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Abstract— The problem of representing environments of a
mobile robot has been studied intensively in the past. The
predominant approaches for geometric representations are grid-
based or line-based maps. In this paper, we consider sample-
based maps which use the data points obtained by range
scanners to represent the environment. The main advantage of
this representation over the other techniques is that it does not
impose any a priori structure on the environment. However,
range measurements come in large amounts. We present a novel
approach for calculating maximum-likelihood subsets of the data
points by sub-sampling laser range data. In particular, our
method applies a variant of the fuzzy k-means algorithm to find
a map that maximizes the likelihood of the original data. Our
approach has been implemented and tested on real data gathered
with a mobile robot.

Index Terms— Mobile robots, mapping, likelihood maximiza-
tion

I. INTRODUCTION

Geometric representations of the environment play an im-

portant role in mobile robotics since they support various

fundamental tasks such as path planning or localization. One

of the most popular approaches are occupancy grids, which

provide a discrete probabilistic representation of the environ-

ment. Other popular approach are representations based on

geometric primitives that are typically found in the environ-

ment. In this contexts, lines play a major role, since many man-

made buildings are composed of linear structures like walls,

for example. Although these techniques have been successfully

applied in the past, they have certain disadvantages coming

from discretization errors or because of missing features in

the environment.

In this paper we consider a non-parametric representation

of the environment which uses the data points gathered by

the robot itself for the representation. In particular, this point-

based representation, which will be denoted as sample-based

maps throughout this paper, utilizes the endpoints of the range

measurements projected into the global coordinate system to

represent the objects in the environment. This representation,

which rests on the assumption that the data is its best own

model, has several advantages. First it provides a high accuracy

at floating point resolution. Additionally, it does not suffer

from discretization errors like grid maps. Furthermore it is

flexible, as it does not rely on any pre-defined features which

can be regarded as a certain a priori information about the

environment. From this point of view, sample-based maps

inherit the advantages of grid maps and feature-based maps

Fig. 1. Typical sample-based maps. The top image depicts a dataset consisting
of 706,628 data points obtained in an office building. The map depicted in the
middle is obtained by down-sampling the dataset. It consists of less than 1%
of the samples in the original dataset. The lower image shows a maximum-
likelihood map obtained with our approach with the same number of samples
than the map in the middle.

as they are able to represent arbitrary structures and at the

same time provide an arbitrary accuracy. Finally, sample-based

maps are consistent with the data perceived by the robot and do

not require any procedures for transforming them into another

internal structure.

One drawback of sample-based maps, however, is that range
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measurements come in large amounts which typically intro-

duce enormous memory requirements. At the same time, many

of the points provided by a range sensor are redundant because

nearby points already provide the relevant information about

the existence of an object in the environment. One popular

approach to reduce the number of points in a sample-based

map is to down-sample the data points. However, this directly

introduces the question of how to down-sample, especially

because not every sample necessarily contributes to the model

in the same way.

As an example, consider the maps depicted in Figure 1.

The topmost map shows a complete data set obtained with a

Pioneer II robot equipped with a laser range finder in building

79 at the University of Freiburg. The complete dataset consists

of 706,528 points. The map in the middle was obtained by

down-sampling the whole dataset using grid-based sampling,

one of the techniques described in this paper. It contains

only 5,749 points, which is less than 1% of the points in

the original dataset. Even with this enormous simplification,

the structure of the environment is still recognizable. The

bottom map contains also 5,749 points and is the result of

maximizing the likelihood of the complete dataset using the

approach described in this paper. Observe how, as result of the

maximization, the structures in the environment are defined

more clearly.

In this paper, we consider the problem of finding a sub-

set of data points of a sample-based map that provides an

efficient representation of the environment and at the same

time maximizes the likelihood of all the data observed by the

robot. Our approach applies a variant of the fuzzy k-means

algorithm to find a subset that maximizes the likelihood of

the whole dataset. This algorithm can be regarded as an

instance of the expectation maximization (EM) algorithm and

describes an approximative optimization technique that takes

an initial map and iteratively improves it in a hill-climbing

fashion maximizing the likelihood of the dataset. As EM

highly depends on the initialization, we also describe a strategy

for choosing the initial point set. As a result, we obtain highly

accurate maps which consist only of a small fraction of the

original data and at the same time maximize its likelihood.

Additionally, the maps generated by our approach improve the

capabilities of the robot to localize itself in the environment

using a range scanner.

This paper is organized as follows. After discussing related

work in the following section, we will describe how the

fuzzy k-means algorithm can be applied to find the subset

of samples that maximizes the likelihood of the original data.

Then, in Section IV, we will present a technique for initializing

the fuzzy k-means algorithm. Finally, we will present results

obtained with our approach in Section V.

II. RELATED WORK

In the robotic literature many different strategies have been

proposed to learn geometric representations from range data.

One of the most popular approaches, occupancy grid maps,

have been introduced by Moravec and Elfes [12]. Whereas this

approach has a nice probabilistic formulation and additionally

allows a robot to maintain a map over time, occupancy grid

maps require a huge amount of memory and suffer from

discretization errors.

Besides occupancy grid maps, line-based representations

have been very popular. One of the first such approaches has

been described by Crowley [4] who uses a Kalman filter to

fit lines on range measurements obtained from sonar sensors.

In the method proposed by Gonzalez et al. [7], point clusters

are computed from each range scan based on the distance

between consecutive points. Linear regression is then applied

to fit lines to these clusters. Arras and Siegwart [2] use

a hierarchical clustering approach to extract lines from the

points obtained from laser data. The strategy proposed by

Leonard et al. [10] uses a Hough transform to extract linear

features from a sequence of consecutive sonar measurements.

The approach presented by Schröter et al. [16] clusters scans

using the split-and-merge algorithm and combines nearby

segments using a weighted variant of linear regression. Other

geometrical primitives have also been used for describing the

environment. González-Baños and Latombe [8] use polylines

as primitives for the representation. A polyline is a sequence

of line segments that are connected at their endpoints. Veeck

and Burgard [20] describe an approach for learning polyline

maps that operates on an arbitrary set of points. Whereas all

these techniques provide highly accurate maps, they rest on

the assumption, that the environment actually consists of linear

structures.

In contrast to this, our work described in this paper does

not extract geometrical structures from the data points, but

uses the points themselves as primitives for the representation.

In the computer graphics field, Levoy and Whitted [11]

proposed points as a universal meta-primitive for geometric

modeling and rendering applications for 3D geometry. Pauly et

al. [13] explore the usage of points as primitives for modeling

three-dimensional objects, and present several techniques for

modifying and reducing the size of the original set of points.

However, these techniques produce set of points that are not

necessarily a subset of the original dataset, creating models

that can be inconsistent with the data, especially when the

generated points lie in free-space. Alexa et al. [1] work on a set

of samples that is a true subset of the original dataset, but their

method relies on the idea that the given set of points defines a

surface, imposing in this way an a priori structure. In contrast

to this, our work does not make any a priori assumptions on

the dataset and uses a subset of the data as its best model.

This subset is calculated using a probabilistic formulation of

the overall problem and the application of the EM to find

a maximum likelihood subset. In the past, Thrun [18] has

applied the EM algorithm to find grid maps that maximize the

likelihood of the data. In this paper we borrow this idea and

calculate subsets of sample points that maximize the likelihood

of the original data.

The idea of using samples to represent the environment

is not new. Biber and Duckett [3], for example, porpose

a dynamic map that adapts continously over time using a

sample-based representation of the environment. Their work

is on dealing with the dynamics of the environment, while

ours is on finding an efficient representation for it.
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III. SAMPLE-BASED MAPS

A sample-based map is a non-parametric representation

of the environment which uses points to represent the ob-

jects in the environment. These points correspond to the

endpoints of the range measurements gathered by the robot

projected into the global coordinate system. In order to project

the measurements, the pose of the robot must be known

for all range measurements, or an accurate pose estimation

must be given. Projecting all range measurements, a set

D = {x1, . . . , xN} of points is obtained. Formally, a sample-

based map S = {x1, . . . , xK} is a subset S ⊆ D of the dataset

D.

A. Probabilistic Interpretation

A sample-based map S can be interpreted as a proba-

bilistic mixture model Θ with K components, where each

point xi ∈ S corresponds to a component ωi in the model.

The following assumptions are made about the probabilistic

structure of the model:

1) The number K of components ωj , that is, the size of

the model, is known.

2) Each component ωj has the same prior probability

P (ωj) = 1/K, for j = 1, . . . , K.

3) Each sample xi ∈ D is independently and normally dis-

tributed according to p(xi|ωj, θj) ∼ N (µj , Σj), where

θj represents the mean µj and covariance matrix Σj of

the normal distribution associated to component ωj .

Samples in D are assumed to be generated by first selecting

a component ωj with probability P (ωj) and then selecting

a sample x according to p(x|ωj , θj). The probability density

function for a sample x is then given by the following mixture

density

p(x|Θ) =

K
∑

j=1

p(x|ωj , θj)P (ωj) , (1)

where Θ = {θ1, . . . , θK}. We further assume that the co-

variance matrices Σj of the probabilities p(x|ωj , θj) are

isotropic, known, and identical for each component ωj .

Based on these assumptions, our unknown parameter vector

Θ = {µ1, . . . , µK} consists of only the means µi of the

normal distributions from which the samples are selected.

B. Likelihood Maximization

If D contains N samples, the likelihood of the data D given

the parameters Θ is computed as

p(D|Θ) =

N
∏

i=1

p(xi|Θ) . (2)

We are interested in finding the subset S ⊆ D of points that

maximizes the likelihood of the data D. The likelihood is a

measure of the goodness of the model. It indicates, for a fixed

dataset, that a model with a higher likelihood value is more

likely to be the true model than a model with a lower one.

Since evaluating every possible subset S is computationally

infeasible, our approach to find a maximum-likelihood map

is to used an approximative iterative optimization technique.

We consider a sample-based map S as a probabilistic model

Θ and use a variant of the the fuzzy k-means algorithm for

finding the value of Θ that maximize the likelihood of D. The

fuzzy k-means algorithm is basically a gradient ascent or hill-

climbing procedure which seeks a minimum of the following

heuristic cost function [5]

J =

K
∑

j=1

N
∑

i=1

P (ωj |xi, µj)||xi − µj ||
2 , (3)

where P (ωj |xi, µj) is an estimate for the posterior probability

for ωj defined as

P (ωj |xi, µj) =
p(xi|ωj, µj)P (ωj)

p(xi|Θ)

=
p(xi|ωj, µj)

∑K
l=1 p(xi|ωl, µl)

. (4)

The algorithm uses an initial estimate

Θ[0] = {µ
[0]
1 , . . . , µ

[0]
K } to compute the posteriors

P (ωj |xi, µ
[0]
j ) using (4) and then updates the estimates

Θ[0] according to

µ
[1]
j =

∑N
i=1 P (ωj |xi, µ

[0]
j )xi

∑N
i=1 P (ωj |xi, µ

[0]
j )

. (5)

The improved estimates are used as starting point for the next

iteration until the algorithm converges.

The values of the resulting estimates Θ[T ] do not necessarily

correspond to points in the dataset. If this is the case, they

are replaced by their closest point in D to ensure that the

resulting estimate is a true subset of the original dataset. Since

duplicates are eliminated, this final step causes, in general, the

final estimate Θ[T ] to contain less points than in the original

estimate Θ[0].

The time complexity of the fuzzy k-means algorithm is

O(TKN), where T is the number of iterations required

for convergence, N the number of samples in D, and K
the number of components in the model. The likelihood of

the final model and the number of iterations T needed for

convergence depend strongly on the distribution of the samples

in the initial model Θ[0]. If the initial estimates are very good,

convergence can be quite rapid. However, like all hill-climbing

procedures, the algorithm only finds local maxima. There is no

guarantee that the solution found constitutes a global optimum.

IV. GENERATING THE INITIAL MAP

The maps produced by the algorithm described in the

previous section depend strongly on the initial model Θ[0].

A common technique for generating an initial model is to

randomly select points out of the dataset D. However, this

strategy produces maps that, in general, do not represent the

structure of the environment thoroughly and are, in general,

not well suited for navigation tasks. In this section we present

grid-based sampling as an alternative algorithm for generating

an initial model. Grid-based sampling tries to spread the points

along the underlying structure of the environment to get a more

even distribution of the samples.
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Fig. 2. The map on the left was generated by randomly selecting samples
from the dataset. Observe how the samples are unevenly distributed, concen-
trated in areas where the original distribution has a high sample density. The
map on the right was generated using grid-based sampling and contains the
same number of points as the map on the left.

Figure 2 depicts two maps of 389 points each. The map

on the left was generated by randomly selecting points from

the original dataset. Observe how the points are unevenly dis-

tributed, concentrated in areas where the original distribution

has a high sample density. The map on the right was generated

using grid-based sampling. Observe how the points present

a more even distribution, representing the structure of the

environment more thoroughly.

A. Grid-based Sampling

Grid-based sampling takes as input a set D of points and

returns a subset S ⊆ D. The algorithm divides the environment

into cells of equal size and replaces the points that fall

within the same cell with a common representative point. The

resulting set S of samples is constituted by the mean centers

mci
[17] of each non-empty cell Ci. The mean center mci

of

a cell Ci is a point mci
∈ Ci such that

∑

x∈Ci

||mci
− x||2 ≤

∑

x∈Ci

||z − x||2 ∀z ∈ Ci . (6)

The number of samples in the resulting set depends on the

resolution of the grid. A finer resolution will produce a larger

set than a coarser one.

The time complexity for building the grid is O(N), where

N is the size of D. The mean center of a cell can be computed

in O(n), where n is the number of points in the cell, by

keeping track of the mean of the points in the cell as the

grid is build. At the end, we just need to look within the cell

for the closest sample to the mean, what can be done in O(n)
using a naive search. The total complexity of the algorithm is

given by O(N + Kn), where K is the number of non-empty

cells in the grid and n is the average number of points per

non-empty cell.

Grid-based sampling does not attempt to find an optimal

model according to a global evaluation criterion, but utilizes

an approximative heuristic. It tries to partition the points

according to regions, assuming that each region describes

an equally important part of the environment. The main

disadvantage of grid-based sampling is that the exact number

of resulting samples can not be specified directly.

Fig. 3. The Intel Research Lab in Seattle (29m×29m) with 155,648 samples.

V. EXPERIMENTAL RESULTS

The algorithms presented above were implemented and

evaluated using various datasets gathered with real robots.

The goal of the experiments presented in this section is

to demonstrate how our approach can be used to generate

maximum-likelihood sample-based maps of the environment

from laser range measurements. We also demonstrate how

the improved sample-based maps increase the accuracy during

robot localization when compared to the maps before improve-

ment.

The datasets used consisted of different structured and

unstructured environments that differ considerably in the num-

ber and distribution of the samples. In particular, the results

presented in this section correspond to the Intel Research Lab

dataset freely available online from The Robotics Data Set

Repository (Radish) [9]. When projecting the aligned range

measurements, only readings shorter than 10 meters were

considered. The resulting dataset is conformed by 155,648

samples (see Figure 3). Similar results as the ones presented

in this section were obtained when using other datasets.

A. Likelihood Maximization

The first experiment is designed to illustrate how our

approach can be used to obtain sample-based maps that

maximize the likelihood of range data gathered by the robot.

We tested our approach using maps of different sizes. To

initialize the algorithm grid-based sampling (Section IV) was

used. We also compared our results using random sampling

to generate the initial map. Figure 4 plots the likelihood for

the resulting maps using different map sizes. The size of the

maps is expressed as the fraction of samples in the whole

dataset. The resulting maps are denoted with +f-km and the

different initializations as gbs and rnd for grid-based sampling

and random sampling respectively.

As can be seen in the figure, our approach does increase

the likelihood for the maps that were used to initialize the

algorithm. A two-sample t test revealed that the improvement

in the likelihood is significant on the α = 0.01 level for all

the evaluated sizes and initialization techniques. The amount

of improvement depends on the distribution and number of

points the initial map, and as the number of points in the map

increases, the amount of improvement that can be obtained

through our approach decreases. In proportionally large maps,

the contribution of each point to the likelihood of the data
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Fig. 4. Likelihood for maps of different sizes obtained using different
initialization techniques: grid-based sampling (gbs) and random sampling
(rnd). The corresponding resulting maps are denoted with (+f-km).

is relatively small. Thus, as the number of points in the map

increases, the strategy for selecting the samples becomes less

important, since all points are almost equally relevant. The

top plot in Figure 4 reveals that for maps containing more

than 10% of the points of the dataset, the sub-sampling strat-

egy becomes essentially unimportant. For proportionally large

models, the application of our algorithm is no longer justified.

However, we are only interested in maps that are considerably

smaller than the original dataset, where the application of our

algorithm provides an important increment in the likelihood.

The proportional size of the map at which the sub-sampling

strategy to used becomes unimportant depends on the specific

dataset. In particular, it depends on the sample density of the

complete dataset. The graph at the bottom of Figure 4 plots

the likelihood for the resulting maps for sizes smaller than

10% of the samples of the complete dataset.

The influence of the initial map on the result of our

algorithm can be appreciated in Figure 4. Observe how when

randomly initializing the algorithm, the likelihood of the

resulting map is sometimes smaller, than the likelihood of

a map of the same size obtained using grid-based sampling

even without applying our algorithm. In general, different

initialization techniques produce different results. A standard

approach to alleviate this problem is to run the algorithm

several times using different initializations and to keep the

best result.
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Fig. 5. Average localization error d(x, x′) (7) during position tracking for
maps of different sizes obtained using different initialization techniques: grid-
based sampling (gbs) and random sampling (rnd). The corresponding resulting
maps are denoted with (+f-km).

B. Localization Using Sample-Based Maps

This experiment is designed to evaluate sample-based maps

generated using our approach in the context of position track-

ing. We compare the accuracy of the estimated pose of the

robot using Monte Carlo localization [6]. We use the maps

obtained in the previous experiment and compare the accuracy

of the localization algorithm in both the initial and improved

maps. As error between the true and the estimated pose we

use the distance d(x, x′) described in [14] as

d(x, x′) =
[

ξδ(x3 − x′

3)
2 +

(1 − ξ)((x1 − x′

1)
2 + (x2 − x′

2)
2)

]1/2

, (7)

where x1 and x′

1 are the x-coordinates, x2 and x′

2 are the y-

coordinates, and δ(x3−x′

3) is the difference in the orientation

of x and x′. Additionally, ξ is a weighing factor that was

set to 0.8 in all our experiments. As ground truth we use the

corrected pose for the measurements obtained using the scan-

matching algorithm of the Carnegie Mellon Robot Navigation

Toolkit (CARMEN) [15]. In order to make our results general,

we add some Gaussian noise to the odometry of the robot. As

observation model for the localization we use the likelihood

fields model as described in [19].

Figure 5 plots the average localization error obtained when

using the different maps from the previous experiment. For the
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particle filter implementation of the Monte Carlo localization,

500 particles were used and the average of the particles was

used as estimation of the current pose of the robot. The

localization algorithm was run multiple times for each map

and the errors were averaged. For the selected map sizes there

were no serious localization errors from which the particle

filter could not recover from. When using less than 0.25% of

the samples, the particle filter did diverge in some runs. It can

be observed in the topmost plot of Figure 5 that using more

than 1% of the samples did not always improve the accuracy of

the localization, and in some cases even made it slightly worst.

The reason for this lies in the used observation model. The

likelihood fields model neglects the data association problem.

Adding more samples to the map increases the likelihood

associated to slightly delocalized particles, reducing the overall

localization accuracy. The size of the map for which accurate

localization could no longer be guaranteed, or the size for

which additional samples cease to improve the localization

accuracy depend on the specific environment.

As Figure 5 suggests, the improved maps obtained using

our approach are better suited for localization tasks. The lo-

calization error is in general smaller when using the improved

representations. This is specially true for small maps, where

the choice of the samples is more relevant. It can also be

observed that small maps that try to distribute the samples

uniformly throughout the structure, like the ones obtained

using grid-based sampling (gbs) are more appropriate for

localization when compared with maps of the same size that

only concentrate the samples in some parts of the environment,

like random sampling (rnd).

VI. CONCLUSIONS

In this paper, we present a novel approach for learning

point-based maps that maximize the likelihood of the sensor

measurements. The key idea of our approach is to obtain a non-

parametric representation which uses a subset of the data as its

best model. We consider this representation as a probabilistic

model and apply a variant of the fuzzy k-means algorithm to

find a map that maximizes the likelihood of the whole data.

Our approach was evaluated using different datasets gath-

ered with real robots. Experimental results illustrate how

our approach can be used to generate maximum-likelihood

sample-based maps of the environment from laser range mea-

surements. Results also indicate that the improved sample-

based maps increase the accuracy during robot localization

when compared to the maps before improvement. We believe

that maximum-likelihood sample-maps constitute an accurate

and general representation of the environment and are there-

fore suitable for robotic applications.

Despite these encouraging results, the presented approach

suffers from several limitations that are the aim for future

research. First, our approach is strongly dependent on the

map used for initialization, and gets easily stock in local

maxima. In the future we therefore will investigate strategies

to scape local maxima. Another limitation is that the number

of samples in the resulting maps is fixed and must be specified

beforehand. This can be justified if the user wants to fix the

size of the resulting maps. But in general, we would like

to determine the size of the resulting maps while generating

it. Another interesting area for future work would be to try

our approach beyond two dimensions. The framework can be

easily extended to three dimension, for example, an evaluated

with three-dimensional maps.
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[16] D. Schröter, M. Beetz, and J.-S. Gutmann. Rg mapping: Learning

compact and structured 2d line maps of indoor environments. In
Proceedings of the IEEE International Workshop on Robot and Human

Interactive Communication (ROMAN’02), 2002.
[17] S. Theodoridis and K. Koutroumbas. Pattern Recognition. Elsevier

Academic Press, 2003.
[18] S. Thrun. Learning occupancy grids with forward sensor models. In

Autonomous Robots, volume 15, pages 111–127, 2003.
[19] S. Thrun, D. Fox, W. Burgard, and Dellaert. F. Robust monte carlo

localization for mobile robots. Artificial Intelligence, 128(1-2), 2001.
[20] M. Veeck and W. Burgard. Learning polyline maps from range scan data

acquired with mobile robots. In Proc. of the IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), 2004.


