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Abstract. Artificial systems with a high degree of autonomy require reliable seman-
tic information about the context they operate in. However, state interpretation is
a difficult task. Interpretations may depend on a history states and there may be
more than one valid interpretation. We propose a model for spatio-temporal situa-
tions using hidden Markov models based on relational state descriptions, which are
extracted from the estimated state of an underlying dynamic system. Our model cov-
ers concurrent situations, scenarios with multiple agents, and situations of varying
durations. In this work we apply our model to the concrete task of traffic analysis.

1 Introduction

Continuous monitoring and understanding of the state of the system is an
essential ability for autonomous agents since this allows them to act at a more
intelligent level. Consider, for example, a driver assistance application, that
indicates the driver if a dangerous situation is developing, or a surveillance
system at a train station or an airport that recognizes suspicious behaviors.
Such applications need not only to be aware of the state, but must also be
able to interpret it in order to act rationally.

State interpretation, however is not an easy task. It not only requires infer-
ring the state of the system at a given time, but also the analysis of previous
states. That is, temporal context is also needed. Interpretation is also difficult
since the state of a system can be associated to multiple valid interpretations.
We define a situation as a possible interpretation for a sequence of system
states and propose a framework for modeling and recognizing situations in
dynamic, multi-agent and uncertain systems.

Some related approaches includes, for example, the work from Liao et al.
(2005), which is based on relational Markov networks for sensor-based activity
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recognition. Activities are represented using a relational activity model which
describes temporal and spatial information, as well as transitions. Our ap-
proach is more related to the ones of Patterson et al. (2003) and Subramanya
et al. (2006) in the sense that we also hierarchically extend a dynamic Bayesian
network of the state model to jointly represent state and situation. However,
our approach introduces an abstraction layer that separates the model of the
world from the situation models.

2 Framework for Modeling and Recognizing Situations

Dynamic and uncertain systems can in general be described using dynamic
Baysian networks or DBNs (Dean and Kanazawa (1989)). DBNs consists of
a set of random variables that describe the system at each point in time t.
The state of the system at time t is denoted by z; and z; represents the
obtained sensor measurements. The dynamics between two states x;_1 and x¢
are described by the conditional probability p(z:|z¢—1). This transition model
describes the probability of x; being the current state given that z;_; has
been the previous state. It is assumed that observations z; at time ¢ depend
only on the current state: p(z;|z;). This conditional distribution is called the
sensor model and describes how the observations are affected by the actual
state of the system.

Our proposed framework for modeling and recognizing situations, which
is described in the following sections, introduces an abstraction layer between
the continuous state space model and the situations models. This layer avoids
an explosion in the complexity of the DBN that would be needed to model
situations by use of additional state variables.

The abstraction layer also provides modularity to the framework. Situation
tracking and state estimation are handled separately. The system is modeled
using a DBN and Bayes filtering is used for state estimation. Bayes filters
address the problem of estimating the state x; of a dynamical system from
sensor measurements. The key idea is to recursively estimate the posterior
probability density over the state x; at time ¢ from the gathered observations.
Among the concrete implementations of the Bayes filter we find Gaussian
filters like the Kalman filter and nonparametric filters like the particle filter.

Figure 1 depicts our proposed framework for situation recognition. At each
time step ¢, an abstract representation of the estimated state is generated. A
set of situation models is then evaluated against this abstract representation.
If a model assigns a positive probability to the abstract representation of the
state, then an instance of the corresponding situation occurs.

3 Modeling Situations

Based on the DBN model of the system presented in the previous section
a situation can be defined as a sequence of states y.1y, with a meaningful
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Fig. 1. Overview of the framework.
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interpretation. The state x; of the system is an assignment of values to the
state variables that describe the system at any given point in time ¢. For
the purpose of modeling and recognizing situations, the state space of the
system will be represented at a more abstract level and reasoning about state
sequences will be lifted to this abstract space.

3.1 Relational State Representation

For the abstract representation of the state of the system, relational logic will
be used. In relational logic, an atom r(ty,...,ty,) is a n-tuple of terms t; with
a relation symbol r. A term can be either a variable R or a constant symbol
r. Relations can be defined over the state variables or over features that can
be directly extracted from them. Table 1 illustrates possible relations defined
over the distance and bearing state variables in a traffic scenario.

Table 1. Example distance and bearing relations for a traffic scenario.

|Relations over Distance| | Relations over Bearing |
equal(R,R’) [[0m,1m) in_front_of(R,R)|[315°,45°)
close(R,R’) |[1m,5m) right(R,R’) [45°,135°)
medium(R,R’)|[5 m, 15m) behind(R,R’) [135°,225°)
far(R,R’) [15m, 00) left(R,R’) [225°,315°)

An abstract state is a conjunction of logical atoms (see also Cocora et al.
(2006)). Consider for example the abstract state ¢ = far(R,R’), behind(R,R).
It represents all states in which a given car is far and behind another given car.
An instance of an abstract state is a grounded abstract state, that is, an ab-
stract state that contains no variables, for example far(co, ¢1), behind(co, c1),
where ¢y and ¢y are two constant symbols that represent two different cars.

3.2 Situation Models

For modeling situations, Hidden Markov models or HMMs (Rabiner (1989))
are used to describe the sequences of abstract states that correspond to a
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given situation. HMMs are temporal probabilistic models for analyzing and
modeling sequential data, and represent the state of the system using a single
discrete random variable. In our framework we use HMMs whose states corre-
spond to conjunctions of relational atoms, that is, abstract states as described
in the previous section. The state transition probabilities of the HMM spec-
ify the allowed transitions between these abstract states. In this way, HMMs
specify a probability distribution over sequences of abstract states.

[0]0] ajl anop
ap1 p\ ai2
q0 \‘11/ q2

Fig. 2. passing maneuver and corresponding HMM.

To illustrate, consider a passing maneuver like the one depicted in Fig-
ure 3.2 where a reference car is passed by a faster car on the left hand side.
The maneuver could be coarsely described in three steps: the passing car is
behind the reference car, it is left of it, and it finally is in front. Using the
relations presented in Table 1, an HMM that describes this sequences could
have three states, one for each step of the maneuver: gy = behind(R,R’),
¢1 = left(R,R’), and g2 = in front_of(R,R’). The transition model of this
HMM is depicted in Figure 3.2. It defines the allowed transitions between the
states. Observe how the HMM specifies that when in the second state (g1),
that is, when the passing car is left of the reference car, it can only remain
left (¢1) or move in front of the reference car (g2). It is not allowed to move
behind it again (go). Such a sequence would not be a valid passing situation
according to our description.

Observe too that the states of the HMM correspond to abstract states,
that is, relational descriptions containing variables. In order to recognize a
concrete instance of a situation, the variables in the abstract states need to
be grounded. In the example above, the variables in the abstract states qqg, ¢1,
and g2 have to be replaced by the constants that represent the two vehicles
involved. The process of instantiating and and tracking situation HMMs is
detailed in the next section.

4 Recognizing Situations

The idea behind our approach for tracking situations is to find, at each time
step t, the situation HMMSs that explain the current state of the system. If
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a situation HMM assigns a positive probability to the current state of the
system, then an instance of the corresponding situation is said to occur.

The general algorithm is as follows. At every time step ¢ the state of the sys-
tem x; is estimated and is represented as a conjunction of grounded relational
atoms with an associated probability. Based on this relational description, all
situation HMMSs are grounded, that is, the variables in the abstract states
of the HMM are replaced by constant terms. If a grounded HMM assigns a
non-zero probability to the current relational description of the system state,
the situation HMM can be instantiated. Once a situation HMM has being
instantiated Bayes filtering is used to update its internal state. As long as
the situation HMM assigns a positive probability to the sequence of system
states, in other words, as long as it is a consistent sequence, the instance of
that particular situation is considered active. Thus, at each time step ¢ the
algorithm keeps track of a set of active situation hypothesis, based on the
sequence of relational descriptions of the estimated system state.

4.1 Representing Uncertainty at the Relational Level

At each time step t, our algorithm estimates the state x; of the system. The
estimated state is usually represented through a probability distribution which
assigns a probability to each possible hypothesis about the true state. In order
to be able to use the situation HMMs to recognize situation instances, we need
to represent the estimated state of the system as a grounded abstract state
using relational logic.

A fundamental question is how to convert the uncertainties related to the
estimated state x; into appropriate uncertainties at the relational level. We
assign to each relation the probability mass associated to the interval of the
state space that it represents. The resulting distribution is thus a histogram
that assigns to each relation a single cumulative probability. Such a histogram
can be thought of as a piecewise constant approximation of the continuous
density. The relational description o; of the estimated state of the system xz; at
time t is then a grounded abstract state where each relation has an associated
probability.

The probability P(o:|q;) of being in a grounded abstract state ¢; and ob-
serving o, is computed as the product of the matching terms in o, and ¢;. In
this way, the observation probabilities needed to estimate the internal state
of the situation HMMs and the likelihood of a given sequence of observations
O1.+ = 01,...,0¢ can be computed.

4.2 Situation Model Selection using Bayes Factors

The algorithm for recognizing situations keeps track of a set of active situ-
ation hypothesis at each time step t. We propose to decide between models
at a given time ¢ using Bayes factors for comparing two competing situation
HMMs that explain the given observation sequence. Bayes factors (Kass and
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Raftery (1995)) provide a way of evaluating evidence in favor of a probabilistic
model as opposed to another one and can be used to compare two competing
situation models. The Bayes factor B; 2 for two competing models A; and Ay
is computed as

_ P(M|O1.1)  P(O1:4|M)P (M)

o P(/\2|O1;t) N F)(Ol:t|)\2)F)()‘2)7

B2

that is, the ratio between the likelihood of the models being compared given
the data. The Bayes factor can be interpreted as evidence provided by the data
in favor of a model as opposed to another one. One possible interpretation for
the Bayes factor is suggested by Jeffreys (1961).

In order to use the Bayes factor as evaluation criterion, the evidence, that
is, the observation sequence O1.; must be the same for the two models being
compared. To solve this problem we propose a solution used in Bioinformatics
for sequence alignment (Durbin et al. (1998)) and extend the situation model
with a simple world model to account for the missing part of the observation
sequence. This world model is analogous to the bigram models that are learn
from the corpora in the field of natural language processing (Manning and
Schiitze (1999)). By using the extended situation model, we can use Bayes
factors to evaluate two situation models even if they where instantiated at
different points in time.

5 Experimental Results

Our framework was implemented and tested in a traffic scenario using a sim-
ulated 3D environment. Gazebo, a 3D extension of Player/Stage (Collett et
al. (2005)) was used as simulation environment. The scenario consisted of
several autonomous vehicles with simple behaviors and one reference vehicle
controlled by a human operator. When tracking situations, random noise was
added to the pose of the vehicles to simulate uncertainty at the state estima-
tion level. The goal of the experiments is to demonstrate how our framework
can be used to model and successfully recognize different situations in dynamic
multi-agent environments.
Four different situations relative to a reference car where considered:

1. The follow situation describes the reference car driving behind another
car on the same lane.

2. The passing situation describes the reference car starting behind another
car on the same lane, passing it on the left side, and ending up in front of
it on the same lane.

3. The aborted passing situation is analogous to the passing situation, but
instead of ending up in front of the other car, the reference car ends up
behind the other car again.
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4. The microsleep situation describes an uncorrected drift (to the left or to
the right) from the straight driving condition.

The structure and parameters of the corresponding situation HMMs where
defined manually. The relations considered for these experiments where de-
fined over the distance and position of the cars relative to the reference vehicle.
The absolute orientation of the car was also considered for the definition of
the microsleep situation.

Figure 5 (right) plots the likelihood of the observation sequence for a pass-
ing maneuver (see the example in Section 3.2) according to the four different
situation models. Observe how the algorithm successfully instantiated and
tracked the different instances of the different situation models. For example,
in the figure it can be seen how two different instances of the microsleep sit-
uation were instantiated: (1) the reference car changes to the left lane (time
~ 32s), and (2) it changes back to the initial lane (time ~ 48s). Observe that
when a situation model stops providing a good explanation for the observa-
tion sequence, the likelihood starts to decrease rapidly until it becomes zero
and the instance of the situation is deleted. For example, the follow situation
expects the reference car to remain behind the other car. When the reference
car changes to the left lane, the likelihood of the observation sequence with
respect to the follow situation starts to decrease rapidly. Similarly, when the
reference car changes to the right lane in front of the other car, the likelihood
of the observation sequence with respect to the aborted passing situation also
starts to decrease.
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Fig. 3. (Left) Likelihood of the observation sequence for a passing maneuver ac-
cording to the different situation models, and (right) Bayes factor in favor of the
passing situation model against the other situation models.

The Bayes factor in favor of the passing situation model compared against
the other models is depicted in Figure 5 (left). Relative to the passing situation
model, the other models provide a worse explanation for the observations,
and the evidence in favor of the passing situation model, increases. When
both models provide an equally likely explanation, the evidence in favor of
a model ceases to increase. Figure 5 (left) shows how Bayes factors can be
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used to make decisions between competing situation models by using some
meaningful interpretation of the values.

6 Conclusions and Further Work

We presented a general framework for modeling and recognizing situations.
Our approach uses a relational description of the state space and hidden
Markov models to represent situations. An algorithm was presented to recog-
nize and track situations in an online fashion. The Bayes factor was proposed
as evaluation criterion between two competing models. Using our framework,
many meaningful situations can be modeled. Experiments demonstrate that
our framework is capable of tracking multiple different situation hypothesis
in a dynamic multi-agent environment.
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