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1. Introduction

Mobile robots differentiate themselves from other typesobibts in being able to go from one
place to another in order to execute a given task. Duringasiedecade, mobile robots have
performed successfully in a wide range of different envinents such as indoor, outdoor, un-
derwater, and even on other planets. For most robotic agifgits a model of the environment
is a fundamental part of the system. A representation of l@wtorld looks like is neces-
sary for performing basic tasks such as localization, pkthipg, and exploration. Without a
model of the environment those tasks would be impossibiatifig the practical applications
of such a robot.

The way in which the environment is represented has an irmpbmnpact on the perfor-
mance of the robot. Accurate maps are fundamental for newigaOne way to describe the
environment is to use a detailed geometrical descriptioallahe objects in it. These spa-
tial representations can be very accurate and are welldstatevarious important tasks like
motion control and accurate localization. A fundamentasiion when representing the en-
vironment geometrically is the choice of geometrical ptivei to be used. Using lines, for
example, imposes a linear structure on the underlying enmient. This is well suited for
some environments such as an office, but can be inapprofwradéhers. Points are the most
general geometrical primitive. Using points allows diffiet environments to be accurately
represented without imposing any geometrical structurdnem.

To construct a map, the information about the environmerdgieed by the robot is used.
This information can be, for example, the distance to thedbjdetected by the robot’s sen-
sors while moving through the environment. Using the distameasurements directly in the
way they are produced by the sensors is straight-forwardganéral since it does not rely
on the environment having some specific features. By conggetthese measurements into a
set of points in an absolut coordinate systesample-basedap is constructed. Such a map
constitutes a point-based geometrical representatioheogéivironment where each point or
sample corresponds to a measurement made by the robot. Gdside their accuracy and
generality, sample-based maps are also consistent witthgervations.

This thesis investigates the idea of using samples to mbéeténvironment and presents
different techniques for generating sample-based maps fre@ distance measurements ac-
quired by the robot. We seek to find an efficient represemtatioaccurately describe the
environment. Obviously, if all the measurements acquinethb robot are used, the resulting
map would be the best representation of the environmenhdheg data. Distance measure-
ments, however, come in large amounts and may lead to toe tagglels. Additionally, not
every sample contributes in the same way to the represemtaind we may be interested in
representing the environment using fewer samples. Thusgyaal is to find a subset of the
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complete dataset to efficiently represent the environment.

The contribution of this thesis are the various approaahgsmerate sample-based geomet-
rical maps from range measurements gathered with a moltite s an efficient representa-
tion of the environment. Sample-based maps are generat ipethse that they are not limited
to a specific type of environment and by using points as piiastfor the representation do
not impose any structure to the environment that is beingesgmted. Additionally, sample-
based maps are consistent with the data since they do natic@purious points. Every point
in a sample based map can be explained by an existing measnrem

1.1. Related Work

In the robotic literature many different strategies haverbproposed to learn efficient geo-
metric representations from range data. One of the firstegfies was described by Crow-
ley [1989 who uses a Kalman filter to fit lines on range measurementsnaotdrom sonar
sensors. In the paper by Gonzales et 94, point clusters are computed from each range
scan based on the distance between consecutive pointsarlriggression is then applied to
fit lines to these clusters. Arras and SiegwWaA97 use a hierarchical clustering approach to
extract lines from the points obtained from laser data. Thetegyy proposed by Leonard et
al. [2001] uses a Hough transform to extract linear features from aeseguof consecutive
sonar measurements. The approach presented by Schraté2607 clusters scans using the
split-and-merge algorithm and combines nearby segmeirtg asweighted variant of linear
regression.

In a recent work, Sack and Burgd2D04 present two approaches for extracting lines from
laser data. They use the Hough transform and the EM algotialaxtract lines out of the set of
points obtained from the range measurements. Both appeeaobrk on the complete dataset
in contrast to techniques that work on individual scans. il@mo these approaches, our
techniques work also on the complete dataset. However, wotdepend on the extraction
of features to construct a representation of the envirommen

The EM algorithm has also being used by Liu et[2D01 to learn planar structures from
3D data, and by Anguelov and colleagy2804 apply the EM algorithm to cluster different
types of objects like walls and doors from sequences of rdatg Burgard et a[1999 use
the EM algorithm for learning maps using sonar data, and Beitn et al.[2004 to learn
motion behaviors of persons. Themeans and fuzzy-means algorithms we used in our
work to improve the quality of a sample-based map are insntthe EM algorithm.

A different approach for improving a given model is to use #iraulated annealing al-
gorithm. This algorithm was used by Kirkpatrick et HKirkpatrick et al, 1983 to solve
optimization problems associated to the design of integratrcuits like component place-
ment and wiring. They also apply the algorithm to the clasgittmization problem of the
traveling salesman. In our work we state the problem of geimgy a sample-based map as an
optimization problem and apply the simulated annealingratigm to find the solution.

Beside lines, other geometrical primitives have being @qa for describing the environ-



1.1. Related Work

ment. Gonzalez-Bafios and Laton]{B60(d use polylines as primitives for the representation.
A polyline is a sequence of line segments that are connettbéiaendpoints. In their work,
polylines are extracted from range scans exploiting themaod the individual laser beams.
Veeck and Burgard2004 describe an approach for learning polyline maps that opsa

an arbitrary set of points and does not assume any orderitinge gfoints.

In the computer graphics field, Levoy and Whitfd®85 proposed points as a universal
meta-primitive for geometric modeling and rendering agadions for 3D geometry. Pauly et
al. [2009 explore the usage of points as primitives for modeling ttie@ensional objects,
and presents several techniques for modifying and redutiagsize of the original set of
points. However, these techniques are approximative irsémse that the resulting set of
points are not necessarily a subset of the original datAseta et al.[2001] works on a set of
samples that is a subset of the original dataset.

This thesis investigates the idea of using samples to ffigieepresent the environment
and presents various approaches to generate sample-bagsdrom the range measurements
gathered with a mobile robot. The rest of this thesis is amgghas follows. Chapter 2
introduces sample-based maps. It describes how the rangguneenents are used to obtain
the points used in the representation and presents theaieacriteria for the models used
throughout the rest of the work. Chapter 3 presents sevechhtques used to reduce the
number of points in the original dataset. In Chapter 4 wegnethek-means and fuzzy-
means algorithms as maximum-likelihood optimization teghes for improving the quality
of a given model. This chapter also describes the simulatedading algorithm as a stochastic
solution for the optimization problem. In Chapter 5 we preseveral experiments designed
to evaluate the different algorithms presented in this wdikally, in Chapter 6 we present
the conclusions of out work.
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2. Sample-Based Maps

A sample-based map is a spatial representation of the emagot that uses points as model
primitives. These points are obtained by projecting thegeameasurements of the robot’s
sensors into a global Cartesian coordinate system. Thétingsget of points constitutes a
two-dimensional spatial model of the environment and rggmés a two-dimensional floor
plan, or a two-dimensional slide of the three-dimensiomairenment. Using points as the
model’s primitives complex environments can be accuratepyesented and no structure is
imposed on the underlying environment. Besides its geityela@td accuracy, sample-based
maps are also consistent with the data. There are no spy®muots in the representation,
since every point can be associated to an originating meamsaurt.

Throughout this work, we assume the range measurementsvitaoh the samples are
obtained are generated using a laser-range finder. Lasge-fanders are very common in
robotics and currently state-of-art for distance measergmgiven their high accuracy. At
each time, a laser-range finder generates a setofange measurements= {z},...,zM}
referred to ascan Each measurement = (d., »!) in a scan, corresponds to a laser beam
and consists of a distance measurenanand directiony; relative to the robot’s orientation.

A measurement; can be projected into a poimt= (p,, p,) in Cartesian coordinates using
the following equation

Da B rt di cos(reg — ¢!)

(o) = () (=) &)
wherer! andr, correspond to the-y coordinates of the robot at the momerdf the mea-
surement, and}, corresponds to its bearing. Figure 2.1 shows a completecmasisting of
361 measurements covering &) degree area in front of the robot. The figure also shows the
points generated by projecting the measurements using2HEq. (

According to Eq. (2.1), in order to project a measuremgrthe pose of the rob@t?, 7, rj)
at the moment of taking the measurement must be known. Wmfately, this is, in general,
not the case. The problem of building a map without knowirggghse of the robot, is known
as thesimultaneous localization and mappipgoblem GLAM), and is one of the most fun-
damental problems in robotics. An extensive literaturetfar field of SLAM can be found
in [Thrun, 2002. We do not address SLAM is our work, and it is assumed that¢hassare
aligned That is, the pose of the robot at the moment of making a measant has already
being estimated using some scan matching technique.

For the purpose of creating a map, the robot travels througlemvironment gathering a set
of scansz, ..., zx. Knowing the pose of the robot, all these scans, can be pegjacsing
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Figure 2.1.: The left image shows a complete scan consistiB§l range measurements with
an angular resolution @f.5 degrees. The points obtained by projecting the range
measurements into Cartesian coordinates are shown orgtitemage.

Eq. (2.1) producing asé = {x, ..., x,} of points. We refer to these pointssemmplesThe
measurement of the environment can be viewed as a samptinggs, in which discrete points
are selected from a continuous space. The set of sarptesates a two-dimensional spatial
representation of the environment as shown in Figure 2.2.liflke in the figure indicates the
trajectory of the robot, and the points indicate the posgiof the robot at the moment of
making a measurement.

The way in which the robot gradually moves through the emritent, and the frequency at
which scans are made, cause consecutive scans to partialiayy Consecutive scans mea-
sure to some extend the same region in the environment. Tl samplesD obtained by
projecting all the gathered measurements, can be used peeaeatation of the environment.
However, such a representation would contain, in generahymedundant samples. Addi-
tionally, since measurements come in large numbers, suepragentation may be too large.
Instead, we are interested in an efficient representatatruttes a less redundant and reduced
set of D. Throughout this thesis, we present several techniquesdiecting a good subset
of D to represent the environment according to some evaluatiterion. The next section
describes two evaluation functions used to measure thengssf a given subset.

2.1. Evaluation Criteria

In the next section, we present two evaluation functionsd¢ha be used to compare different
subsets of samples. We would like to be able to select thedobstet for a given dataset.
Therefore, we need an evaluation criterion to compare thsets with. Throughout this
work, thelikelihood of the dataand thesum of squared erroare used as evaluation functions
for the subsets. The likelihood of the data is usually prefgiven its solid probabilistic
framework, whereas the sum of square error has the advaoithgéng easier to compute.
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Figure 2.2.: Representation of the Intel Research Lab intl8daased on the projection of
range measurements gathered by a robot while moving thrivggénvironment.
A total of 910 scans were made, each scan consisting of 188urezaents. Only
measurements shorter than 10 meters were taken into acesutting in 155648
samples. The line indicates the trajectory of the robot,thegoints indicate the
positions where a scan was made.
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2.1.1. Likelihood of the Data

A subsetX of samples out of the complete datagetcan be interpreted as a probabilistic
model. The parameters of this model are denote®by {0, . . ., 0} wherek is the number
of samples int’, andd; represents the parameters associated to compontot; =1, ..., k.
Each sampler; € D is assumed to be generated by first selecting a model companen
with probability P(w;), and then generating according to a certain probability distribution
p(xi|w;, 0;). Throughout this work, the following assumptions aboutgrababilistic structure
of the model are made:

1. The numbef; of components; in the modelo is known.
2. Each model componeat has the same prior probabilify(w,) = 1/k, j =1,..., k.

3. The probabilityp(z;|w;, 8;) for samplez; of being generated by componentis nor-

The complete parameter vectoican be written a® = {(u1, %1), . . ., (1, 2x) } according
to these assumptions. Eaghin © corresponds to a sample in the subsef’. Additionally.
if we assume that each normal distributionnhas the same symmetric covariance matrix
3, and the standard deviationis known. That is); = 0?1, forall j = 1,..., k. Then, the
parameter vector can simply be written@s= {1, . .., ux . The probability density function
for a sampler; of being generated by componexritis then given by

1 Ti — Hy ’
p(xi|w;, 0;) = Nz exp [— % , (2.2)

and the probability density function for a samplés given by the following mixture density:

k
p(xil©) = Y plailuy, 0;) Plw;). (2.3)

J=1

Since the prior probability”(w,) is the same for alk components in the model, replacing
p(xi|w;, 8;) in Eq. (2.3) with Eq. (2.2), we obtain

1 (z; — py)°
ple) = —— ;exp -] (2.4)
Treating a sample-based map as a probabilistic model, enablto cope with measurement
and pose estimation errors in an elegant way. The pointserdétaset that belong to the
model are considered the “real” points. The remaining [gcané the result of Gaussian errors
in the measurements and pose estimation centered arowssl ‘tleal” points. The standard
deviationo of this error, is related to the accuracy of the range sensdmpase estimation.
Small values for indicate a small measurement error and a high accuracy aegxisnation.
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Large values fowr, on the other hand, should be use for large measuremens emdrpour
pose estimations.

As a result of the Gaussian interpretation of the model,yesamplez; in the complete
datasetD is assumed to be drawn independently according(iQ|w;, 8;) ~ N(u;,%;). If
D containsn samples, then the likelihood of the modwith respect to the samplesinis
given by

n

L(D©) = []p(®). (2.5)

i=1

An usual practice when dealing with likelihoods, is to useltdgarithm instead. The logarithm
is a strictly monotonic function, so, the greater the |otemi of the likelihood, the greater the
likelihood itself. The logarithm of the likelihood can beroputed as

InL(D|O) = lan(xi|@)

= Z Inp(z;|0). (2.6)
i=1

For convenience throughout this work we will refer to thedathm of the likelihood of the
dataD given a modeb as log-likelihood, or simply as likelihood, and we will deaat as
LL(D|©). Substitutingy(z;|©) in Eq. (2.6) with Eq. (2.4) we obtain

N RS (2 — p5)°
LL(D|O) = ;m {k QMZexp[—TH. 2.7)

i=1

The likelihood is a measure of the goodness of the modelditates, for a fixed datase,
that the mode® for which L(D|©) is large is more likely to be the true model. It is important
to consider the value of at the moment of interpreting the likelihood values. If tlzéue ofo
is too large, every model will have high likelihood, and thiéedence between the likelihood
of different models will be small. The opposite is also trifethe value ofo is almost zero,
every model will have an almost identical low likelihood.gkre 2.3 plots the likelihood of
too different models for different values ef When the values of are nearly zero or too
large, the likelihood of the models become almost identical

2.1.2. Sum of Squared Error

Another way to evaluate the quality of a given sub%efor a given set of sampleB is the
sum of squared errdt(D|X) defined as follows

E(DIX) = Y (zi—a), (2.8)
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Figure 2.3.: Plot of the likelihood value of two different dwls for different values of.
Observe how when the value @fis too large or almost zero, the likelihood of the
two models are almost identical.

wheren is the number of samples M, (x; — z7) is the Euclidean distance betwegrandx;
and

z¥ = argmin (z; — z;)° Vo, € X. (2.9)
This function measures the total squared error incurre@pmesenting the samples inD
with the £ samples inY.

Both the model likelihood and the sum of squared error aongty related. From Eq. (2.7)
it can be seen that the likelihood of a samp]eés large when the squared errar;, — uj)2 is
small. The key difference between the two evaluation fumgilies in the fact that for each
sampler; in D the sum of squared error considers only the closest sampheX’ to calculate
the error, whereas the likelihood of the data takes all tmepdas in X’ into account. That
is, the likelihood of the data evaluates the sul’8ets a whole, and therefore provides more
information about the quality of the representation.

To illustrate the two evaluation functions, we will used tog dataset presented in Fig-
ure 2.4(a). The dataset consist of 8 distinct samples repred with empty circles. There are
(i) = 70 possible ways of selecting models with 4 points out of a a¢dtagth 8 points. For
each of these models, we computed the likelihood accordifitqt (2.7). Figure 2.4(b) plots
these likelihoods sorted in ascending order. Figure 2.8ig@ws the maximume-likelihood
model. The filled circles represent the points in the modéjuile 2.5(a) shows one of the
minimume-likelihood models. Figure 2.6(a) plots the sumaiared errors for all the possible

10
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models. As expected, models with high likelihoods have aesponding low sum of squared
errors, and models with low likelihood values have a comesiing high sum of squared er-
rors. This can be clearly seen in Figure 2.6(b) where bo#likod L L and sum of squared
error I/ spaces are aligned for comparison. It can also be observentad differences i L

are not reflected in the values bf

T T T T T
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Figure 2.4.: Figure 2.4(b) shows the sorted likelihood otlz¢ 70 models of size 4 for the
dataset shown in Figure 2.4(a).

11
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Figure 2.5.: Figure 2.5(a) shows the maximum-likelihooddeldor the dataset shown in Fig-
ure 2.4(a). One of the minimume-likelihood models is showfigure 2.5(b).

2.2. Estimating the Size of the Model

Another key issue when selecting a model for a given datesttie number of model compo-
nents. BothZ. L and E are directly affected by the size of the model. In generalJitelihood
of the model increases as new components are added to the, mvbde £ decreases as the
size of the model increases. Clearly, a model which has a coeni for each data point,
would be an optimal fit for the dataset. We are interested uhiritna balance between the
number of components and the quality of the model.

A commonly used measure that balances the accuracy of thelmat its complexity is
the Bayesian Information CriteriobSchwarz, 197B

BICg(D|©) = aFE(D|O)+ klogn,

wherek is the number of components in the moéelandn is the total number of points in
the dataset. The constanis a scaling factor for the error measure The BIC'r represents
a compromise between the approximation error, the sizeefribdel, and the size of the
dataset. When using thB/C criterion to determine the size of a model, we choose the
sizek* for which the BIC is minimal. According to the31C'z, adding a point to a model
with a minimal BIC value would increase the complexity of the model without@asing
its accuracy. Removing a point from such a model would deerés accuracy. Figure 2.7
plots theBICf value for a dataset with 10687 points using three differahies fora. Points
where added to the models incrementally, by selecting tl poth the greatest distance to
all other points already in the model. Observe how for snalli@s fora, the resulting models
are smaller, since more weight is given to the complexityhefrnodel. Large values of give
more weight to the error measure and less to the complexitgeofnodel, generating then,
larger models.

12
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Figure 2.6.: Figure 2.6(a) shows the sorted sum of squared@trall the 70 models of size 4
for the dataset shown in Figure 2.4(a). Figure 2.6(b) coegtre likelihood and

the sum of squared error for these models.
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Figure 2.7.:BI1Cg values using three different values feras a function of the size of the
model for a dataset of 10687 points. Fot= 50, 100, and200, the optimal model

sizes are048, 2861, and4550 respectively.
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3. Dataset Simplification

In the previous chapter we introduced sample-based mapsegsesentation of the environ-
ment that uses samples as model primitives. These sampitesol&ined by projecting the
end point of the range measurements made by the robot into-ditwensional global Carte-
sian system. We argument that given the redundancy invalvéee data acquisition process,
using all the projected samples to represent the envirohmemd produce an unnecessarily
large model. In this chapter we present various techniguesdiecting a subset of samples
from the complete dataset. These techniques are quiteesiaupdl are aimed at reducing the
number of points in the dataset, rather than at finding a gobset according to some evalua-
tion criteria. In our work, the techniques presented in thigpter are usually used to generate
an initial model that will be improved later, using the itéva improvement algorithms dis-
cussed in the next chapter. Still, the resulting set of sampbnstitutes a representation of
the environment and can be perfectly used as a map. Datagadifiation ordownsampling
techniques are also important since, given the high diroeasity of the problem of learning
a map from the data, reducing the size of the data is oftenmbsitimportance in order to
solve this problem in a reasonable time.

All the algorithms presented throughout this chapter er@asett’ of samples that is a
subset of the complete datadet In Section 3.1 we present two algorithms based on a grid
representation of the environment. These algorithms ditheé space into cells of equal size,
and then replace all the samples that fall within each ceh wicommon representative. The
representatives from all the non-empty cells constituda@sulting set of samples. This basic
approach is extended in Section 3.1.1 to associate an aucypeobability to each cell. This
probability value indicates how likely it is for the cell teeloccupied and can be used to
filter out samples caused by spurious measurements. IS8R we present a clustering
algorithm that groups together samples that lie close th etieer. The resulting set of samples
is created by selecting a representative sample from easkecl Finally, in Section 3.3 we
present an incremental approach, in which samples are addked resulting set by selecting
the point that has the greatest distance to all the poirgaa@yrin the set.

3.1. Grid-based Sampling
Grid-based sampling techniques divide the space into cekgjual size and then replace all
the samples that fall within the same cell with a common regméative. The resolution of the

grid, that is the size of the cells, affects the number of fsdtimat will contain the resulting set.
A fine-grained grid will produce a larger set, than a coansergd grid. However, the exact

15
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Figure 3.1.: Grid-based sampling. Figure 3.1(a) shows cifna of the original map of the
Bruceton Mine containing 129936 samples. The map in FigutéB contains
35702 samples and was generated using a grid resolution erfittneters. The
map in Figure 3.1(c) contains 15688 samples and was gedersiteg a grid res-
olution of 10 centimeters.

number of points the will contain the resulting set can natibectly specified. The size of the
cells, can be chosen as to represent the error associatethe@itneasurements. The greater
the error, the bigger the cells can be without loosing toolmaotrmation. Figure 3.1 shows
a part of a map generated using two different grid resolstidine complete dataset contains
129936 samples and is shown in Figure 3.1(a). The map shokigume 3.1(b) was generated
using a grid resolution of 5 centimeters and contains 35@6#¢es. The map in Figure 3.1(c)
was generated using a grid resolution of 10 centimeters anthins 15688 samples. For this
specific environment using a 5 and 10 centimeter grid resolihe dataset was reduced by
87.93% and 72.52% respectively. How much the dataset iseeddepends not only on the
resolution of the grid but also in the sampling density. Fbxed grid resolution, dataset with
higher sample densities will suffer a larger reduction thatasets with lower densities.

All the points that fall within the same cell are replaced byoaxmon representative. The
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3.1. Grid-based Sampling

representative sample of each non-empty cell is selectéidsbgalculating the center of mass
of all the samples in the cell. L€t ; = {x,...,z,,} be the set of all samples that fall within
the cell indexed by, j). The center of mass ; of the cell(7, j) is computed as

1

o Z ;. (3.1)

z;€C4 5

Cij =

Sincec; ; does not necessarily belong to the dataset, the pbietC; ; that is closest t@;

is used instead. If the center of mass were to be used as peflsentative, the resulting
representation would contain spurious samples. Theseleampuld be inconsistent with the
data since they would not correspond to any measurement.gdimeral grid-based sample
approach is described in Algorithm 3.1. The input of thisoailipm is the set of all sampl€3,
and the resolution of the grid. In line 1, a grid for the dataset is generated ekif through
6 select samples from the grid, by first computing the centenassc of each non-empty
cell and then selecting the point &) ; closest toc. Despite its simplicity, it is difficult to
describe the time complexity of the grid-based samplingréigm. The number of operations
needed depends on four factors: the numbeisamples irD, the resolution of the grid, the
number of samples that fall within each cell, and the sizéefunderlying environment. Still,
the results of our experiments have shown that the detentfaetor in the time complexity
of the algorithm is the size of the dataset

Algorithm 3.1 Grid-based Sampling
Input: setof sample® = {zq,...,2,},
grid resolutionr.
1. generate grid foD with resolutionr
2: for each cell(7, j) do
3. if cell (z, j) is not emptythen

4. Cc= x;
‘Ci’j‘ z;€C4 5
5: ¢’ = closest point foe in C;
6: addd to X
7. endif
8: end for
9: return X

3.1.1. Occupancy Grid Sampling

Until now we have implicitly assumed that at the moment ohgaihg the measurements the
robot is the only moving object in the environment. This sg@ssumption can be justified,
for example, if the robot is allowed to measure the enviromno@der controlled conditions.

This is, however, not always possible and we must take intowatt the dynamic nature of the
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3. Dataset Simplification

environment at the moment of building a map of it. Failing tatklis, will produce a represen-
tation that, though consistent with the data, will not besistent with the environment. For
example, if the measurements corresponding to a persorngdll the robot are included in
the representation, this person will be considered as antstal part of the environment in
the final map (see Figure 3.3(a)).

Dynamic objects are not the only source of spurious measmessmOther erroneous mea-
surements can be produced by noise in the sensors. To &lévéese problems, we present an
approach calledccupancy grid samplingvhich associates to each cell a value representing
the probability of being occupied. These approach is basedcoupancy grid maps intro-
duced by ElfedElfes, 1989. Discarding the cells with low probability of being occugie
effectively eliminates samples caused by spurious meamsnes.

The probability value associated to each cell lies betweand1, where 0 indicates that
the cell is definitely free, and 1 indicates that the cell iSrdely occupied. The approach
used in this work to compute the occupancy probability ferdhlls, is known as theounting
model[Hahnelet al., 2003. This model, associates to each ¢ellj) the probabilityp; ; for a
range measurement of being reflected by the cell. The yaluis computed as

b = hits; ; (3.2)

hits; j + misses; ;’

wherehits; ; is the number of times a range measurement was reflectedded ep in cell

(i, 7), andmisses; ; is the number of times a range measurement passed thfoyghwithout
being reflected. To obtain thiets, ; andmisses; ; values for each cell, a ray-casting operation
is used. For each range measuremgngll the cells traversed by the beam are evaluated.
Figure 3.2 illustrates the ray-casting operation. The gedls are traversed by the laser beam
and must be updated accordingly. The cell that contains tidepeint of the beam gets its
hits value is incremented therefore incrementing its occupgmopability. The remaining
traversed cells get theinisses value is incremented and their occupancy probability reduc
Figure 3.2 also illustrates the importance of the grid nesoh at the moment of computing the
probability value associated to each cell. Large cells ntakebeams “thick” whereas small
cells make the beams “thin”. Figure 3.2(a) and Figure 3.&pjesent the same situation using
two different grid resolutions. The filled circles repressinuctural parts of the environment.
The beam in Figure 3.2(a) is too thick and will decrease theipancy probability of cells
that represent structural parts of the environment. If #lis @re too small, beams will be too
“thin” and most of the cells will be visited only once. Thisdieces the corrective effect of
integrating multiple observations at the moment of commquthe occupancy values.

As in the grid-based sampling approach described abovéheakbamples that fall within
the same cell are replaced by a common representative. trasbito grid-based sampling,
occupancy grid sampling only takes into account the cellssgloccupancy values lie above
a specified threshold. This threshalds a value between 0 and 1, and indicates the smallest
occupancy value a cell must have in order to be consideré@ aoment of sampling. All the
samples in each non-empty cell whose occupancy valuesdtegitban the specified threshold,
are replaced by a common representative. This represanigtelected in the same way as in
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Figure 3.2.: lllustration of the ray-casting operationtiwo different grid resolutions. Observe
how a coarse resolution (a) makes the beam “thick” and a fisgluBon makes
the beam “thin”

the grid-based sampling algorithm described above. Fiesténter of masg ; for the cell is
computed and then its closest paihin the cell is selected. Figure 3.3(b) shows the result of
applying occupancy grid sampling on the dataset shown iarEi§.3(a). The samples were
gathered in the corridor of the building 79 at the Universityreiburg. The spurious samples
were caused by a person moving around the robot during tlasadguisition process.

The general occupancy grid sampling approach is describddiyorithm 3.2. This algo-
rithm requires as input the set of aligned scans. ., zx, as well as the resolutionof the
grid and the minimum occupancy threshgldThe measurements are needed in order to cal-
culate the occupancy probability for the cells. Lines 2 tigto 8 of the algorithm generate the
projected points, add them to the grid, and update the oooypzalue of the cells. Lines 9
through 15 select the samples from the grid, taking only adcount the cells whose occu-
pancy value lies above. The determinant factor in the time complexity of the ocawgya
grid sampling algorithm is the ray-casting operation. Theber of times the ray-casting op-
eration must be carried out is given By M, whereS is the number of scans gathered during
data acquisition, and/ is the number of beams per scan. The number of cells that neust b
updated for each beam depends on the underlying envirorandrihe resolution of the grid.

3.2. Incremental Clustering

A different approach for reducing the number of samples it@askt is to used a clustering
technique. These techniques, divide the dataset into grouglusters of similar samples. By
selecting a representative sample from each cluster, ii@akdataset can then be represented
in a simplified way. For our specific case, the samples in thasea are grouped using the
distance to the other samples as similarity measure. Sartipdélie close to each other will
be grouped together into a single cluster.
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Figure 3.3.: The map shown in Figure 3.3(a) presents spsigsamples caused by a person
walking around the robot during data acquisition. The magwhin Figure 3.3(b)
was generated using occupancy grid sampling with a gridusno of 1 cm and
an occupancy threshold of 0.5.
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3.2. Incremental Clustering

Algorithm 3.2 Occupancy Grid Sampling
Input: setof aligned scang, ..., zx,
grid resolutionr,
occupancy threshold.

1: for each scan, do

2:  for each beam in scanz; do

3 project beam:! into a pointr and add it to its corresponding céll ;)
4: update all cells traversed by beatn

5. end for

6: end for

7: for each celli, j) do

8: if cell (, j) is not empty angh; ; >= ¢ then
9: Cc = L Z X;

|Ci’j| z;€C4 5

10: ¢’ = closest point forin C; ;
11: addd to X
12:  end if
13: end for
14: return X

The incremental clustering algorithfRaulyet al,, 2007 starts by a choosing randomly a
samplex, from D creating a cluste€, = {z,} with a single sample. The algorithm then
successively adds 1@, the nearest neighbors af, in D until no more neighbors are found
within a maximum allowed cluster radius,.... The next clustef; is then created by selecting
the nearest neighbor afy in D excluding all the samples that have already been assigned
to Cy. This process is repeated until all the sample®imave been assigned to a cluster.
As representative for each cluster, the sample used foalimétion is selected. Figure 3.4
illustrates how incremental clustering groups the samplég circular regions represent the
different clusters. The numbers indicate the order in whinghclusters where created. This
order depends on the sample selected to initialize the fustar. Since this sample is selected
randomly, incremental clustering will produce differeasults even if the datasét and the
maximum cluster radius,,,, remain fixed on repeated executions of the algorithm. These
results may differ in the samples selected and also in thétieg number of samples.

The incremental clustering algorithm is described in Aigon 3.3. Ther,,., parameter
specifies the maximum radius of the clusters and therefatieeictly influences the number
of clusters that will be created. In general, using a smdlleséor r,,,.,. will produce more
clusters than using a larger value. However, the exact nuoflobusters that will be produce,
can not be specified directly. Line 2 of the algorithm selecaradom sample out dP and
uses itseedto create the initial cluster. The while-loop in lines 4 thgh 14 keeps adding
to the last created cluster the nearest neighbors of theeckiseed. After no more samples
can be found within the specified radius,., @ new cluster is created in lines 9 through 11,
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3. Dataset Simplification

Figure 3.4.: Diagram illustrating how incremental clustgrpartitions the samples. The cir-
cular regions represent the different clusters. The nusinglicate the order in
which the clusters where created.

using as seed the nearest unassigned neighbor of the pgeged. The time complexity of
the algorithm is governed by the nearest neighbors seartlsiisg a kd-tre¢Bentley, 1975
as data structure, each nearest neighbor search can teaautiinO(log 7). The algorithm
can be optimized by exploiting the structure of the kd-tneg searching for multiple nearest
neighbors in each search. The general time complexity ahttremental clustering algorithm
depends mostly on the distribution of the sample®ijrthe maximum radius of the clusters
rmaz,» @nd the structure of the underlying environment. In thesivoaise where all samples are
separated by more tham,,.., the algorithm has a time complexity 6f(n logn).

3.3. Farthest Point Sampling

The last algorithm presented in this chapter is called &msttpoint sampling. This sampling
technique generates a model in an incremental way. The fiist [5 selected randomly.
Further points are added by selecting the point with thetgseaistance to all those already
in the model. The sampling process terminates when a spkntifi@ber of points is reached.
Farthest point sampling is an approximative strategy falifig a model that minimizes the
sum of squared error criteriafd, discussed in Chapter 2, and repeated here for convenience

B(DIX) = ) (vi—a]), (3.3)

wheren is the number of samples i and

x; = argmin (z; — xj)2 Vo, e X. (3.4)

i
Ty
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3.3. Farthest Point Sampling

Algorithm 3.3 Incremental Clustering
Input: setof sample® = {zy,...,z,},
maximal radius,,,.
1:1=0
2: randomly select; € D and create clustel; = {z;}
3: addz; to X
4: while unassigned samples remadio

5. 2’ =nearest unassigned neighborin D
6: if distance fromy; to 2’ < r,,,, then
7: assignz’ to C;
8: €dse
9 1=14+1
10: x; = nearest unassigned neighbouf, in D
11: create cluste€; = {x;}
12: addz; to X
13:  endif
14: end while
15: return X

At the moment of adding a sample to the model, farthest-zintpling adds the samplg,
that satisfies

r;, = argmax(z; — )’ Vo, € D
— argmax|argmin (z; — ;)] Ve, € D,xj € X (3.5)
T; zj

In other words, farthest-point sampling adds the pojr& D that has the largest distance to its
closest sample; € X. The farthest point sampling approach is described in Aigar 3.4.
Lines 4 through 10 compute for eache D the distance to its closest samplec X', keeping
track at the same time of the largest distance. This is reddat each of thé& samples that
is added toYt'. Using a kd-tree as data structure, the time complexity dbsest point search
in the model ixD(log k). Before adding a new point to the model, a closest point baarcst
be carried out for each one of thepoints in the data set. Sindepoints must be added to
the model, the final time complexity of the algorithm($kn log k). In comparison, a greedy
strategy that always adds the point that minimizes the éftavould have a time complexity
of O(kn?). The greedy approach requires— i)(n — i — 1) calculations of the error, when
adding thei-th component to the model. Computing the erfbihas a time complexity of
O(nlog k), thus, generating a model of sizén a greedy way has a total time complexity of
O(kn?log k). The implementation of the farthest-point algorithm usethis work is actually
faster since each time a samples added toY, only the distance of the samples that have a
x; as closest sample is recomputed. However, here we descthibadigorithm in its simplest
form for clarity and to be able to analyze its time complexagmally.
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3. Dataset Simplification

Algorithm 3.4 Farthest-Point Sampling
Input:  set of pointsD = {xy,...,x,},
sizek of the looked-for model.
1: select a random point. from D and add it ta¥
2: while size of ¥ < k do
3 dypge = —00

4. fori=1,...,ndo

5: x; = closest point forz; in X
6: if (x; — x;k)z > dpae then

7: Az = (T, — xf)Q

8: Tgp = T

9 end if

10:  end for

11:  addz;, to X
12: end while
13: return X

Figure 3.5 plots the likelihood L of the a model obtained using farthest-point sampling and
a model obtain the greedy approach as a function of the siteeahodel. When the models
are small, the likelihood of the model obtained using thedyestrategy increases more rapid
than the likelihood of the model obtained using farthestypsampling. But as the models
reach a certain size the likelihood of both models becommsstlidentical. This is a property
of the likelihood function and is independent of the strateged to generate the model. Large
models are all almost equally likely. x
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Figure 3.5.: Likelihood of a model generated using fartipesht sampling and another using
a greedy algorithm as a function of the size of the model.
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4. Iterative Optimization

Learning a sample-based map can be stated as the problendiofjfthe best subset of sam-
ples for a given dataset according to a given evaluatioargnit. Since the number of possible
subsets is extremely large an exhaustive search in whidh massible subset is evaluated is
only feasible for very small problems. Even if we restrictsmlives to the case where the size
k of the model is known, there af&) possible ways to seleétout of » samples. For a trivial
problem wherex = 30 andk = 15 we would have to evaluate over 155 million subsets in
order to find the optimal one. For real datasets wharey be over a million samples we need
to rely on approximative methods for finding a model for theadd he dataset simplification
techniques presented in the previous chapter generatseatfflsamples from a given dataset,
starting with an empty set and adding samples to it accorirggpme algorithm-dependent
built-in heuristic. In contrast to that, we consider in thlsapter the problem of iteratively
improving an already given subset.

We present two different approximative iterative optintiga approaches. In Section 4.1
we describe a maximume-likelihood strategy based on locaate/es of the likelihood func-
tion. We first describe analytically the idea behind maximrikalihood estimation and then
present thé-meansandfuzzyk-meanslgorithms as concrete implementations. In Section 4.2
we present a stochastic approach for solving the optinoizgtioblem known asimulated an-
nealing in which random modifications of a model are evaluate, archacepted or rejected
according to some probability.

4.1. Maximum-Likelihood Estimation

Maximum-likelihood estimation interprets a sample-basegh as a probabilistic model whose
parameters are fixed but unknown. The idea behind maximketiHood estimation is to use
all the samples in the dataset to select the parameters widtel that maximize the likelihood
of the data.

In Section 2.1.1 it was mentioned that a sub¥eif samples can be interpreted as a proba-
bilistic model for the complete datasBt This model is represented by the parameter vector
© = {6,,...,0;} wherek is the number of samples it andé; represents the parameters
associated to model component We are assuming that each sample= D is generated
independently by first selecting a model componenwith probability P(w;) and then pro-
ducingz; according to a Normal distributiop(x;|w;, 6;) ~ N(p;,%;). The parameters;
associated to the model componentare the parameters; and X2, of the corresponding
Normal distribution. We further assume that each model comptw; has the same prior
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4. lIterative Optimization

probability P(w;) and that each Normal distributigriz;|w;, 6;) has the same symmetric co-
variance matrixt> with known standard deviation. The only unknown parameters in the
model are the values of the means Our problem is then simplified to estimating the values
of the parameter® = {/,, . ... ju;} that maximize the likelihood dP.

Recalling from Section 2.1.1 that given a mo@ethe likelihood of the dat® is defined as

L(e) = []r(ie). (4.1)

(4.2)

the maximume-likelihood estimation problem can then be fatynstated as

~

© = argmax L(D|O). (4.3)
©

The values of the parametetsare found by the standard methods of differential calculus,
computing the values fo® where the gradient of the likelihood functidn(D|©) is zero.
There may be many values 6f that make the gradient of(D|©) zero. This values can
represent a global maximum, a local maximum or minimum, an#élection point ofL(D|O).
Thus, each solution must be tested in order to find which gmesents the global maximum.

When dealing with likelihoods, an usual practice is to usediogarithm of the likelihood
instead of the likelihood itself. Thus our problem is to fit@ tvalues o = {6,,...,0;}
that make the gradient ofi L(D|©) zero. In our specific case, we need to find the values of
the meang:, € O that satisfy

0
ou,

The derivative ofn L(D|©) with respect tq:, shown in the left part of the above expression
can be computed as

InL(D|®) = 0, t=1,... k. 4.4)

ai InL(D|O) = 0 lan(xi|@)
‘ i=1

o,

0

= Inp(z;|©
0m; (z:|©)

0
o,

"1 9

In p(x;|©)

mﬁ—mp(x"@) (4.5)

From Section 2.1.1 we known that
k

p(xi©) = > plailw;, 6;)P(w)). (4.6)

j=1
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4.1. Maximum-Likelihood Estimation

Therefore Eq. (4.5) can then be written as

0 - 1 0
In L(D|O = — Zilw;, 0;)P(w;

- P(w,)
X |Wy, QL
2 52 10) 2yl 00

Derivative of In Zn: p(xi|w“ HL)P(U)L) 0
- p(x|©) O,

In p(x;|w,,0,). 4.7)

As in [Dudaet al, 2004 let us define the posterior probability of componengivenz;
p(xi|wm QL)P(WL)

P(w,|z;,© , 4.8
(wi|z:, ©) (210 (4.8)
so that the derivative dfi L(D|©) with respect tq:, can be written as
0
o In L(D|O) Z P(w,|z;,© m lnp(x2|wb, 0,). (4.9)

Since the component conditional probabilitigs;|w,, d,) are Normally distributed with mean
1, and covariance matriX, = o2/ we get

8 8 1 (xz - ML)Z
1 ; = 1 - 4.1
a,uL np(x’l|wL79L) 8LLL n [ 271'0’ exp |: 20.2 ] ( O)
) 1 (i — 1)’

= |1 — 4.11
O, [ " [\/ﬁj 252 (4.11)

B 1 0 9

T o2 Em (zi — )
_ (o) (4.12)

2
Substituting the above expression in Eqg. (4.9) we get
0 In L(D|O) prp; A> (4.13)
aILLL L 9 . .

According to expression (4.4) the derivatived.(D|©) with respect tq:, must be zero at
the values ofi, that maximize the likelihood of the data. We can multiply &413) byo?
and rearrange the terms to obtain the solution

1‘1 P ARZE) é )
h, = Zln (o, O)e; (4.14)
Zi P(wb|xi7@)
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Expression (4.14) leads to a set/ofnterlaced nonlinear equations which usually do not
have a unique solution. These solutions correspond to thevaf the modeb for which the
gradient of the likelihood functiof.(D|O) is zero and it is necessary to test each solution to
see whether it corresponds to the global maximum. One tgukrihat can be used to obtain a
solution, is to use an initial estimate for the pridtéy, |z;, ©) and then use Eq. (4.14) to iter-
atively update the estimates. This technique can be vieweah énstance of thExpectation-
Maximizationalgorithm which can be shown to converge to a local optiniDempsteet al.,
1977. In the following section we present themeansandfuzzyk-meansalgorithms as two

concrete implementations of this strategy.

4.1.1. The k-Means Algorithm

Expression (4.14) can not be used to ob®in= {/i;, ..., i} explicitly, but can be used to

improve an initial estimat® = {y, ..., u} as follows
. > Plwli, ©);
. = s =1...,k. 4.15
T TPl e) (@19
If we approximate the posterid?t(w,|z;, ©) as
1 if ||o; — w || < ||lx; — po|| forall v £ 0
Plwlz:,0) = { 0 ot“erwisﬁa|| el ’ (4.16)

the posteriot?(w,|z;, ©) is 1 whenw, is the closest model component far Then Eqg. (4.15)
givesji, as the average or mean of the samples that fagas closest component. If we define
D, as the set of all samples that haveas closest model component, then Eq. (4.15) can be
stated as

i, = ! > (4.17)

|DL| z,€D,

Starting with an initial mode®® = {49, .., u{} we can divide the datasét into k parti-
tionsDY, ..., D} where eaclD! is the set containing all samplese D that havev; as closest
model component. Using?, .. ., DY we can compute an improved mod®| = {1, ..., u}}
according to Eq. (4.17). The the newly computed maglels used to partitiorD again and
the resulting partitions are then used to computed an ingaronodel©?. This process is
repeated until no more changes take place between two adigeiterations. The resulting
procedure is known as themeansalgorithm[MacQueen, 1967 In its original version, the
k-means algorithm computes egchas the mean of the samples that hayas closest model
component. The resulting set of points is not necessarilybaet of D since the means may
not correspond to an existing sample. In order to solve ttoblpm, after the algorithm has
converged each one of the computed mgans replaced by its closest samplelin

Thek-means procedure is presented in Algorithm (4.1). Linesdutph 7 associate to each
samplez; its closest component i@. In line 9 the estimateg; are computed as specified in
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4.1. Maximum-Likelihood Estimation

Algorithm 4.1 k-Means
Input: setof pointsD = {xq,...,zn},
initial model®© = {uq, ..., ux}
1: repeat

2:  changes =0
33 D=0, j=1....k
4: forallxz; € Ddo
5: ;= nearest neighbor af; in ©
6 addz; toD;
7. end for
8: forallpu; € ©do
. 1
TP
10: if 1 # p; then
11 = i
12: changes + +
13: end if
14:  end for

15: until changes = 0

16: for all ; € © do

17: 1/ = nearest neighbor ¢f; in D
180 pj=p

19: end for

20: return ©

Eq. (4.15) based on the posterior defined in Eq. (4.16). Litethrough 19 assign to each
1; € © its closest sample i®. By using a kd-tree as data structure for the model nearest
neighbor searches can be carried outifiog k), wherek is the number of components in
©. The partitioning of the samples has a complexity)df. log k). Computing the improved
values for the parameters of the model has a complexity(éf). This two steps are executed

T times until the algorithm converges. Finally, replacingthé computed means with its
closest point inD has a time complexity of)(klogn). The total time complexity of the
algorithm is therO(T'n log k), whereT" is the number of iterations needed for convergence,

is the number of samples in the dataset, Amslthe number of components in the model.

As most greedy strategies thaneans algorithm converges to a local optimum. There is no
guarantee that a global optimum will be found. The qualityhaf model produced by the
means algorithm will depend strongly on the starting mo@elnsider for example the model
shown in Figure 4.1(a). The filled circles represents thepsesnthat belong to the model.
This configuration would induce the partitioning shown iguiie 4.1(b), where the rectangles
represent the different partitions. The filled circles igutie 4.1(c) represent the improved
model parameters. The next iteration does not change thelrand therefore the algorithm
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Figure 4.1.: lllustration of thé-means procedure. Figure (a) shows the initial model. The
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filled circles represent the samples that belong to the méaglire (b) shows the
partitioning induced by the model shown in (a). The fillectkds in Figure (c)
represent the improved values for the model componentsuré&ig) shows the
final resulting model. For this particular configuratione @lgorithm terminates
after just 2 iterations.



4.1. Maximum-Likelihood Estimation

terminates. The final model is shown in Figure 4.1(d). If #edént initial model is used, the
algorithm may produce a different result. A common stratieggleal with this problem is to
run the algorithm several times using different initial retedand keep the best result.

4.1.2. The Fuzzy k-Means Algorithm

The k-means algorithm presented above associates each sampl® to exactly one com-
ponentw; in the modelO. It partitionsD into k disjunct setsD = D; U ... U Dy, where
k is the number of components é. In a more general version of the algorithm, known as
fuzzyk-meanssamples can be associated to more than one componentiagcra degree
of membership. From a clustering perspective the fuzzgeans algorithm producdszzy
clusters that do not poses a defined border.

The membership of sample to a componeny; is given by the posterioP (w,|z;, ©) as
defined in EqQ. (4.8). From Section 2.1.1 we know that

k

p(xi|®) = D plailw,0,)P(w,). (4.18)

=1
Substituting the above equation in Eqg. (4.8) we get
plwilwj, 05)Pwj)
Ef:l p(xi‘wu 9L>P(wL)

Since we are assuming that every compongnhas the same prior probabilit}(w;), the
degree of membership of sampleto w,; can be computed as

P(wjl:,0) =

(4.19)

Tilw;, 0;
P(wjlz;,0) = f( 5, 05) (4.20)
ZL=1p<xi|wb7eb)

Now, according to the maximum-likelihood estimation st the improved value for the
parameters, of the model are computed as

~ o Z:L P(wb‘xwe))xz
M TP, 6)

(4.21)

This gives us the general strategy of the fuZzzgneans procedure. As in themeans algo-
rithm, we start with an initial modeb® = {49,...,u?}. Then for each sample, € D the
degree of membership to each componente ©° is computed. These values are used to
calculate the improved values for the parameters accotdiig. (4.21). The new improved
model©! is then used as starting point for the next iteration. Thegss is repeated until the
difference in the value of the parameters is smaller thanenghreshold.

The fuzzyk-means procedure is described in Algorithm 4.2. Lines 4ugho8 compute
the normalizing constant, = Zlep(:ci\wj, g,) for each sample; € D. The normalizing
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4. lIterative Optimization

Algorithm 4.2 Fuzzyk-Means

Input: set of pointsD = {z,...,2,},
initial model© = {1, ..., ux}
1: repeat

2. changes =0
3 n; =0, j=1,....n
4: foralx; € Ddo
5: for all 4; € © do
6: ni = ni + p(zilw;, ©)
7 end for
8: end for
9: forall u; € ©do
10: p=0,p=0
11: for all ; € D do
12: P(wj|z;, ©) = p(xi|w;, ©) /n;
13: fi = fi; + P(wj|z;, ©);
14: p=p+ Pwjlz;,0)
15: end for
16: fL=1p/p
17: if |2 — 1 ] > e then
18: Hj = [
19: changes + +
20: end if
21: endfor

22: until changes = 0

23: for all ; € © do

24: 1/ = nearest neighbor ¢f; in D
250 pj=p

26: end for

27: return ©
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Figure 4.2.: Behavior of the Likelihood of a model as it igdtevely improved by thé-means
and fuzzyk-means algorithm. For this example, both algorithms cayeeafter
the same number of iterations. The decrease in the likedilabthe last iteration is
caused by the replacement of the means by their closest canpim the dataset.

constants are used in line 12 to compute the postétiar;|x;, ©) according to Eq. (4.20).
Lines 10 through 16 reestimate the value of every model compioaccording to Eq. (4.15).
Just as in théi-means algorithm, the resulting set of points is not nec#égsa subset of
D. After the algorithm converges, lines 23 through 26 reptaeecomputed components with
their closest point iD. Computing the normalizing constants has a time compleXity(nk)
and computing the improved values of the parameters of thaehias too a time complexity
of O(nk). This two steps are repeatédtimes until convergence. Finally, replacing each
computed means with its closest pointZinhas a total time complexity a(klogn). The
total time complexity of the fuzzy;-means algorithm i$£)(7Tkn), whereT" is the number
of iterations required for convergence the number of samples if?, andk the number of
components ir®.

Figure 4.2 shows the general behavior of the likelihood obaehas thé:-means and fuzzy
k-means algorithm progress. In the example shown in the figatle algorithms converged
after the same number of iterations. The decrease in thénldcal at the last iteration is caused
by the replacement of the means by their closest compondim¢ idataset.

For both algorithms, the number of iterations required fonwergence depends on the
dataset and the model used to initialize the algorithm. Tmming times for the fuzzy:-
means algorithm are in general longer than forkhaeans algorithm due to the computation
of the posteriors. This is specially critical for large dats and large models. However, fuzzy
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4. lIterative Optimization

k-means yields better results in general, and has a morenglpgzbabilistic framework than
the k-means algorithm. The fuzzimeans just like thé-means algorithm suffers too from
the local optima problem, and the results also depend ortdiniing model.

In the next section we present a different optimizationtsgaknown asimulated anneal-
ing in which random modifications of a model are evaluated, aedaacepted or rejected
according to some probability. The stochastic nature of #igorithm is what helps it to
overcome the local optima problem.

4.2. Optimization by Simulated Annealing

Annealing is a process used in physics in which some matdikala metal, is first melted
and then slowly cooled until it solidifies. By gradually loey the temperature the process
allows the material to reach a state of thermodynamic dayuiln. If this is not done, the
material will solidify in an unstable state and will produdar example, a weak metal.
Simulated annealinfKirkpatrick et al, 1983 is motivated by these ideas from the field
of physics. It is an iterative improvement algorithm thatrtt with a given mode®,. In
each step the current modeb; is modified by removing a randomly chosen component and
replacing it with a different randomly chosen componensul# the model. Remember that
amodel® = {u4, ..., u} for a dataseD is nothing more than a different interpretation for
asubsett = {z1,...,z;} of the samples irD. Eachy,; € © represents a; € D. Thus, in
each step a randomly chosen compongnt € ©; is replaced with a component {{rD — ©;}
to obtain a new modéb,. The new mode®; is then evaluated and the resulting change in the
likelihood of the modeNL L(6;, ©,) is computed using the following equation:

ALL(©,0) = LL(D|®)— LL(D|©), (4.22)

where LL(D|O) is the log-likelihood of the data i® given the model® as described in

Section 2.1.1. If the new modél; is better, the chang& L L(0;, ©,) will be positive and the

new model is accepted. On the other hand, if the resultingetisdvorst or equal, the new
model is accepted according to the following probability:

wheret; is called theaemperatureof the system, and is a control parameter in the same unit as
LL. The temperature determines the probability of accepting a lower-likelidanodel at
stepi. The model selected at stés then used as starting model for the next stepl. The
initial temperature, is set at some high, problem-specific value, and is decreaseuiding to
some predefined schedule.The algorithm terminates wheemigerature reaches a specified
lower bound;.

During the first iterations of the algorithm when the tempama is high, the probability
of accepting a lower-likelihood model is also high. As thgamithm progresses and the
temperature decreases, the probability of accepting aribkedihood model decreases. At
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4.2. Optimization by Simulated Annealing

lower temperatures the algorithm behaves in a greedy wayndna stronger preference for
higher-likelihood models. The fact that models with lowigelihood values have a positive
probability of being accepted is what allows the algoritlinescape from local optima.

In Figure 4.3(a) the acceptance probabitity [A L L /t] is shown as a function in the change
of the likelihood of two model L L(O, ©). Negative values foA LL(0, ©) indicate that the
model© to be evaluated has a lower likelihood than the current médérthe probability of
accepting a lower-likelihood model depends on how big trengeALL(©, ©) is. Models
that produce big changes have a lower probability of beirgpted than models that produce
only small changes. As the temperaturdecreases the probability of accepting a lower-
likelihood model also decreases. Figure 4.3(b) shows tbepdance probability as a function
of the temperature

The simulated annealing procedure is described in Algarith3. In line 3 the current
model ©; is modified by removing one randomly chosen component andaeg it with a
different randomly chosen component outstle Line 4 evaluates the new mode}. This
new model is accepted if its likelihood is higher than thelitkood of the current modé);.

If its likelihood is not higher, the the new model is accepaedording to the acceptance prob-
ability for the computed chang&LL(6;,, ©;) and the current temperature The acceptance
of a model is implemented by randomly selecting a positia nemberrand|0, 1) smaller
than 1. If the acceptance probabilityp [ALL(6;,©;)/t;] is larger thanrand|0, 1) then®;

is accepted. The functioti.) is called theannealing scheduland controls the way in which
the temperature is decreased as a function of the numberafidns. The annealing schedule
determines the starting temperatli@) = ¢,, the number of models that are to be evaluated
before decreasing the temperature, and the rate at whikethiperature decreases. The time
complexity of the algorithm i€ (7'nk) whereT" is the number of iterations needed until the
final temperaturé; is reachedy is the number of samples in the dataggtandk is the
number of components in the model. The faaigr.k) in the complexity of the algorithm is
caused by the calculation of the likelihood of the modelse filme complexity can be reduced
by exploiting the fact that the models to be compared are diffgrent by one component.
This can be used to compute the likelihood in a more efficiemy iy only considering the
local changes.

4.2.1. Annealing Schedule

It remains to describe how the annealing scheduleactually looks like. It has already being
mentioned that the initial temperaturgis set to some high problem-specific value and then
decreased until a final temperatureis reached. In general, the initial temperature must be
high enough so that every model has a positive probabilityecig accepted. The decrease in
temperature must be slow enough to allow the algorithm tapsa local optima, and the final
temperature,; must be low enough to minimize the probability of acceptimgadel different
than a global optima in the final steps of the iteration. Besitkse general guidelines, there
is no specific strategy for coming up with a schedule otham thatuning the parameters in a
problem-specific way.
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Figure 4.3.: Figure 4.3(a) shows the acceptance probabilji [ALL/t] as a function of the
change in the likelihood\ L L.(6, ©) for three different values of the temperature
t. Figure 4.3(b) shows the acceptance probability as a fomct the temperature
t for three different values A L L.
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4.2. Optimization by Simulated Annealing

Algorithm 4.3 Simulated Annealing
Input: setof pointsD = {xy,...,z,},
initial model©y = {u1, ..., px}s
annealing schedulg.),
final temperature;

1:1=0

2: while (i) > t; do

3:  generate random modé); from ©,
4:  if ALL(6;,0;) > 0orexp [ALL(0;,0,)/t(i)] > rand[0, 1) then
S Oit1 =6

6: €lse

7 Oir1=6;

8: endif

9 1=1+1
10: end while
11: return O,

When selecting reasonable parameters for the annealiegsieh it is important to consider
the way the algorithm explores the likelihood space. In esiepi, our algorithm evaluates
models by removing a component from the current métlednd replacing it with a different
component outside the model. Thus the temperature values Imeuselected based on the
difference A LL between the likelihood of models that differentiate eadieoby only one
component. The way in which the algorithm explores the iil@d space leads to the two
following observations. First, the algorithm moves slowiyough the likelihood space since
the transitions are between models that are identical b ingle component. This makes
the local likelihood landscapes shallow. Secondly, modstls a high likelihoods lie far apart
in the likelihood space from models with low likelihoods.

Based on these observations a low-temperature scheduiessit to prevent the algorithm
to wander too deep into low-likelihood regions. The initehperature, is set empirically by
studying the local landscape for different randomly chasedels and observing the average
ALL. Atthe beginning, the algorithm should behave in a randomwith a slight preference
for high-likelihood models. The degree of randomness igroied by the initial temperature.
As the algorithm progresses, the temperature is decreasedding tot(: + 1) = «t(i) with
0 < a < 1. The parametet: controls how gradual the decrease in temperature is. Sirece t
algorithm moves slowly through the likelihood space, iniportant to allow enough iterations
to take place so that the high likelihood regions can be m@cFkor this, the temperature is
not decreased after every iteration but we let the algorigvaluate a number. of models
before decreasing the temperature.

Figure 4.4 shows the likelihood of a model as its modified leysimulated annealing algo-
rithm. It can be observed how the likelihood of the currentdeiacan decrease during some
iterations. This occurs when a lower-likelihood model isegated. In general, however, the
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Figure 4.4.: Likelihood of a model as the simulated anngafirogresses. The figure also
shows the likelihood of the models that were evaluated oh garation.

likelihood tends to increase. The figure shows how the sitedlannealing algorithm moves
through the likelihood space. Also shown in the figure is tkelihood of the models that
were evaluated on each iteration.

According to the annealing schedule, the number of itematiteeded for the algorithm to
terminate can be computed as

m’—loga(tf/to)-‘, (4.24)

wherem is the number of models to be evaluated before every temperatduction and
[log,(tr/to)] is the number of times the initial temperatugemust be decreased until the
final temperature, is reached. According to (4.24), high values fgr«, m, and a lowt
cause the algorithm to evaluate a large number of modelss ihbrease the probability of
finding a good solution. However, computational resourcastrhe taken into account at the
moment of selecting the schedule parameters since the mwhb®edels to evaluate can be
restrictively large. A compromise must be reached betwkermptobability of finding a good
model, and the needed computing time.

The simulated annealing algorithm like themeans and fuzzy-means algorithm is sus-
ceptible to the initial model. Different initial models mhace different results. However, the
effect of the initial model is not as large as for the other ddgorithms.
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5. Experimental Results

The algorithms presented throughout this work have beeteimgnted and evaluated using
various datasets. These correspond to different enviratsrend were gathered using real
robots. A description of the datasets used can be found ireAgig A. The measurements
were recorded and aligned using the Carnegie Mellon robagataon toolkit (CARMEN)
[Royet al, 200d. For clarity only the results for two different datasets jaresented through-
out this chapter. However, the observations and analyslseafesults are general and include
the results obtained using other datasets as well. These mhults are presented in Ap-
pendix B. The datasets used for the results presented ircliister where gathered at the
Intel Research Lab in Seattle and at the 4th floor of the Sidbatithe University of Wash-
ington.

The Intel Research Lab is shown in Figure 5.1 and has a siz8mk29m. The measure-
ments were gathered using a Pioneer 2 robot equipped witGld Bker range finder sensor.
A total of 910 scans were taken with 180 range measurementcpr. Only measurements
under 10 meters were considered at the moment of projediegamples. The resulting
dataset has a total of 155648 samples and has a density dfl1€dmples per squared me-
ter. The 4th floor of the Sieg Hall at the University of Washorgshown in Figure 5.2 has a
size of 50mx12m. A total of 241 scans where taken with 361 range measuntsrper scan.
The corresponding dataset consist of 83892 samples anddessay of 92.53 samples per
squared meter. Here too, only ranges under 10 meters wheddasbtain the samples.

5.1. Dataset Simplification

The first experiment is designed to evaluate the four diffedataset simplification techniques
presented in Chapter 3. To compare the quality of the motieddikelihood of the datd L is
used as evaluation criterion. As mentioned in Chapter Zfampdels have in general higher
likelihoods. Therefore, in order to make the comparisoimefawe compare models having
the same number of components. To do this, we defiadence sizefr the models to be
compared. These sizes correspond to the size of the modals@dwith grid-based sampling
using different grid resolutions. We used 4 different ragohs for the different datasets used
in the experiments.

Once the reference sizes were set, we used the remainirggtataplification techniques
to generate models according to these reference sizes.iMiitmental clustering and occu-
pancy grid sampling, the size of the resulting model has twopérolled by adjusting the input
parameters of the algorithms. These parameters are thermaxallowed radius for incre-
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Figure 5.1.: Intel Research Lab in Seattle.
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Figure 5.2.: Sieg Hall at the University of Washington.
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5.1. Dataset Simplification

mental clustering, and the resolution of the grid and thaipaocy threshold for occupancy
grid sampling. The degree in which the size of the resultioglehcan be controlled adjusting
the values of these parameters is limited and the sizes oé#udting models were not always
the desired reference sizes. Farthest-point samplingei®iy downsampling strategy for
which the size of the resulting model can be explicitly sfiedi Therefore no parameter had
to be tuned in order to obtain models of the desired size.

Incremental clustering and farthest-point sampling aselsstic algorithms since they pro-
duce different models even when given the same input paemmetncremental clustering
not only produces different models, but also produces nsodebifferent sizes even for a
fixed maximum allowed radius. To deal with the stochastiareabdf these two algorithms the
average of the results of several runs was used for the diaisa

Figure 5.3 shows the likelihood of the models obtained usiregdifferent simplification
techniques: Grid-Based Sampling (gbs), Incremental €tugg (ic), Farthest-Point Sampling
(fps), and Occupancy Grid Sampling (ogs). From all thesertiges, incremental clustering
produces the best results overall. Farthest-point sagplioduces relatively good models
for large reference sizes, but as the size decreases thgyaqfdhe resulting models deteri-
orates in contrast to the results of the other algorithmsd-8ased sampling produces good
models for both large and small sizes. The likelihood of tlueleils obtained with occupancy
grid sampling are in general relatively low. This is to be @xed since the samples that are
discarded by this algorithm are usually outsiders whichaportant for the reduction of the
sum of squared error of the model, ultimately associateledikelihood of the model.

In general the quality of the models obtained with the défgrtechniques depends on how
large the models is in proportion to the complete datasetgdramodels have higher likeli-
hoods and the difference between the results of the diffedgorithms decreases as the size
of the models increases. This can be see in Figure 5.4 whaskisstine likelihood as a function
of the size of the model for the incremental clustering amthést-point sampling algorithms.
The standard deviation shown on the figure was augmented dgtar fof 10 for displaying
purposes. Observe how it increases as the size of the maatgisades. This shows that the
difference in the likelihood values of the produced modsismall for large models and in-
creases as the size of the models decreases. We observegrapghe that the incremental
clustering algorithm produces not only better models tlaatnést-point sampling but the vari-
ance in the quality of the produced models is smaller. The amgmequirements needed to
produced large models with grid-based sampling and ocaypand sampling prevented us
from using these two algorithms for this comparison.

Besides the quality of the resulting models the executioretof the algorithms is also
an important factor when comparing the different simpliima techniques. We evaluated
the execution times of the different techniques runningntfen a standard PC with a 2.8
GHz processor. Figures 5.5 and 5.6 show the execution tiorethé Intel Research Lab
and Sieg Hall dataset respectively. Itis clear that fattpest sampling is, by far, the slowest
algorithm. For clarity, the figures also show the executimes of the other three algorithmsin
detail. It can be observe that the grid-based sampling itéifigois the fastest one. Its execution
time is almost constant. In contrast occupancy-grid sargptias the overhead of the ray-
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Figure 5.3.: Likelihood of the models obtained for the InRe#search Lab and Sieg Hall
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casting operation which is clearly affected by the resolutf the grid. The execution times
of the incremental clustering algorithm depend both on the sf the complete dataset and
the size of the resulting model. The results of this expenirsapports the theoretical analysis
about the time complexity of the dataset simplification alfpons presented in Chapter 3. As
a reminder let» andk be the size of the dataset and the model respectively. Theedr
point algorithm has a time complexity 6f(kn log k), incremental clustering i©(klogn),
and grid-based sampling and occupancy grid sampling aife ®@t) although occupancy
grid sampling has the additional overhead of the ray-cgstperation. Remember that this
complexity analysis was very rough since the actual exenutmes depend greatly on the
distribution of the samples in the dataset and on the uniderstructure of the environment.

5.2. Evaluation of the k-Means Algorithm

The second experiment is designed to show the effect di-tihheans algorithm for improving
the quality of a given model. We use the models obtained uiaglifferent dataset sim-
plification techniques as starting point for theneans algorithm. Figure 5.7(b) shows the
likelihood of the models obtained using themeans algorithm together with the likelihood
of the models used as starting points. As can be seen on thefitpe k-means algorithm
actually improves the quality of the starting models inereg its likelihood. The figure also
shows the effect of the starting model on the quality of treults. For a fixed model size,
different starting models produce different results. Amotobservation is that the improve-
ment for lower likelihood models is in general larger thanrfeodels with higher likelihoods.
This can be seen in Figure 5.8 which compares the likelihdddeomodels obtained using
the k-means algorithm with the likelihood of the models used agisg point in function of
the size of the model. Observe how as the size of the modedases the difference between
the likelihood of the original model and the improved onerdases. This is a property of
the likelihood function and is independent of the strateggduto generate the model. The
difference in the likelihood between large models is smathpared with the difference in the
likelihood between smaller models independent of how thdetsare generated.

How much a model is improved is related to the number itenatmf the algorithm. Larger
improvements are in general associated to larger numbégrations. However, the amount
of improvement is also affected by the distribution of thenpées in the initial model. For
example, theé:-means algorithm converged after 54 iterations when stastiith the model
of size 6970 obtained using grid-based sampling for thd Résearch Lab dataset. For the
same dataset and model siZzemneans converged after 54 iterations too when starting with
the model obtained using farthest-point sampling. In th& fiase the improvement in the
likelihood of the model was of 23450. In the second case thrarnement was of 49487,
more than twice as much as in the first case. These number balesolut meaning but show
that the improvement can not be uniquely characterized &yntimber of iterations required
for convergence. Tables 5.1 and 5.2 show the number ofidesaheeded by thé-means
algorithm to converge for the Intel Research Lab and Sied tahsets respectively. The
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Figure 5.8.: Likelihood of the models obtained usinnghneans (k-m) as a function of the size
of the model. The models used as starting point where olttaisiag Incremental
Clustering (ic).
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5.3. Evaluation of the Fuzzy-Means Algorithm

Initial Model | 6970 (4%)| 11654 (7%)| 27752 (18%)| 60651 (39%)
gbs 54 37 24 17
ic 55 34 21 11
fps 54 35 22 13
0gs 90 41 26 26

Table 5.1.: Number of iterations needed by thmeans algorithm for the Intel Research Lab
dataset. The initial models were generated using the diffedlataset simplifica-
tion techniques: Grid-Based Sampling (gbs), Incremeniat€ring (ic), Farthest-
Point Sampling (fps), and Occupancy Grid Sampling (0gs).

Initial Model | 2539 (3%)| 4028 (5%)| 9278 (11%)| 21290 (25%)
gbs 72 48 29 12
ic 39 30 20 10
fps 59 38 22 14
0gs 70 42 30 18

Table 5.2.: Number of iterations needed by theeans algorithm for the Sieg Hall dataset.
The initial models were generated using the different adtasnplification tech-
niques: Grid-Based Sampling (gbs), Incremental Clusge(io), Farthest-Point
Sampling (fps), and Occupancy Grid Sampling (0gs).

increase in the likelihood of the models associated to thitesation values can be clearly
observe in Figure 5.7.

The number of iterations also affects the execution timethefalgorithm. Recall from
Chapter 4 that thé-means algorithm has a time complexity @f7n log k) wheren is the
number of samples in the datasets the size of the model, arildis the number of iterations
needed for the algorithm for convergence. Figure 5.9 shtwsekecution times of thi-
means algorithm for the Intel Research Lab and Sieg Halke#da The effect of the number
of iterations (Tables 5.1 and 5.2 ) can be clearly seen on giueefi For a given dataset and
model size the highest execution times correspond to thethat required the largest number
of iterations.

5.3. Evaluation of the Fuzzy k-Means Algorithm

The third experiment is designed to demonstrate the catyadiikthe fuzzyk-means algorithm
to improve the likelihood of a given model. To evaluate thauits we use as staring point the
models obtained using the different dataset simplificatigmmniques. Figure 5.10 shows the
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Figure 5.9.: Execution times of themeans (k-m) algorithm on a standard PC with a 2.8
GHz processor for the starting models produced with thesgatsimplification
techniques: Grid-Based Sampling (gbs), Incremental €tirgj (ic), Farthest-
Point Sampling (fps), and Occupancy Grid Sampling (0gs).
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5.4. Likelihood Optimization by Simulate Annealing

Initial Model | 6970 (4%)| 11654 (7%)| 27752 (18%)| 60651 (39%)
gbs 18 24 20 12
ic 21 22 19 15
fps 20 24 19 16
0gs 27 20 34 21

Table 5.3.: Number of iterations needed by the fuzzmeans algorithm for the Intel Re-
search Lab dataset. The initial models were generated tisendifferent dataset
simplification techniques: Grid-Based Sampling (gbs)réntental Clustering (ic),
Farthest-Point Sampling (fps), and Occupancy Grid Samggbgs).

likelihood of the models obtained using the fuzzymeans algorithm. Also shown are the
likelihood of the models used as starting point for the atgar. As can be seen in the figures,
using the fuzzyk-means algorithm the likelihood of the given models can bprowed. It
can also be seen, how the model used as starting point affextesults of the algorithm.
Figures 5.11 compares the likelihood of the models obtausath thek-means algorithm with
the likelihood of the models obtained using the fuzzgneans algorithm. The same starting
models were used for both algorithms. Observe that in moshefcases fuzzy:.-means
produces better results than thaneans algorithm. However, the models produced using
k-means can be better than the ones produced with fazamgans. In our specific case this
can be observed when occupancy grid sampling is used toagertbe starting models. This
reason for this is that outliers in the original dataset havly a very small influence on the
models that fuzzy:-means produces. This negatively affects on the likelinafdtie resulting
models. On the other hand, theaneans algorithm may include in the resulting model, sample
that where previously removed by the occupancy grid samgaligorithm.

The execution times of the fuzzymeans algorithm range from almost a minute for small
datasets to well over one hour for larger ones. The time cexitylof the algorithm i) (T'kn)
whereT’ is the number of iterations needed by the algorithithe number of samples in the
dataset, and the size of the model. The number of iterations is relatechéoimcrease in
the likelihood of the starting model. Larger incrementsikelihood are associated to larger
number of iterations. Tables 5.3 and 5.5 show the numbeeddtibns needed by the fuzzy
k-means algorithm for the Intel Research Lab and Sieg Hadis#ds. Tables 5.4 and 5.6 show
the corresponding execution times.

5.4. Likelihood Optimization by Simulate Annealing

This experiment is designed to illustrate how simulatedeating can be used to improve
the likelihood of a model. In particular we show that simathinnealing can even improve
models where thé-mean and fuzzy-mean algorithms fail. Both these algorithms get stock
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Figure 5.10.: Likelihood of the models obtained using thezfuk-means (f) algorithm. Also
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shown are the likelihood of the models obtained using tHemiht simplification
techniques used as starting models: Grid-Based Samplimg),(¢ncremental
Clustering (ic), Farthest-Point Sampling (fps), and Oeogy Grid Sampling
(0gs).



5.4. Likelihood Optimization by Simulate Annealing
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Figure 5.11.: Likelihood of the models obtained using thezfuk-means (f) algorithm com-
pared with the likelihood of the models obtained usingithmeans algorithm for
the same starting models. The starting models where gexanaing the dataset
simplification algorithms: Grid-Based Sampling (gbs),remental Clustering
(ic), Farthest-Point Sampling (fps), and Occupancy Grich@ag (0gs).
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Initial Model | 6970 (4%)] 11654 (7%)] 27752 (18%)| 60651 (39%)
gbs 7.47 17.08 35.69 80.46
ic 9.08 14.35 30.78 67.72
fos 8.41 17.22 34.91 68.36
0gs 10.76 13.13 54.80 78.38

Table 5.4.: Execution times in minutes of the fuzZzyneans for the Intel Research dataset.
The initial models were generated using the different adatasnplification tech-
niques: Grid-Based Sampling (gbs), Incremental Clusge(io), Farthest-Point

Sampling (fps), and Occupancy Grid Sampling (ogs).

Initial Model | 2539 (3%)] 4028 (5%)[ 9278 (11%)] 21290 (25%)
gbs 15 16 29 12
ic 19 17 16 12
fos 17 17 13 13
0gs 20 16 25 16

Table 5.5.: Number of iterations needed by the fuzzymeans algorithm for the Sieg Hall
dataset. The initial models were generated using the diifedlataset simplifica-
tion techniques: Grid-Based Sampling (gbs), Incremenitadt€ring (ic), Farthest-

Point Sampling (fps), and Occupancy Grid Sampling (0gs).

Initial Model | 2539 (3%)] 4028 (5%)[ 9278 (11%)] 21290 (25%)
gbs 1.60 2.72 11.66 11.68
ic 1.89 2.72 6.00 11.52
fps 1.76 2.90 4.93 12.68
ogs 2.04 2.63 9.33 14.61

Table 5.6.: Execution times in minutes of the fuzzyneans for the Sieg Hall dataset. The
initial models were generated using the different dataegtlgfication techniques:
Grid-Based Sampling (gbs), Incremental Clustering (i@ytirest-Point Sampling
(fps), and Occupancy Grid Sampling (ogs).
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5.4. Likelihood Optimization by Simulate Annealing
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Figure 5.12.: Likelihood of the models obtained using siated annealing (sa) for three dif-
ferent initial models after 110000 iterations. The first mlodps) was obtained
sampling 4500 points from the Sieg Hall dataset using fattpeint sampling.
The secondiK-means) and third (fuzzy§-means) models were obtained with the
k-means and fuzz¥-means algorithms respectively using the first model (fps)
as starting initial model.

in models that constitute local optima in the likelihood apaRepeated applications of the
algorithms do not provide further improvements of these et&dlo perform this experiment
we selected an initial model and appliéemeans, fuzzy-means and simulated annealing
to it. We then applied simulated annealing to the modelsindthusingk-means and fuzzy
k-means. In order to set the initial temperature for eachiBpean, we ran the simulated
annealing algorithm using the different starting modeld ahserved the average difference
in the likelihood during the first iterations. This value wased as initial temperature. Thus
lower likelihood models would have in average a probabiifyapproximately 37% of be-
ing accepted before the first decrease in the temperatureset\the annealing schedule as
t(i+ 1) = at(i) with a = 0.95 and allowed 4500 iterations (the size of the model) before
decreasing the temperature. The final temperature was €e0%0 Figure 5.12 shows the
likelihood of the models obtained after 110000 iteraticogether with the likelihood of the
models that were used as starting point. As expected frordiffteission in the previous ex-
perimentsk-means and fuzzg-means improved the likelihood of the original model. In the
figure it can be observed that the model used as starting doed affect much the results
of the simulated annealing algorithm. Figure 5.13 showsb#teavior of the likelihood val-
ues for the different initial models. The figure shows how dlgorithm sometimes chooses
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Figure 5.13.: Likelihood for three different initial modeds the simulated annealing algorithm
progresses. The final values together with their correspgrgtarting models
are shown in Figure 5.12.

lower likelihood models. Observe how the curve goes downheninitial iterations when
using as starting model the result of the fuZzzyneans algorithm. Given the specific anneal-
ing schedules used in the experiment we can calculate théewaf iterations required by
the algorithm to terminate for each case. Using formuladyvize obtain that the algorithm
needs, for the best case 382500 iterations to terminateer@bthat in Figure 5.13 only the
first 110000 iterations are shown, a little over the 30% ofvthele execution. Each iteration
of the algorithm requires approximately 2 seconds, thustmplete execution time would
have being approximately 212.5 hours or almost 9 days. €igLird(a) shows the behavior of
the likelihood values for a completed run of the algorithrmgsa different initial model and
greedier annealing schedule in which the initial tempeeatuas set so that lower likelihood
models would have in average a probability of approximadelyo of being accepted before
the first decrease in the temperature. Figure 5.14(b) sholyglwe first iterations of the algo-
rithm. The figure shows the same number of iterations as the shown in Figure 5.13 for
comparison. Observe how by using a greedier approach tkie does not go down as much.

5.5. Memory Requirements of the Representation

In this final experiment, we compare the memory requiremefinsir sample-based represen-
tation against occupancy grid majislfes, 1989. These maps divide the environment into
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5. Experimental Results

cells of equal size. Each cell represents the are of the @mwient it covers and contains
information about the occupancy probability for that aréathis experiment, the concrete
implementation for the gird is based on tbeunting mode[Hahnelet al., 2003. For each
cell (z, j) we must store information about the numlaéts; ; of times a range measurement
ended up in(é, j), and the numbemisses; ; of times a range measurement passed through
(1, 7) without being reflected. Thus, for each celk 4 bytes of memory are needed. For
each point in a sample-based map we need to storeatsdy coordinates. We use double
precision for this in order to obtain accurate maps. Thusséeh poin® x 8 bytes of memory
are needed.

Sample-based maps are not affected by the size of the emaan Only the number of
samples affect the memory requirements of sample-based. n@agcupancy grid maps, on
the other hand, are not affected by the number of samplesylthetsize of the environment.
Figures 5.15(a) and 5.15(b) show the memory required by pleabased map as a function
of the number of samples in the map for the Intel Research bhdlBauceton Mine datasets.
The figures also show the memory required by an occupancynggial for 4 different grid
resolutions. The Intel Research Lab is 2089m and the corresponding dataset has 155648
samples. The Bruceton Mine is 153mM3m and the corresponding dataset has 129936 sam-
ples. As can be seen in Figure 5.15(b) the size of the envienhimas a great impact on the
memory requirements for occupancy grid maps. In Figure(8)1&an be observe that for
some resolutions, an occupancy grid map requires less nyetimam a sample-based map in
certain environments. However, the memory requiremengsidfbased representations grow
exponentially with the size of the environment, while thegw linearly with the number of
samples for sample-based maps.
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Figure 5.15.: The sloped line represents the memory redjuirmegabytes (MB) by a sample-
based representation in function of the number of sampléeedmmap. Also
shown is the memory required by an occupancy grid represemtar 4 differ-
ent grid resolutions.
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6. Conclusion

A model of the environment is an essential requirement fonyrrabotic applications. In
particular, mobile robots rely on these models or maps téoparfundamental tasks like
localization, path planing, and exploration. The appiaat of a robot that can not perform
these tasks are very limited and of little practical uses lthierefore of great importance to
generate accurate maps of the environment.

In this thesis we presented sample-based maps as a effiparal slescription of the envi-
ronment that uses points to represent the objects detegtde obot with its sensors. Such
maps can be very accurate, and are general in the sensedgarthnot limited to a spe-
cific type of environment. By using points as primitives fbetrepresentation these maps do
not impose any structure to the environment that is beingesgmted. Additionally, by using
only points that correspond to actual measurements madeebsobot, sample-based maps
constitute a representation that is consistent with tha. dat

We presented several approaches for generating sampd-tvagps from the measurements
gathered by the robot. In Chapter 3 we described variousitgabs for reducing the number
of points in the representation. The first strategy divides gpace into cells of equal size
replacing all the points that fall within a cell with a commuoepresentative. This leads to
a very fast but crude simplification of the dataset. We theereded this technique and as-
sociated to each cell a probability of being occupied. Byaliding cells of low probability
we effectively eliminate points generated by spurious mesasents caused by noise in the
sensor or by dynamic objects in the environment. We alsoritiesan approach that builds
clusters in an incremental way by repeatedly adding pomtke clusters until they reach a
maximum radius. This divides the dataset into a set of pamstof a specified maximum size
each of which is then replaced by one representative poihe Iast dataset simplification
technique presented repeatedly adds to the model thedapbmt in the dataset. This is the
point that has the greatest distance to all the points ajreathe model. In this way, we
add to the model the point that reduces the most the spacgedrethe points already in the
model. None of this methods attempts to find an optimal modabraing to a global evalu-
ation criterion. Each technique has its own approximateeristic. The grid-based and the
incremental clustering approaches try to partition theasaccording to regions, assuming
that each region describes an equally important part of theament. The farthest-point
sampling approach tries to minimize the sum of squared ®imaurred in representing the
dataset using the points selected in the model.

The problem of generating a sample-based map can be statesel @®blem of finding the
best subset of points for a given dataset according to soaleadion criterion. By considering
the set of points as a probabilistic model the likelihoodhaf tlata can be used as evaluation
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function for the models. Thus our problem can be restatetieaprioblem of finding a subset
that maximizes the likelihood of the data. Since this probigin practice intractable, we pre-
sented in Chapter 4 three approximative optimization teghes for generating a maximum-
likelihood subset. We first described theneans and fuzzy-means algorithms. Both of this
algorithms take a given initial model and improved it itaraly by recomputing the value of
its points. Thek-means algorithm associates each point in the dataset ¢togsst point in
the model and then recomputes the value of the points in tltehib@ased on all its associated
points. The fuzzyk-means algorithm is a more general version of fameans algorithm.

It associates each point in the dataset to all the pointsamtbdel. These associations are
weighted according to the distance between the two pointsath iteration the points in the
model are recomputed as the weighted average of all thespoitihe dataset. The improve-
ments obtained using fuzzymeans proved to be, in general, better than the ones obitaine
with the k-means algorithm. Both of this algorithms are greedy praoes that maximize
the improvement in the likelihood of a model on each iteratid@hese greedy approaches,
however, tend to get stock in local maxima producing modwels &are not necessarily overall
bests. To alleviate this problem, we described the simdiat@ealing algorithm as a stochas-
tic approach for solving the optimization problem. Simathannealing takes an initial model
and starts evaluating random modifications accepting ectieg them according to some
probability. Since the algorithm accepts lower-likelillomodels with a positive probability
is able to scape local maxima, producing in general betgrtethan thé-means and fuzzy
k-means algorithms.

All the techniques presented in this thesis were implentesutel evaluated using data gath-
ered with real robots in different environments. We usedikedihood of the data as a measure
of the quality of the models. Since larger models have in g@rehigher likelihood, we com-
pared models of the same size to evaluate our algorithms. rétecbmpared the different
dataset simplification techniques in function of the qyatit the resulting models. Our ex-
periments showed that the incremental clustering algorpphoduced the bests models. Since
the clusters do not impose a rigid geometrical structurehendistribution of the points the
resulting model resembles the underlying distributionke#f points in a more natural way.
Farthest-points sampling produces models whose poinfadiapart from each other. For
large simplification rates such a distribution of pointsgarces models of relatively low like-
lihood. By using a fixed size partitioning of the space, thd-pased approach can not adapt
to the underlying point distribution producing models that slightly worse than the ones
obtained using incremental clustering. Finally, by addiagupancy probabilities to the cells
of the gird to remove spurious points we obtain maps that anesrmonsistent with the envi-
ronment. But for the likelihood of the data this spuriousn®iare as important as any other
point, so the models obtained using this occupancy grid 8agfechnique have in general
low likelihood.

We also evaluated the iterative improvement techniques tHi® experiment we used the
models obtained with the different simplification techrequas initial models for the-means,
fuzzy k-means, and simulated annealing algorithms. The resutgsesththat using these tech-
niques we can improve the likelihood of the initial modelbeExperiments also demonstrated
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that in general the fuzzy-means algorithm produces better results than those df-theans
algorithm specially for larger models. The models obtainsthg these two algorithms can
be improved no further using these algorithms repeatediyesihese results constitute a lo-
cal maxima. We applied the simulated annealing to those @&l demonstrated how this
stochastic approach can escape local optima and furtheowaphe models.

Despite the results, the presented techniques have alsdithiéations. The grid-based
simplification techniques need to construct a grid to regmethe environment with. Grids for
large environments or fine-grained grids require large arteoaf memory which can easily
exceed the capacity of a standard PC. The execution timsasaatlisadvantage for some of
the techniques. Fuzzymeans can require more than an hour to produce a result whémef
same initial modek-means requires a little more than 10 seconds. The simudeteealing
algorithm requires the initial temperature, and anneadicigedule to be specified. This has
to be done according to the dataset and model size of thefispegperiment. There are no
parameters that work well for the general case. Additignaiimulated annealing can have
extremely large execution times depending on the paramel@rsen since it requires many
iterations in order to obtain good models.

Representing the environment using sample-based mapts liisadvantages too. Sample-
based maps, as most geometrical representations, do nei exqaicitely free space. Only
the points were an obstacle was detected are representddeards no way to distinguish
between free and unexplored spaced. Representing uned@pace is critical for exploration
tasks. Sample-based maps are also very susceptible togspuneasurements. This problem
can be alleviated using the described occupancy grid sagipdichnique. This technique,
however, can not be applied always since it requires a gpesentation of the environment
a suffers from the limitations previously mentioned. Arathelated problem is that the un-
certainty in the measurements is not explicitly represgirtéhe map.

Despite this important disadvantages and limitationsptiesented techniques can be used
to generate accurate, general, and consistent repraeaestaf the environment using the
measurements gathered with a robot.
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A. Datasets

The lines in the figures indicate the trajectory of the robbilevgathering the data. The points
indicate the positions where the scans were made. The sa®psity was calculated using a
fixed-size grid with a resolution of 5 centimeters per celeTloccupied area was computed
summing up the are of all the occupied cells in the grid.

Most of these datasets are freely available onlineTbe Robotics Data Set Repository
(Radish).

A.l. Intel Research Lab
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Figure A.1.: Intel Research Lab in Seattle.

e Number of Samples: 155648.
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A. Datasets

Number of Scans: 910.

Measurements per Scans: 180.

Environment size: 29x29 m.

Sample density: 1.81 sampleg/im
Occupied area: 69.38'm

Submitted by Dieter Fox to Radish

A.2. Austin ACES

Figure A.2.: ACES building at the University of Texas Austampus.

e Number of Samples: 73195.
e Number of Scans: 440.

e Measurements per Scans: 180.
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A.3. Bruceton Mine

e Environment size: 56x55 m.
e Sample density: 0.23 sampleg/m
e Occupied area: 71.13'm

e Submitted by Patrick Beeson to Radish

A.3. Bruceton Mine

Figure A.3.: Bruceton Research Mine near Pittsburgh.

e Number of Samples: 129936.

e Number of Scans: 415.

e Measurements per Scans: 360.
e Environment size: 153x73 m.

e Sample density: 0.12 sampleg/m
e Occupied area: 89.23'm

e Provided by Cyrill Stachniss
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A. Datasets
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Figure A.4.: Sieg Hall at the University of Washington.

A.4. Sieg Hall

e Number of Samples: 83892.

Number of Scans: 241.

Measurements per Scans: 361.

Environment size: 52x17 m.

Sample density: 0.93 samplegim

Occupied area: 23.2'm

Provided by Cyrill Stachniss
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B. Additional Experimental Results
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Figure B.1.: Likelihood of the models obtained using théelént dataset simplification tech-
niques: Grid-Based Sampling (gbs), Incremental Clusgefic), Farthest-Point
Sampling (fps), and Occupancy Grid Sampling (0gs).
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Figure B.2.: Likelihood of the models obtained with fartipsint sampling (fps) and incre-
mental clustering (ic) as a function of the size of the modélke standard devia-
tion shown on the figure was augmented by a factor of 10 folalyspg purposes.
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Figure B.4.: Execution times for the Austin ACES datasetesponding to the 4 simpli-
fication techniques: Grid-Based Sampling (gbs), Increale@tustering (ic),
Farthest-Point Sampling (fps), and Occupancy Grid Samgglags). For clarity
Figure (b) does not show the times for the farthest-pointgsiag algorithm.
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Figure B.6.: Likelihood of the models obtained usiigneans (k-m) as a function of the size
of the model. The models used as starting point where olutaisiag Incremental
Clustering (ic).

76



Initial Model | 6970 (4%)| 11654 (7%)| 27752 (18%)| 60651 (39%)
gbs 54 37 24 17
ic 55 34 21 11
fps 54 35 22 13
0gs 90 41 26 26

Table B.1.: Number of iterations needed by theneans algorithm for the Bruceton Mine

dataset. The initial models were generated using the diftedtataset simplifica-
tion techniques: Grid-Based Sampling (gbs), Incrementast€ring (ic), Farthest-
Point Sampling (fps), and Occupancy Grid Sampling (0gs).

Initial Model | 6970 (4%)| 11654 (7%)| 27752 (18%)| 60651 (39%)
gbs 72 48 29 12
ic 39 30 20 10
fps 59 38 22 14
0gs 70 42 30 18

Table B.2.: Number of iterations needed by theneans algorithm for the Austin ACES

dataset. The initial models were generated using the diftestataset simplifica-
tion techniques: Grid-Based Sampling (gbs), Incrementast€ring (ic), Farthest-
Point Sampling (fps), and Occupancy Grid Sampling (0gs).
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Figure B.7.: Execution times of the-means (k-m) algorithm on a standard PC with a 2.8
GHz processor for the starting models produced with thesgatsimplification
techniques: Grid-Based Sampling (gbs), Incremental €lugy (ic), Farthest-
Point Sampling (fps), and Occupancy Grid Sampling (0gs).
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Figure B.9.: Likelihood of the models obtained using thezfuz-means (f) algorithm com-
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Initial Model | 9502 (7%)| 15688 (12%) 35702 (27%)| 71606 (55%)
gbs 21 17 13 10
ic 16 17 14 10
fps 15 20 14 11
ogs 42 22 21 36

Table B.3.: Number of iterations needed by the fuzzgneans algorithm for the Bruceton
Mine dataset. The initial models were generated using tfiereint dataset sim-
plification techniques: Grid-Based Sampling (gbs), Inaatal Clustering (ic),
Farthest-Point Sampling (fps), and Occupancy Grid Samgbgs).

Initial Model | 9502 (7%)| 15688 (12%) 35702 (27%) 71606 (55%)
gbs 6.82 8.99 15.86 25.61
ic 5.10 8.09 16.22 23.90
fos 5.23 10.90 17.56 28.46
ogs 13.35 11.41 24.74 88.72

Table B.4.: Execution times in minutes of the fuzZzyneans for the Bruceton Mine dataset.
The initial models were generated using the different ddtsisnplification tech-
niques: Grid-Based Sampling (gbs), Incremental Clusge(io), Farthest-Point
Sampling (fps), and Occupancy Grid Sampling (0gs).

Initial Model | 8433 (12%)| 13329 (18%)| 28451 (39%)| 50352 (69%)
gbs 20 19 15 8
ic 19 18 12 9
fps 19 14 13 9
ogs 38 39 23 22

Table B.5.: Number of iterations needed by the fuzayeans algorithm for the Austin ACES
dataset. The initial models were generated using the diftastataset simplifica-
tion techniques: Grid-Based Sampling (gbs), Incrementat€ring (ic), Farthest-
Point Sampling (fps), and Occupancy Grid Sampling (0gs).
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Initial Model | 2539 (3%)] 4028 (5%)[ 9278 (11%)] 21290 (25%)
gbs 3.44 5.17 9.10 9.14
ic 3.30 4.97 7.22 10.16
fos 3.43 3.76 7.82 9.86
0gs 6.51 10.69 13.66 25.98

Table B.6.: Execution times in minutes of the fuZzyneans for the Austin ACES dataset. The
initial models were generated using the different datasgtlffication techniques:
Grid-Based Sampling (gbs), Incremental Clustering (i@ytfest-Point Sampling
(fps), and Occupancy Grid Sampling (ogs).
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Figure B.10.: Memory required in megabytes (MB) by a sanijaeed representation in func-
tion of the number of samples in the map. Also shown is the nmgneguired by
an occupancy grid representation for 4 different grid nesohs. For each point
in a sample-based ma&px 8 bytes are needed. For each cell in an occupancy
grid 2 x 4 bytes are needed.
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