzyk-means proved to be, in general, better than the ones obtained
with the k-means algorithm. Both of this algorithms are greedy procedures that maximize
the improvement in the likelihood of a model on each iteration. These greedy approaches,
however, tend to get stock in local maxima producing models that are not necessarily overall
bests. To alleviate this problem, we described the simulated annealing algorithm as a stochas-
tic approach for solving the optimization problem. Simulated annealing takes an initial model
and starts evaluating random modifications accepting or rejecting them according to some
probability. Since the algorithm accepts lower-likelihood models with a positive probability
is able to scape local maxima, producing in general better results than thek-means and fuzzy
k-means algorithms.

All the techniques presented in this thesis were implemented and evaluated using data gath-
ered with real robots in different environments. We used thelikelihood of the data as a measure
of the quality of the models. Since larger models have in general a higher likelihood, we com-
pared models of the same size to evaluate our algorithms. We first compared the different
dataset simplification techniques in function of the quality of the resulting models. Our ex-
periments showed that the incremental clustering algorithm produced the bests models. Since
the clusters do not impose a rigid geometrical structure on the distribution of the points the
resulting model resembles the underlying distribution of the points in a more natural way.
Farthest-points sampling produces models whose points liefar apart from each other. For
large simplification rates such a distribution of points produces models of relatively low like-
lihood. By using a fixed size partitioning of the space, the grid-based approach can not adapt
to the underlying point distribution producing models thatare slightly worse than the ones
obtained using incremental clustering. Finally, by addingoccupancy probabilities to the cells
of the gird to remove spurious points we obtain maps that are more consistent with the envi-
ronment. But for the likelihood of the data this spurious points are as important as any other
point, so the models obtained using this occupancy grid sampling technique have in general
low likelihood.

We also evaluated the iterative improvement techniques. For this experiment we used the
models obtained with the different simplification techniques as initial models for thek-means,
fuzzyk-means, and simulated annealing algorithms. The results showed that using these tech-
niques we can improve the likelihood of the initial models. The experiments also demonstrated

64

that in general the fuzzyk-means algorithm produces better results than those of thek-means
algorithm specially for larger models. The models obtainedusing these two algorithms can
be improved no further using these algorithms repeatedly since these results constitute a lo-
cal maxima. We applied the simulated annealing to those models and demonstrated how this
stochastic approach can escape local optima and further improve the models.

Despite the results, the presented techniques have also their limitations. The grid-based
simplification techniques need to construct a grid to represent the environment with. Grids for
large environments or fine-grained grids require large amounts of memory which can easily
exceed the capacity of a standard PC. The execution time is also a disadvantage for some of
the techniques. Fuzzyk-means can require more than an hour to produce a result when for the
same initial modelk-means requires a little more than 10 seconds. The simulatedannealing
algorithm requires the initial temperature, and annealingschedule to be specified. This has
to be done according to the dataset and model size of the specific experiment. There are no
parameters that work well for the general case. Additionally, simulated annealing can have
extremely large execution times depending on the parameters chosen since it requires many
iterations in order to obtain good models.

Representing the environment using sample-based maps has its disadvantages too. Sample-
based maps, as most geometrical representations, do not model explicitely free space. Only
the points were an obstacle was detected are represented andthere is no way to distinguish
between free and unexplored spaced. Representing unexplored space is critical for exploration
tasks. Sample-based maps are also very susceptible to spurious measurements. This problem
can be alleviated using the described occupancy grid sampling technique. This technique,
however, can not be applied always since it requires a grid representation of the environment
a suffers from the limitations previously mentioned. Another related problem is that the un-
certainty in the measurements is not explicitly represented in the map.

Despite this important disadvantages and limitations, thepresented techniques can be used
to generate accurate, general, and consistent representations of the environment using the
measurements gathered with a robot.

65

6. Conclusion

66

A. Datasets

The lines in the figures indicate the trajectory of the robot while gathering the data. The points
indicate the positions where the scans were made. The sampledensity was calculated using a
fixed-size grid with a resolution of 5 centimeters per cell. The occupied area was computed
summing up the are of all the occupied cells in the grid.

Most of these datasets are freely available online onThe Robotics Data Set Repository
(Radish).

A.1. Intel Research Lab

Figure A.1.: Intel Research Lab in Seattle.

• Number of Samples: 155648.

67

A. Datasets

• Number of Scans: 910.

• Measurements per Scans: 180.

• Environment size: 29x29 m.

• Sample density: 1.81 samples/m2.

• Occupied area: 69.38 m2.

• Submitted by Dieter Fox to Radish

A.2. Austin ACES

Figure A.2.: ACES building at the University of Texas Austincampus.

• Number of Samples: 73195.

• Number of Scans: 440.

• Measurements per Scans: 180.

68

A.3. Bruceton Mine

• Environment size: 56x55 m.

• Sample density: 0.23 samples/m2.

• Occupied area: 71.13 m2.

• Submitted by Patrick Beeson to Radish

A.3. Bruceton Mine

Figure A.3.: Bruceton Research Mine near Pittsburgh.

• Number of Samples: 129936.

• Number of Scans: 415.

• Measurements per Scans: 360.

• Environment size: 153x73 m.

• Sample density: 0.12 samples/m2.

• Occupied area: 89.23 m2.

• Provided by Cyrill Stachniss

69

A. Datasets

Figure A.4.: Sieg Hall at the University of Washington.

A.4. Sieg Hall

• Number of Samples: 83892.

• Number of Scans: 241.

• Measurements per Scans: 361.

• Environment size: 52x17 m.

• Sample density: 0.93 samples/m2.

• Occupied area: 23.2 m2.

• Provided by Cyrill Stachniss

70

B. Additional Experimental Results

-1.2e+06

-1.19e+06

-1.18e+06

-1.17e+06

-1.16e+06

71606 (55%)35702 (27%)15688 (12%)9502 (7%)

LL

model size

gbs ic fps ogs

(a) Bruceton Mine

-710000

-700000

-690000

-680000

-670000

-660000

-650000

-640000

-630000

50352 (69%)28451 (39%)13329 (18%)8433 (12%)

LL

model size

gbs ic fps ogs

(b) Austin ACES

Figure B.1.: Likelihood of the models obtained using the different dataset simplification tech-
niques: Grid-Based Sampling (gbs), Incremental Clustering (ic), Farthest-Point
Sampling (fps), and Occupancy Grid Sampling (ogs).

71

B. Additional Experimental Results

-1.2e+06

-1.195e+06

-1.19e+06

-1.185e+06

-1.18e+06

-1.175e+06

-1.17e+06

-1.165e+06

-1.16e+06

-1.155e+06

-1.15e+06

-1.145e+06

10 20 30 40 50 60 70 80 90 100

lo
g

lik
el

ih
oo

d

model size (%)

fps
ic

(a) Bruceton Mine

-675000

-670000

-665000

-660000

-655000

-650000

-645000

-640000

-635000

-630000

10 20 30 40 50 60 70 80 90 100

lo
g

lik
el

ih
oo

d

model size (%)

fps
ic

(b) Austin ACES

Figure B.2.: Likelihood of the models obtained with farthest-point sampling (fps) and incre-
mental clustering (ic) as a function of the size of the model.The standard devia-
tion shown on the figure was augmented by a factor of 10 for displaying purposes.

72

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

71606 (55%)35702 (27%)15688 (12%)9502 (7%)

ex
ec

ut
io

n
tim

e
(s

)

model size

gbs ic fps ogs

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

71606 (55%)35702 (27%)15688 (12%)9502 (7%)

ex
ec

ut
io

n
tim

e
(s

)

model size

gbs ic ogs

(b)

Figure B.3.: Execution times for the Bruceton Mine dataset on a standard PC with a 2.8 GHz
processor. The execution times correspond to the 4 simplification techniques:
Grid-Based Sampling (gbs), Incremental Clustering (ic), Farthest-Point Sampling
(fps), and Occupancy Grid Sampling (ogs). For clarity Figure (b) does not show
the times for the farthest-points sampling algorithm.

73

B. Additional Experimental Results

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

50352 (69%)28451 (39%)13329 (18%)8433 (12%)

ex
ec

ut
io

n
tim

e
(s

)

model size

gbs ic fps ogs

(a)

 0

 0.5

 1

 1.5

 2

50352 (69%)28451 (39%)13329 (18%)8433 (12%)

ex
ec

ut
io

n
tim

e
(s

)

model size

gbs ic ogs

(b)

Figure B.4.: Execution times for the Austin ACES dataset corresponding to the 4 simpli-
fication techniques: Grid-Based Sampling (gbs), Incremental Clustering (ic),
Farthest-Point Sampling (fps), and Occupancy Grid Sampling (ogs). For clarity
Figure (b) does not show the times for the farthest-points sampling algorithm.

74

-1.2e+06

-1.19e+06

-1.18e+06

-1.17e+06

-1.16e+06

71606 (55%)35702 (27%)15688 (12%)9502 (7%)

LL

model size

gbs
gbs k-m

ic
ic k-m

fps
fps k-m

ogs
ogs k-m

(a) Bruceton Mine

-710000

-700000

-690000

-680000

-670000

-660000

-650000

-640000

-630000

50352 (69%)28451 (39%)13329 (18%)8433 (12%)

LL

model size

gbs
gbs k-m

ic
ic k-m

fps
fps k-m

ogs
ogs k-m

(b) Austin ACES

Figure B.5.: Likelihood of the models obtained using thek-means (k-m) algorithm for differ-
ent starting models. Also shown are the likelihood of the models used as starting
point generated with the different simplification techniques: Grid-Based Sam-
pling (gbs), Incremental Clustering (ic), Farthest-PointSampling (fps), and Oc-
cupancy Grid Sampling (ogs).

75

B. Additional Experimental Results

-1.185e+06

-1.18e+06

-1.175e+06

-1.17e+06

-1.165e+06

-1.16e+06

-1.155e+06

-1.15e+06

-1.145e+06

10 20 30 40 50 60 70 80 90 100

lo
g

lik
el

ih
oo

d

model size (%)

ic
ic k-m

(a) Bruceton Mine

-665000

-660000

-655000

-650000

-645000

-640000

-635000

-630000

10 20 30 40 50 60 70 80 90 100

lo
g

lik
el

ih
oo

d

model size (%)

ic
ic k-m

(b) Austin ACES

Figure B.6.: Likelihood of the models obtained usingk-means (k-m) as a function of the size
of the model. The models used as starting point where obtained using Incremental
Clustering (ic).

76

Initial Model 6970 (4%) 11654 (7%) 27752 (18%) 60651 (39%)
gbs 54 37 24 17
ic 55 34 21 11
fps 54 35 22 13
ogs 90 41 26 26

Table B.1.: Number of iterations needed by thek-means algorithm for the Bruceton Mine
dataset. The initial models were generated using the different dataset simplifica-
tion techniques: Grid-Based Sampling (gbs), Incremental Clustering (ic), Farthest-
Point Sampling (fps), and Occupancy Grid Sampling (ogs).

Initial Model 6970 (4%) 11654 (7%) 27752 (18%) 60651 (39%)
gbs 72 48 29 12
ic 39 30 20 10
fps 59 38 22 14
ogs 70 42 30 18

Table B.2.: Number of iterations needed by thek-means algorithm for the Austin ACES
dataset. The initial models were generated using the different dataset simplifica-
tion techniques: Grid-Based Sampling (gbs), Incremental Clustering (ic), Farthest-
Point Sampling (fps), and Occupancy Grid Sampling (ogs).

77

B. Additional Experimental Results

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

60651 (39%)27752 (18%)11654 (7%)6970 (4%)

ex
ec

ut
io

n
tim

e
(s

)

model size

gbs k-m ic k-m fps k-m ogs k-m

(a) Bruceton Mine

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

60651 (39%)27752 (18%)11654 (7%)6970 (4%)

ex
ec

ut
io

n
tim

e
(s

)

model size

gbs k-m ic k-m fps k-m ogs k-m

(b) Austin ACES

Figure B.7.: Execution times of thek-means (k-m) algorithm on a standard PC with a 2.8
GHz processor for the starting models produced with the dataset simplification
techniques: Grid-Based Sampling (gbs), Incremental Clustering (ic), Farthest-
Point Sampling (fps), and Occupancy Grid Sampling (ogs).

78

-1.21e+06

-1.2e+06

-1.19e+06

-1.18e+06

-1.17e+06

-1.16e+06

-1.15e+06

71606 (55%)35702 (27%)15688 (12%)9502 (7%)

LL

model size

gbs
gbs f

ic
ic f

fps
fps f

ogs
ogs f

(a) Bruceton Mine

-710000

-700000

-690000

-680000

-670000

-660000

-650000

-640000

-630000

-620000

50352 (69%)28451 (39%)13329 (18%)8433 (12%)

LL

model size

gbs
gbs f

ic
ic f

fps
fps f

ogs
ogs f

(b) Austin ACES

Figure B.8.: Likelihood of the models obtained using the fuzzy k-means (f) algorithm. Also
shown are the likelihood of the models obtained using the different simplifica-
tion techniques used as starting models: Grid-Based Sampling (gbs), Incremental
Clustering (ic), Farthest-Point Sampling (fps), and Occupancy Grid Sampling
(ogs).

79

B. Additional Experimental Results

-1.185e+06

-1.18e+06

-1.175e+06

-1.17e+06

-1.165e+06

-1.16e+06

-1.155e+06

-1.15e+06

-1.145e+06

71606 (55%)35702 (27%)15688 (12%)9502 (7%)

LL

model size

gbs k-m
gbs f

ic k-m
ic f

fps k-m
fps f

ogs k-m
ogs f

(a) Bruceton Mine

-690000

-680000

-670000

-660000

-650000

-640000

-630000

-620000

50352 (69%)28451 (39%)13329 (18%)8433 (12%)

LL

model size

gbs k-m
gbs f

ic k-m
ic f

fps k-m
fps f

ogs k-m
ogs f

(b) Austin ACES

Figure B.9.: Likelihood of the models obtained using the fuzzy k-means (f) algorithm com-
pared with the likelihood of the models obtained using thek-means algorithm for
the same startig models. The starting models where generated using the dataset
simplification algorithms: Grid-Based Sampling (gbs), Incremental Clustering
(ic), Farthest-Point Sampling (fps), and Occupancy Grid Sampling (ogs).

80

Initial Model 9502 (7%) 15688 (12%) 35702 (27%) 71606 (55%)
gbs 21 17 13 10
ic 16 17 14 10
fps 15 20 14 11
ogs 42 22 21 36

Table B.3.: Number of iterations needed by the fuzzyk-means algorithm for the Bruceton
Mine dataset. The initial models were generated using the different dataset sim-
plification techniques: Grid-Based Sampling (gbs), Incremental Clustering (ic),
Farthest-Point Sampling (fps), and Occupancy Grid Sampling (ogs).

Initial Model 9502 (7%) 15688 (12%) 35702 (27%) 71606 (55%)
gbs 6.82 8.99 15.86 25.61
ic 5.10 8.09 16.22 23.90
fps 5.23 10.90 17.56 28.46
ogs 13.35 11.41 24.74 88.72

Table B.4.: Execution times in minutes of the fuzzyk-means for the Bruceton Mine dataset.
The initial models were generated using the different dataset simplification tech-
niques: Grid-Based Sampling (gbs), Incremental Clustering (ic), Farthest-Point
Sampling (fps), and Occupancy Grid Sampling (ogs).

Initial Model 8433 (12%) 13329 (18%) 28451 (39%) 50352 (69%)
gbs 20 19 15 8
ic 19 18 12 9
fps 19 14 13 9
ogs 38 39 23 22

Table B.5.: Number of iterations needed by the fuzzyk-means algorithm for the Austin ACES
dataset. The initial models were generated using the different dataset simplifica-
tion techniques: Grid-Based Sampling (gbs), Incremental Clustering (ic), Farthest-
Point Sampling (fps), and Occupancy Grid Sampling (ogs).

81

B. Additional Experimental Results

Initial Model 2539 (3%) 4028 (5%) 9278 (11%) 21290 (25%)
gbs 3.44 5.17 9.10 9.14
ic 3.30 4.97 7.22 10.16
fps 3.43 3.76 7.82 9.86
ogs 6.51 10.69 13.66 25.98

Table B.6.: Execution times in minutes of the fuzzyk-means for the Austin ACES dataset. The
initial models were generated using the different dataset simplification techniques:
Grid-Based Sampling (gbs), Incremental Clustering (ic), Farthest-Point Sampling
(fps), and Occupancy Grid Sampling (ogs).

82

 0

 0.5

 1

 1.5

 2

 2.5

 3

 10 20 30 40 50 60 70 80 90 100

20
15

10

5

m
em

or
y

re
qu

ire
d

(M
B

)

gr
id

 r
es

ol
ut

io
n

(c
m

)

model size (%)

(a) Sieg Hall

 0

 2

 4

 6

 8

 10

 10 20 30 40 50 60 70 80 90 100

20
15

10

5

m
em

or
y

re
qu

ire
d

(M
B

)

gr
id

 r
es

ol
ut

io
n

(c
m

)

model size (%)

(b) Austin ACES

Figure B.10.: Memory required in megabytes (MB) by a sample-based representation in func-
tion of the number of samples in the map. Also shown is the memory required by
an occupancy grid representation for 4 different grid resolutions. For each point
in a sample-based map2 × 8 bytes are needed. For each cell in an occupancy
grid 2 × 4 bytes are needed.

83

B. Additional Experimental Results

84

List of Algorithms

3.1. Grid-based Sampling .. 17
3.2. Occupancy Grid Sampling .. 21
3.3. Incremental Clustering 23
3.4. Farthest-Point Sampling 24

4.1. k-Means . 31
4.2. Fuzzyk-Means . 34
4.3. Simulated Annealing .. 39

85

List of Algorithms

86

Bibliography

[Alexaet al., 2001] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. David Levin,and C. T.
Silva. Point set surfaces. InIEEE Visualization, 2001.

[Anguelovet al., 2004] D. Anguelov, D. Koller, Parker E., and S. Thrun. Detecting and mod-
eling doors with mobile robots. InProc. of the IEEE Int. Conf. on Robotics & Automation
(ICRA), 2004.

[Arras and Siegwart, 1997] Kai O. Arras and Roland Y. Siegwart. Feature extraction and
scene interpretation for map-based navigation and map building. volume 3210, pages 42–
53. SPIE, 1997.

[Bennewitzet al., 2002] M. Bennewitz, W. Burgard, and S. Thrun. Using EM to learn motion
behaviors of persons with mobile robots. InProc. of the IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), 2002.

[Bentley, 1975] Jon Louis Bentley. Multidimensional binary search trees used for associative
searching.Commun. ACM, 18(9):509–517, 1975.

[Burgardet al., 1999] D. Burgard, W. andFox, H. Jans, C. Matenar, and S. Thrun. Sonar-
based mapping with mobile robots using EM. 1999.

[Crowley, 1989] J. L. Crowley. World modeling and position estimation for a mobile robot
using ultrasonic ranging. InProc. of the IEEE Int. Conf. on Robotics & Automation (ICRA),
1989.

[Dempsteret al., 1977] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood
from incomplete data via the em algorithm.Journal of the Royal Statistical Society, 39:1–
38, 1977.

[Dudaet al., 2000] R. O. Duda, P. E. Hart, and D. G. Stork.Pattern Classification. Wiley
Interscience, 2000.

[Elfes, 1989] A. Elfes. Occupancy grids: a probabilistic framework for mobile robot per-
ception and navigation. PhD thesis, Electrical and Computer Engineering Department,
Carnegie Mellon University, 1989.

[González-Baños and Latombe, 2000] H. González-Baños and J.-C. Latombe. Robot naviga-
tion for automatic model construction using safe regions. In ISER, pages 405–415, 2000.

87

Bibliography

[Gonzalezet al., 1994] J. Gonzalez, A. Ollero, and A. Reina. Map building for a mobile robot
equipped with a 2d laser rangefinder. InICRA, pages 1904–1909, 1994.

[Hähnelet al., 2003] D. Hähnel, R. Triebel, W. Burgard, and S. Thrun. Map building with
mobile robots in dynamic environments. InProc. of the IEEE International Conference on
Robotics and Automation (ICRA), 2003.

[Kirkpatrick et al., 1983] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimizationby
simulated annealing.Science, Number 4598, 13 May 1983, 220, 4598:671–680, 1983.

[Leonardet al., 2001] J. Leonard, P Newman, R. Rikoski, J. Neira, and J. Tardós. Towards
robust data association and feature modeling for concurrent mapping and localization. In
10th Internation Symposium on Robotics Research (ISRR), 2001.

[Levoy and Whitted, 1985] M Levoy and T. Whitted. The use of points as a display primitive.
Computer Science Technical Report 85-022, UNC-Chapel Hill, 1985.

[Liu et al., 2001] Y. Liu, R. Emery, D. Chakrabarti, W. Burgard, and S. Thrun. Using EM to
learn 3D models with mobile robots. InProceedings of the International Conference on
Machine Learning (ICML), 2001.

[MacQueen, 1967] J. MacQueen. Some methods for classification and analysis ofmulti-
variate observations. In L. M. Le Cam and J. Neyman, editors,Proceedings of the Fifth
Berkeley Symposium on Mathematical statistics and probability, volume 1, pages 281–297.
University of California Press, Berkeley, 1967.

[Paulyet al., 2002] M. Pauly, M. Gross, and L. P. Kobbelt. Efficient simplification of point-
sampled surfaces.Theor. Comput. Sci., 284(1):67–108, 2002.

[Roy et al., 2003] N. Roy, M. Montemerlo, and S. Thrun. Perspectives on standardization in
mobile robot programming. InProc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS), 2003.

[Sack and Burgard, 2004] D. Sack and W. Burgard. A comparison of methods for line ex-
traction from range data. InProc. of the 5th IFAC Symposium on Intelligent Autonomous
Vehicles (IAV), 2004.

[Schröteret al., 2002] D. Schröter, M. Beetz, and J.-S. Gutmann. Rg mapping: Learning
compact and structured 2d line maps of indoor environments.In Proceedings of the IEEE
International Workshop on Robot and Human Interactive Communication (ROMAN’02),
2002.

[Schwarz, 1978] Gideon Schwarz. Estimating the dimension of a model.The Annals of
Statistic, 6:461–464, 1978.

88

Bibliography

[Thrun, 2002] S. Thrun. Robotic mapping: A survey. In G. Lakemeyer and B. Nebel, editors,
Exploring Artificial Intelligence in the New Millenium. Morgan Kaufmann, 2002.

[Veeck and Burgard, 2004] M. Veeck and W. Burgard. Learning polyline maps from range
scan data acquired with mobile robots. InProc. of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2004.

89

