SP²Bench: A SPARQL Performance Benchmark

M. Schmidt*, T. Hornung*, G. Lausen*, and C. Pinkel#

* Freiburg University Database Group, Germany
MTC Infomedia OHG, Germany

25th International Conference on Data Engineering, 03/30/2009
Motivation

- New technologies: RDF and SPARQL
 - RDF: Data format to encode information in a machine-readable way
 - SPARQL: Query language for RDF
- SPARQL query evaluation is a non-trivial task
 - Same expressiveness as Relational Algebra
 - Several optimization schemes proposed so far
 - No comprehensive benchmark for the SPARQL query language existing
Motivation

- **SP²Bench SPARQL Performance Benchmark**
 - Language-specific benchmark, designed to test engines in a comprehensive way
 - Data generator + real-world benchmark queries
 - Queries pose various challenges to SPARQL engines
 - Allows to compare optimization approaches and to assess strength and weaknesses of implementations
I. RDF and SPARQL
II. Data Generation
III. Benchmark Queries
IV. Experimental Results
V. Conclusion
RDF databases are directed labeled graphs
- Basic constituents: “Triples of Knowledge”
The SPARQL Query Language

- Declarative language for RDF
- Pattern matching against input graph
- Operators: AND, OPTIONAL, UNION, FILTER
- Solution modifiers: ORDER BY, LIMIT, DISTINCT, OFFSET

```
SELECT ?yr 
WHERE {
  ?book title "SPARQL"
  OPTIONAL {
    ?book issued ?yr
  }
}
```
Benchmark Scenario

- DBLP Bibliographic Library
- Well-suited for several reasons
 - Meta-data fits the philosophy of RDF data format
 - Scenario well-known, which makes data and queries understandable
 - Mirrors many interesting social-world distributions
- Data generator that allows to create documents of arbitrary size
DBLP Characteristics

- Data generator relies on a study of DBLP
 - Different types of entities (e.g. Articles, Proceedings, Inproceedings, ...)
 - Structure of these entities
 - Quantity of entities (development over time)
 - Citation system
 - Persons (authorship, coauthorship, editors)
- Approximation of real-world distributions by natural function families
Distribution of publications: power law

Function prototype:

$$f_{\text{powerlaw}}(x) = ax^k + b.$$

with

- $$a \in \mathbb{R}_{>0}$$: affects x-axis intercept
- $$b \in \mathbb{R}$$: shift in y-direction
- $$k \in \mathbb{R}_{<0}$$: gradient

Observation:
Publication count of leading authors increases over time
- \(\rightarrow \) parameters a and k modeled as functions over time
Data Generator Implementation

- Bases upon extracted approximation functions
- Deterministic (random functions with fixed seed)
- Platform-independent
- Scales linearly to size of generated documents
- Gets by with constant main memory consumption
Real-world requests on top of DBLP data
Queries vary in a broad range of characteristics
 - Operator constellation and complexity
 - Solution modifiers
 - RDF access patterns
 - Result size (constant, linear, superlinear)
 - Number of variables
 - Possible optimizations
 - ...
Return the names of all persons that occur as author of at least one inproceeding and at least one article document.

(a) SELECT DISTINCT ?person ?name
WHERE { ?article rdf:type bench:Article.
 ?article dc:creator ?person.
 ?person foaf:name ?name.
 ?person2 foaf:name ?name2
 FILTER(?name=?name2) }
Benchmark Results

- Desktop PC (2.13GHz CPU, 4GB RAM)
- Failure means timeout (30min) or memory exhaustion
- Main memory engines: ARQ, Sesame$_M$

Document size in #triples:
- S_1: 10k
- S_2: 50k
- S_3: 250k
- S_4: 1M
- S_5: 5M
- S_6: 25M
Return the titles of all papers that have been cited at least once, but not by any paper that has not been cited itself

```sparql
SELECT DISTINCT ?title
WHERE {
  ?class rdfs:subClassOf foaf:Document.
  ?doc2 dcterms:references ?bag2
  OPTIONAL {
    ?class3 rdfs:subClassOf foaf:Document.
    ?bag3 ?member3 ?doc
    OPTIONAL {
      ?class4 rdfs:subClassOf foaf:Document.
      ?bag4 ?member4 ?doc3 }
  FILTER (!bound(?doc4)) }
  FILTER (!bound(?doc3)) }
```
Benchmark Results

- Desktop PC (2.13GHz CPU, 4GB RAM)
- Failure means timeout (30min) or memory exhaustion
- Main memory engines: ARQ, Sesame$_M$

Document size in #triples:
- S_1: 10k
- S_2: 50k
- S_3: 250k
- S_4: 1M
- S_5: 5M
- S_6: 25M
Benchmark Results

- None of the four tested engines/configurations scales to large data
- Severe problems for more complex queries, e.g. those involving negation
- Experimental results give interesting hints on possible future optimization approaches
SP²Bench data generator and queries at http://dbis.informatik.uni-freiburg.de/index.php?project=SP2B

Data generator relies on detailed study of DBLP, mirrors vital social-world relationships

Queries test typical SPARQL/RDF patterns and also optimization approaches

More experimental results in

Conclusion of experiments: still work left to do!
Related Work (selected references)

A. Chebotko et al.. Semantics Preserving SPARQL-to-SQL Query Translation for Optional Graph Patterns. TR-DB-052006-CLJF.
http://www4.wiwiss.fu-berlin.de/dblp/.
C. Bizer and A. Schultz. The Berlin SPARQL Benchmark.
http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/.
D..J. Abadi et al.. Using the Barton libraries dataset as an RDF benchmark. TR MIT-CSAIL-TR-2007-036, MIT.
M. Ley. DBLP Database. http://www.informatik.uni-trier.de/ley/db/.