
Protocol Specialization

Matthias Neubauer and Peter Thiemann

Institut fär Informatik, Universität Freiburg, Georges-Köhler-Allee 079,
79110 Freiburg, Germany

{neubauer,thiemann}@informatik.uni-freiburg.de

Abstract. In component-based programming, the programmer assem-
bles applications from prefabricated components. The assembly process
has two main steps: adapting a component by tweaking its configuration
parameters, and connecting components by gluing output interfaces to
input interfaces. While convenient, this approach may give rise to code
bloat and inefficiency because prefabricated code is overly general, by
necessity.

The present work addresses ways to remove unnecessary code during the
deployment of a closed set of components by using program specializa-
tion. Our framework models components at the intermediate language
level as systems of concurrent functional processes which communicate
via channels. Each channel acts as a component connector with the inter-
face determined by the channel’s protocol. We present an analysis that
determines the minimum protocol required for each process and specify
the specialization of a process with respect to a desired protocol, thereby
removing unnecessary code.

The resulting specialization algorithm is unique in that it processes a
concurrent base language, terminates always, and is guaranteed not to
expand the program beyond its original size.

1 Introduction

Component-based programming [4] changes the programmer’s focus of attention
from low-level algorithmic issues to high-level concerns of assembling components
with matching interfaces. Components are designed for generality so that they
are reusable in a number of different situations. Hence, they provide ways of
adapting them to the special needs of the application, e.g., by setting configura-
tion parameters. As is often the case, generality and programming convenience
come at the price of increased demands on resources like execution time and
memory. Regaining this lost efficiency requires specialization of the assembled
application.

Partial evaluation [15] is a successful program specialization technique that
has been applied to component adaption in the past [22, 1]. However, specializa-
tion becomes more complicated in the presence of concurrency, if components
replace or enhance procedural interfaces by events and communication—as cus-
tomary in component frameworks for graphical user interfaces—or if resource

2

constraints must be observed. For example, partial evaluation often leads to un-
controlled code growth and the specialization of concurrent programs has not
received much attention, yet.

The goal of the present investigation is to identify a specialization method-
ology that achieves meaningful results under resource constraints and in the
presence of communication-based interfaces. The particular scenario that we
investigate is one where sequential components that run concurrently communi-
cate with each others through bidirectional channels. Some components act as
servers in that they only react to queries from other components and others act
as clients. An instance of such a scenario is a wireless intranet where a company
provides an internal messaging service to a range of different handheld comput-
ers. Each brand of handheld comes with a component implementing the service
protocol possibly with vendor-specific extensions. Since space is at premium in a
handheld, this component should be as lean as possible. Our framework provides
a means of specializing the handheld components with respect to the protocol
actually employed by the servers. Our specializer removes the vendor-specific ex-
tensions as well as any functionality not referred to by the server. Furthermore
and unlike other specializers, our specializer is guaranteed to shrink the program
so that it consumes less space.

Our investigation focuses on channel-based communication between compo-
nents because it subsumes traditional procedure-based interfaces. We assume
that the entire system is described by a program in Gay and Hole’s concurrent
functional language with session types [9] with each component modeled by one
process.

The present work makes the following contributions. We simplify and stream-
line Gay and Hole’s language to a low-level concurrent functional language. Next,
we extend the language’s type system with subtyping and singleton types. In Sec-
tion 5, we specify a notion of slice types to formally talk about specialization
opportunities on the type level. Subtyping and singleton types are essential for
this step. Finally, we put the pieces together and specify the specialization algo-
rithm. Compared to other published specializers, our algorithm has three unique
features. First, it deals with a concurrent base language. Second, it is guaranteed
to terminate on all inputs, and third, it guarantees that the specialized program
is no larger than the original one.

The type system underlying our work relies on recursive types with singleton
types and subtyping. The combination with singleton types is a novel contribu-
tion to session type systems. Linear typing is also involved for tracking the state
of a communication channel.

2 An Example Protocol Specialization

From a bird’s eye view, the task of protocol specialization looks simple. Just
weed out the unnecessary parts and you are done! Unfortunately, identifying the
unnecessary parts is not trivial and care must be taken not to increase the size
of the original program in the specialization process.

3

-

-

-@@

��
6

6- ?

a

b

c z

y

x

•

•

•

•

Server A

-

-

-

-

��

@@A
A
A

-
6

6

6

?•

a

b

c

d

•

•

•

•

x

x

x

x

Server B

Fig. 1. Server components

-•-•-•-•
@@

��
-

-

?

x

y

ba x

Client C

- -b• • @@

��
-

-
��*

-
HHj

@
@I

?

6

x

y

bx • •

y

Client D

Fig. 2. Client components

-•
��*

��*

HHj��*HHj
@@R -

@@I

@@

��
-

-

@@

��
-

-? -

x •

y

b •

a •

b

x

y

•• b
x

x

y

•

Fig. 3. Greatest common channel type

��
6

- ?

a

b y

x

•

•

•

Server A

��- 6
-

-?•

a

b

•

•

x

x

Server B

Fig. 4. Slice types of the servers

Recall the messaging service scenario from the introduction with two different
servers providing the same service, replicated for robustness and fault tolerance.
Each server comes from a different vendor, thus each of them has vendor-specific
enhancements beyond the required base protocol. For simplicity, we assume that
client processes attach nondeterministically to exactly one server process. If all
servers are connected, then additional clients must wait for a free server. Servers
that service more than one client can be modeled in our calculus but would lead
to on overly complicated example.

Figure 1 contains a description of the external communication behavior1 of
the two servers written as a finite automaton and Figure 5 contains sample code
for server A. Each state corresponds to some internal computation at the peer
and each transition corresponds to a communication operation. The annotation
a, . . . on a transition denotes the ability to receive inbound messages, whereas
the annotation x, . . . denotes sent messages. Each path through an automaton
corresponds to a possible behavior.

For example, after some initial computation, server A waits for one of the
inputs a, b, or c. After receiving one of these inputs, A performs some computa-
tions and outputs x, y, or z, respectively, then it may perform some more internal

1 Essentially, a graphical rendition of the channel types that will be introduced below.

4

Let p = NewPort in

Let Rec serverA (n) =
Let c = Listen (p) in
Let Rec serv [c] (n) =

Receive (c)
[a (m): Let n1 = Opsa (n, m) in

Let Send c(x (n1)) in
serv [c](n1)

,b (m): Let n1 = Opsb (n, m) in
Let Send c(y (n1)) in
serv [c](n1)

,c (): Let Send c(z (n1)) in
serv [c](n1)

]
in serv [c](n)

in

Let Rec clientC (n) =
Let c = Connect (p) in
Let Rec clie[c] (n) =

Let Send c(a (n)) in
Receive (c)

[x (m):
Let m1 = Opc (n, m) in
Let Send c (b (m1)) in
Receive (c)

[x (m): Let m2 = Opcx (n, m) in
clie[c] (m2)

,y (m): Let m2 = Opcy (n, m) in
clie[c] (m2)

]
]

in clie[c] (n)
in

serverA (0) || clientC (0)

Fig. 5. Code Sample for Server A and Client C Before Specialization

...
Let Rec serverA (n) =

Let c = Listen (p) in
Let Rec serv [c] (n) =

Receive (c)
[a (m): Let n1 = Opsa (n, m) in Let Send c(x (n1)) in serv [c](n1)
, b (m): Let n1 = Opsb (n, m) in Let Send c(y (n1)) in serv [c](n1)]

in serv [c](n)
in
...

Fig. 6. Server A after specialization

computation before it waits again for one of the inputs. The calculus in Section 3
codifies this behavior with the channel type µβ.[a : [x : β], b : [y : β], c : [z : β]],
which is slightly harder to read than its automata rendition in Figure 1.

Figure 2 describes the two client components (see Figure 5 for code of client
C) corresponding to different brands of handheld computers. Either client is
capable of communicating to either server. This may be seen by tracing each
possible pair of client and server.

Assuming that A, B, C and D are the only kinds of peers involved in the
intranet, it is clear that clients C and D can only ever connect to servers A and
B and, vice versa, clients C and D are the only clients of servers A and B.

Since the structure of the clients is quite different, it does not make sense
to tailor a server to one of the clients. Also, it would not make sense to make
a fixed assignment of one server to a particular client because this assignment
would defeat the robustness intended by the designer of the architecture. Hence,
the first task is to find a smallest common description that subsumes the behavior
of both clients and tailor both servers to this common description.

A common description of the clients’ view of the channel can be constructed
graphically by overlaying the two descriptions as shown in Figure 3. The general
construction is more involved because client descriptions may have different loop
structures that must be synchronized for constructing the common descriptions.

5

The common client type forms the basis for specializing both servers. How-
ever, specializing a server directly from the common client type may lead to code
duplication. For example, the processing of the message b would be replicated
two times in the specialized server. For that reason, we use the common client
type to compute for each server a slice type which specializes the server type
towards the client type while still retaining the structure of the original server
type. Since the structure of the original server type closely mirrors the structure
of its implementation, we can guarantee that no code is duplicated. Figure 4
contains the slice types computed for the two servers, and Figure 6 shows the
specialized code for server A.

In the example, the client components cannot be specialized, but in the gen-
eral case, there might be specialization opportunities in the clients, too. The
scenario is dual with the roles of clients and servers reversed. The required steps
are analogous: find a common type for the servers, compute an individual slice
type for each client, and then specialize the client with respect to the slice type.

Interestingly, the same framework also handles adaption with respect to con-
figuration parameters. To see this, we have to assume that configuration param-
eters are presented to components via communication channels. In this scenario,
each component acts as a client for its configuration channel(s) and the config-
uration parameters are supplied through a special configuration component. To
take advantage of the actual values on these channels requires introducing single-
ton types into the type system. The specializer can then decide conditionals and
perform primitive operations based on the additional knowledge. Specialization
still does not expand the program as no unfolding of function calls takes place.

The subsequent sections first introduce a formal calculus for expressing client
and server components. Then, each of the steps outlined above is put on a
formal basis and it is proven that the specialization algorithm is well-defined.
The soundness of the specialization follows from the soundness of subtyping in
the calculus.

3 Calculus with Channel Types

This section defines the λCS calculus, a formal calculus for expressing client and
server components. After presenting the syntax, a type system fixes the static
semantics of λCS .

3.1 Syntax

The calculus deals with five kinds of data, first-order base type values, port
values, channel values, functions, and labels. Labels have a status similar to
labels in record and variant types. They occur in channel types and they can
be sent and received via channels: each message consists of a value tagged with
a label. Channel values must be treated linearly: during execution each channel
end must have exactly one reference. Each operation on a channel changes its

6

state and the close operation destroys the channel. In our version of the calculus
channels may neither be sent nor received over a channel themselves.2

Labels l ∈ Label
Variables x ∈ Var
Channel Variables c ∈ ChannelVar
Definitions d ::= x = i | x = Op(x̃) | rec x[c̃](x̃) = e | x = NewPort

| c = Connect(x) | c = Listen(x) | Send c(l x) | Close (c)
Expressions e ::= Halt | Let d in e | If x then e else e | x [c̃] (x̃)

| Receive c[g] | e || e
g ::= l(x) → e | g, g

The expressions of the calculus come in a sequentialized style reminiscent of
continuation-passing style. That is, an expression e is a sequence of definitions
which ends in either a Halt instruction, a conditional, a function call, a receive
instruction that branches on the received label, or a concurrent execution of two
expressions. All argument positions are restricted to variables. Without loss of
generality, we assume that the set of labels is totally ordered, and branches of a
receive instruction always occur ordered with respect to labels. The notation x̃
stands for x1, . . . , xn where n is determined by the context. Analogously, (x̃ : τ̃)
stands for (x1 : τ1) . . . (xn : τn).

A definition d is either the creation of a constant, the application of a prim-
itive operation, the definition of a recursive function, the send operation, the
creation of a new communication port, or an administrative operation on a
channel: closing the channel, connecting to a channel (client connection), and
listening to a channel (server connection).

3.2 Static Semantics

The following section introduces the type language for our calculus including a
type language for channels, called channel types, and presents the type system.

Types τ ::= b | [γ̃]τ̃ → 0
Channel types γ ::= ε | [η] | β | µβ.γ

η ::= `(τ) : γ | η, η

` ::= l | l
Port types ζ ::= Port γ
Type Environments Γ ::= ∅ | Γ (x : τ)
Channel Environments Θ ::= ∅ | Θ(c : γ)

A type is either a base type, a function type, or a port type. Due to the sequential
style, functions do not return values. Instead they must take a continuation
argument. Function arguments are split in two lists, one for linear arguments
carrying channel values and one for other arguments.

A channel type is either empty (the channel is closed), the empty word (the
channel is depleted but not yet closed), a label-tagged alternative of different
2 Extending the calculus in this way is not hard, but not essential for the present work.

7

channel types (the value may be sent l(τ) or received l(τ)), or a type variable
which is used in constructing a recursive type with the µ operator. The µ operator
constructs a fixpoint, e.g., µβ.γ ≈ γ[β 7→ µβ.γ]. All uses of µ are expansive, that
is, there can be no subterms of the form µβ1 . . . µβn.β1.

The type system relies on two judgments, Θ, Γ ` e, to check the consistency
of an expression with respect to channel environment Θ and type environment
Γ and Θ,Γ ` d ⇒ Θ′, Γ ′ to model the effect of a definition as a transformation
of the environments. The rules are shown in Figures 7 and 8 respectively. For
now, ≤ can be read as syntactic equality. Section 4 defines a suitable subtyping
relation.

The Halt rule requires that all channels are closed. The conditional passes
the environments unchanged to both branches. The let expression types the
body after transforming the environment according to the definition. Applying a
function requires that the function consumes all remaining channels. Receiving a
tagged value eliminates a labeled alternative in the channel’s type. The branches
are checked with the channel type updated according to the alternative taken.
For concurrent execution, the channel environment is split in two disjoint parts
whereas the type environment is passed to both subexpressions.

A primitive operation has arguments and result of base type. It does not
depend on the channel environment. Creating a new port guesses a port type
and attaches it to a port value. Ports serve as mediators through which clients
and servers can agree on a common channel type. Sending of a labeled value
selects the appropriate component of the channel type for the rest of the sender
expression and changes the channel environment accordingly. Function formation
is independent of the current channel environment. The body of the function
must be checked with the channel environment prescribed by the channels passed
at the call site of the function. Closing a communication channel requires that
there are no exchanges left in its type. Listen creates a new server channel
attached to a particular port. Connect creates a new client channel for a port.
Since the channel type registered with the port describes the communication
behavior of the server, the client processes the channel using the mirrored type,
γ, with inbound and outbound labels exchanged. Mirrored types are formally
defined in Figure 12. Note that mirroring a type does not affect messages.

4 Specialization Opportunities

Specialization frameworks often include a notion of binding-time analysis [15].
Such an analysis determines which values are available to specialization with-
out actually running the program or fixing a particular value. Similar, but less
permissive information can be obtained by introducing subtyping and singleton
types to λCS ’s type system.

8

∅, Γ ` Halt
Γ (x) ≤ b Θ, Γ ` e1 Θ, Γ ` e2

Θ, Γ ` If x then e1 else e2

Θ, Γ ` d ⇒ Θ′, Γ ′ Θ′, Γ ′ ` e

Θ, Γ ` Let d in e

Γ (x) = [γ̃]τ̃ → 0 Γ (z̃) ≤ τ̃ Θ ≤ (c̃ : γ̃)

Θ, Γ ` x [c̃] z̃

Θ(c) ≤ [li(τi) : γi]
n
i=1 (∀i) Θ(c : γi), Γ (xi : τi) ` ei

Θ, Γ ` Receive c[li(xi) → ei]
n
i=1

Θ1, Γ ` e1 Θ2, Γ ` e2

Θ1 + Θ2, Γ ` e1 || e2

Fig. 7. Typing rules for expressions

Θ, Γ ` x = i ⇒ Θ, Γ (x : b) Θ, Γ ` x = NewPort⇒ Θ, Γ (x : Port γ)

Γ (xi) ≤ b

Θ, Γ ` x = Op(x1, . . . , xn) ⇒ Θ, Γ (x : b)

Γ (x) ≥ Port γ

Θ, Γ ` Listen(x) ⇒ Θ(c : γ), Γ

(c̃ : γ̃), Γ (f : [γ̃]τ̃ → 0)(x̃ : τ̃) ` e

Θ, Γ ` rec f [c̃](x̃) = e ⇒ Θ, Γ (f : [γ̃]τ̃ → 0)

Γ (x) = Port γ′ γ′ ≤ γ

Θ, Γ ` c = Connect(x) ⇒ Θ(c : γ), Γ

Γ (xj) ≤ τj γ = [li(τi) : γi]
n
i=1

Θ(c : γ), Γ ` Send c(lj xj) ⇒ Θ(c : γj), Γ
1 ≤ j ≤ n Θ(c : ε), Γ ` Close (c) ⇒ Θ, Γ

Fig. 8. Typing rules for definitions

Γ (x) = S{i : b} i 6= 0 Θ, Γ ` e1

Θ, Γ ` If x then e1 else e2

Γ (x) = S{0 : b} Θ, Γ ` e2

Θ, Γ ` If x then e1 else e2

Fig. 9. Typing rules for expressions using Singleton Types

Θ, Γ ` x = i ⇒ Θ, Γ (x : S{i : b})

(∀j) Γ (xj) = S{ij : b} Op(i1, . . . , in) → i0
Θ, Γ ` x = Op(x1, . . . , xn) ⇒ Θ, Γ (x : S{i0 : b})

Fig. 10. Typing rules for definitions introducing Singleton Types

(sub-s-s)
S{i : b} ≤ S{i : b} (sub-s-b)

S{i : b} ≤ b
(sub-b-b)

b ≤ b

(sub-τ -arrow)
(∀i) γ′

i ≤ γi (∀j) τ ′
j ≤ τj

[γ̃i]τ̃j → 0 ≤ [γ̃′
i]τ̃

′
j → 0

(sub-ζ)
γ ≤ γ′

Port γ ≤ Port γ′

(sub-send)
(∀1 ≤ i ≤ n) τ ′

i ≤ τi γi ≤ γ′
i

[li(τi) : γi]
n+k
i=1 ≤ [li(τ

′
i) : γ′

i]
n
i=1

(sub-recv)
(∀1 ≤ i ≤ n) τi ≤ τ ′

i γi ≤ γ′
i

[li(τi) : γi]
n
i=1 ≤ [li(τ

′
i) : γ′

i]
n+k
i=1

(sub-µ-fold-right)
γ ≤ γ′[β 7→ µβ.γ′]

γ ≤ µβ.γ′ (sub-µ-fold-left)
γ[β 7→ µβ.γ] ≤ γ′

µβ.γ ≤ γ′ γ′ 6= µβ.γ′′

Fig. 11. Subtyping

ε = ε

[η] = [η]

β = β

µβ.γ = µβ.γ

η, η = η, η

`(τ) : γ = `(τ) : γ
l = l

l = l

Fig. 12. Mirroring of Types

9

4.1 Singleton Types

Our notion of singleton types is restricted to base types. Hence, we extend the
type language as follows.

τ ::= . . . | S{i : b}

The type S{i : b} represents a particular base value, i, at the type level. Sin-
gleton types may occur wherever ordinary types are expected, also in channel
types. Figures 9 and 10 show refinements of the existing typing rules facilitates
by exploiting singleton types where possible. Namely, declarations of constant
bindings and declarations of operator applications of statically known base val-
ues introduce singleton types. A conditional can be typed less strictly if the
condition has a singleton type.

4.2 Subtyping

Following Gapeyev et al. [8], the subtype relation is the greatest fixed point of
a generating function. We specify the generating function by means of infer-
ence rules shown in Figure 11. The resulting subtyping relation gives rise to a
more precise instance of the typing rules in the previous section. Subtyping de-
rives from two sources: singleton types and label-tagged alternatives occurring
in channel types [20, 10].

Because a value of channel type with a sending capability as its first com-
ponent can be substituted by other channels that allow “smaller” values to be
transmitted instead, subtyping of outbound channel types must be contravariant.
On the other hand, a channel with receiving capability can always be demoted
to a type that just receives “larger” types, so subtyping for incoming channel
types must be covariant.

The rule for function types extends the subtyping relation to functions in the
usual way. The additional rules involving recursive µ-types explain the behavior
of right and left µ-folding with respect to subtyping. The folding rules are asym-
metric to makes them non-overlapping and thus invertible. Subtyping extends
to port types covariantly.

5 Protocol Specialization

We divide the framework for protocol specialization into two parts. In the first
subsection, we characterize slice types as potential target types for specialization.
The second subsection specifies specialization with respect to a slice type.

5.1 Slice Types

As explained in the introductory section, our goal is to specialize code of a
component in such a way that fragments of the code that are never used while
communicating with other components of the system are removed. The relation

10

between the actual behavior of a component, the behavior expected by all its
communication partners, and the designated behavior without unreachable code
is formally stated as a relation on types. Given two channel types for a channel,
the one corresponding to the communication pattern of the actual implemen-
tation, and a supertype specifying the expected behavior of all communication
partners, we are seeking for an intermediate channel type which only includes
required communication branches and which also exhibits the same recursive
structure as the channel type corresponding to the actual source code. We call
intermediate channel types with such properties slice types.

We again define generating functions for two relations specifying lower and
upper slice types by means of inference rules. In turn, the two relations are the
greatest fixed points of the presented generating functions.

The relation γ E γs ≤ γ′ specifies the lower slice type relation between
three channel types. It expresses two distinct features about the relation of the
three types: first, all three channel types are related by the subtype relation, and
second, the first channel type, γ, and the lower slice type, γs, exhibit the same
recursive structure. The relation γ ≤ γs E γ′, specifies upper slice types. It is
dual to the notion of a lower slice type by demanding that the slice type must
have the same recursive structure as the upper channel type.

There are two sets of rules each defining possible lower slice types of two label-
tagged alternatives, four rules for inbound channels and four rules for outbound
channels, respectively. In the following, we exemplarily show the rules concerning
outbound channels.

(l-slice-δ-send-1)
δ ≤ δs

δ E δs ≤ []

(l-slice-δ-send-2)
li < lk ≤ lj δ E [lk(τ s) : γs, δs] ≤ [lj(τ ′) : γ′, δ′]

[li(τ) : γ, δ] E [lk(τ s) : γs, δs] ≤ [lj(τ ′) : γ′, δ′]

(l-slice-δ-send-3)
li < lj τ s ≤ τ γ ≤ γs δ E δs ≤ [lj(τ ′) : γ′, δ′]

[li(τ) : γ, δ] E [li(τ s) : γs, δs] ≤ [lj(τ ′) : γ′, δ′]

(l-slice-δ-send-4)
τ ′ ≤ τ s E τ γ E γs ≤ γ′ δ E δs ≤ δ′

[li(τ) : γ, δ] E [li(τ s) : γs, δs] ≤ [li(τ ′) : γ′, δ′]

To specify these rules concisely, we assume a total ordering ≤ on labels and
also that labels are always listed in that order. Depending on the labels of the first
branch of the lower and upper types, there are different possibilities to choose
a first branch of a possible slice type. The subtype of an outbound alternatives
may have additional alternative branches and branches starting with the same
label impose a contravariant subtype relation on their transmitted values. The
four rules handle different cases where the upper type does not have a branch at
all, the lower and upper types start with different labels and the slice type label
either corresponds to the lower label or not, or all three alternatives start with
the same label.

The subtype of an inbound channel must have fewer alternative branches and
the types of the incoming values behave covariantly. The rules relating singleton

11

types and base types, function types, and port types just carry over regular
subtyping to three channel types, additionally taking into account the correct
alignment of the recursive structure of the slice types. The folding rules for µ-
types show that a lower slice type must exactly follow the folding of the lower
channel type, γ. On the other hand, folding the upper channel type γ′ must not
affect the slice type at all, it stays unchanged while folding the lower type and
the slice type. The whole set of rules is not shown due to lack of space but may
be found elsewhere [18].

The rules specifying upper slice types are analogous to the rules specifying
lower slice types. The only difference is that the folding of recursive slice types—
that is, slice types in the shape of µ-types—is now synchronized with the folding
of the upper channel type.

5.2 Translation

Instead of stating a specific implementation for our specialization scheme, we
formulate valid specialization algorithms as instances of a type-based translation
relation inspired by Hughes’s type specialization [14].

To this end, we specify two relations expressing valid specializations of typed
expressions and definitions. The translation relation for expressions Θ,Γ ` e ↪→
Θ∗, Γ ∗ ` e∗, specifies that the typing Θ∗, Γ ∗ ` e∗ for a new expression e∗ is a
specialized version of an original expression e with Γ,Θ ` e.

Only two kinds of expression may change during specialization. First, the
conditional simplifies to one of the branches if the type of the condition is a
singleton type. The following rule exemplarily shows the specification of valid
translations for conditionals where the conditional value is known to be zero—
that is, the else branch can be chosen statically.

Γ (x) = S{0 : b} Γ ∗(x) = S{0 : b} Θ,Γ ` e2 ↪→ Θ∗, Γ ∗ ` e∗2
Θ,Γ ` If x then e1 else e2 ↪→ Θ∗, Γ ∗ ` e∗2

Second, specialization eliminates unnecessary branches of a Receive expression
in case the specialized channel type found in the specialized channel type envi-
ronment features less alternatives than the original type.

Θ(c) ≤ [li(τi) : γi]ni=1 Θ∗(c) ≤ [li(τ∗
i) : γ∗

i]mi=1

(∀1 ≤ j ≤ m) Θ(c : γj), Γ (xj : τj) ` ej ↪→ Θ∗(c : γ∗
j), Γ ∗(xj : τ∗

j) ` e∗j
Θ,Γ ` Receive c[li(xi) → ei]ni=1

↪→ Θ∗, Γ ∗ ` Receive c[li(xi) → e∗i]
m
i=1

1 ≤ m ≤ n

All the other translation rules for expressions only carry on the translation to
subexpression in a compositional way leaving the actual expression context un-
changed. For lack of space, we do not present the whole set of rules. The inter-
ested reader may find them elsewhere [18].

The second relation formally specifies a corresponding relation for definitions:
a judgment Θ, Γ ` d ⇒ Θ′, Γ ′ ↪→ Θ∗, Γ ∗ ` d ⇒ Θ′∗, Γ ′∗ means that a typing

12

Θ∗, Γ ∗ ` d∗ ⇒ Θ′∗, Γ ′∗ is a valid specialization of an original definition with typ-
ing Θ, Γ ` d ⇒ Θ′, Γ ′. There is one nontrivial specialization rule for definitions.
A primitive operation where all arguments have singleton types specializes to a
constant assignment.

Γ (xi) = Γ ∗(xi) = ii Op(i1, . . . , in) → i0
Θ,Γ ` x = Op(x1, . . . , xn) ⇒ Θ,Γ (x : S{i0 : b})

↪→ Θ∗, Γ ∗ ` x = i0 ⇒ Θ∗, Γ ∗(x : S{i0 : b})

Three rules affect the channel types found in the original program. Instead
of introducing just one port type, γ, for each NewPort declaration, the typing of
the specialized definition introduces two additional port types, γ′ and γ′′, one
below the original type and one above it in the subtyping ordering. The idea is
that the lower type γ′ is the least upper bound of the server types connecting to
the port whereas the upper type γ′′ is the greatest lower bound of the (swapped)
client types. The invariant for a type Port (γ′, γ, γ′′) is γ′ ≤ γ ≤ γ′′.

γ′ ≤ γ ≤ γ′′

Θ,Γ ` x = NewPort⇒ Θ, Γ (x : Port γ)
↪→ Θ∗, Γ ∗ ` x = NewPort⇒ Θ∗, Γ ∗(x : Port (γ′, γ, γ′′))

When specializing the beginning of a connection to a server (Connect), or when
specializing a Listen to a channel, we use slice types to substitute the original
channel type describing the original program behavior by specialized versions.
In case of a Listen, a possible slice type γs substituted for γ must both follow
the recursive structure of γ and also sit between the original channel type and
the channel type describing all possible communication partners.

Γ (x) ≥ Port γ Γ ∗(x) ≥ Port (γ′, γ, γ′′) γ′′ ≤ γs E γ
Θ, Γ ` Listen(x) ⇒ Θ(c : γ), Γ ↪→ Θ∗, Γ ∗ ` Listen(x) ⇒ Θ∗(c : γs), Γ ∗

The situation for Connect commands is reversed. We again allow to use slice
types as specialized versions of the original channel type γ. Here, the lower
channel type used for splicing is the second channel type registered as port type,
because we are now handling the other ends of the communication channels.

Γ (x) = Port γ0 γ0 ≤ γ Γ ∗(x) ≥ Port (γ′, γ0, γ
′′) γ′ ≤ γs E γ

Θ, Γ ` c = Connect(x) ⇒ Θ(c : γ), Γ
↪→ Θ∗, Γ ∗ ` c = Connect(x) ⇒ Θ∗(c : γs), Γ ∗

All the other translation rules again only carry on the translation to subexpres-
sion [18].

5.3 Properties of Translation

The first result states that valid translations of expressions and definitions imply
that the original syntactic objects are already typeable.

13

Lemma 1.

(i) If Θ,Γ ` e ↪→ Θ∗, Γ ∗ ` e∗, then Θ,Γ ` e.
(ii) If Θ,Γ ` d ⇒ Θ′, Γ ′ ↪→ Θ∗, Γ ∗ ` d∗ ⇒ Θ′∗, Γ ′∗, then Θ,Γ ` d ⇒ Θ′, Γ ′.

The same property holds for results of valid translations, where Γ̂ ∗ denotes
the type environment resulting from a Γ ∗ by removing lower subtypes and upper
supertypes for each assigned port type.

Lemma 2.

(i) If Θ,Γ ` e ↪→ Θ∗, Γ ∗ ` e∗, then Θ∗, Γ̂ ∗ ` e∗.
(ii) If Θ,Γ ` d ⇒ Θ′, Γ ′ ↪→ Θ∗, Γ ∗ ` d∗ ⇒ Θ′∗, Γ ′∗,

then Θ∗, Γ̂ ∗ ` d∗ ⇒ Θ′∗, Γ̂ ′∗.

We further show that valid translations induce two simulation properties.
To be able to state those, an additional dynamic semantics for λCS , given as
a reduction relation → on expressions, is assumed. The dynamic semantics for
λCS has been given and invariance of typing under structural rearrangement of
terms and type preservation have been proven elsewhere [18], but they are left
here out due to space restrictions. Full type soundness cannot be proven because
the type system is not strong enough to detect deadlocks.

Each evaluation step of a program can be simulated by zero or one evaluation
step of translated program.

Lemma 3.
If ∅, ∅ ` e ↪→ ∅, ∅ ` e∗ and e → e′, then ∅, ∅ ` e′ ↪→ ∅, ∅ ` e′∗ and e∗ →0,1 e′∗.

For each evaluation step of a translated program, we find a finite number of
evaluation steps for the original state simulating the single evaluation step.

Lemma 4.
If ∅, ∅ ` e ↪→ ∅, ∅ ` e∗ and e∗ →0,1 e′∗, then ∅, ∅ ` e′ ↪→ ∅, ∅ ` e′∗ and
e →+ e′.

The translation is terminating because the specialized expression is smaller
than the original expression. This fact can be determined by examination of the
translation rules.

6 Related Work

Session types [9] have emerged as an expressive typing discipline for heteroge-
neous, bidirectional communication channels. In such a channel, each message
may have a different type with the possible sequences of messages determined
by the channel’s session type. Such a type discipline subsumes typings for data-
gram communication as well as for homogeneous channels. Session types have
been used to describe stream-based Internet protocols such as POP3 [9, 10].

Session types have also been proposed by Nierstrasz [19] for describing the
behavior of active objects. The main idea is that a regular language on atomic

14

communication actions describes the sequence of messages on each channel. The
session type specifies this language with a fixpoint expression. Each operation
peels off the outermost action from the channel type so that each operation
changes the channel’s type.

Program specialization has been explored in a number of linguistic contexts
from functional languages, logical and imperative languages, to object-oriented
languages [15, 12, 24]. However, specialization for languages with concurrency has
proved not very fruitful thus far and the main effort has been directed towards the
removal of communication and nondeterminism. The most recent reference deals
with a highly specialized area, concurrent constraint languages [7]. Marinescu
and Goldberg [17] treat a simple CSP-like language and Gengler and Martel [11]
consider the π-calculus. Unfortunately, both of them have technical problems.
Hosoya et al [13] consider partial evaluation for HACL, an ML subset with
channel-based communication.

Component adaptation by partial evaluation is not a new idea. Consel [2] pro-
posed it for programs in general and Schultz [23] proposes a research agenda with
desiderata for specialization of components. Interestingly, Schultz poses a ques-
tion similar to the one we are investigating in the present paper in his conclusion:
“Is it possible to unify the specialization needs that arise when the same com-
ponent in a single application is used by several different components, possibly
each through a unique interface?” We believe our techniques are applicable—
with slight modifications—to this problem.

Bobeff and Noyé [1] also argue for a combination of partial evaluation and
program slicing to perform component adaptation. Their approach requires the
component provider to specify specialization scenarios and to perform the pro-
gram analyses to support those scenarios. A component is then deployed as a
component generator that creates specialized instances for each of the specified
scenarios. While we are also relying on a program analysis, our goal is not a
program generator but rather a specializer working on intermediate code.

The idea of specialization with respect to an inferred type is inspired by
Hughes’s type specializer [14]. However, our work is in a call-by-value setting
with concurrency and communication whereas Hughes’s work is in the context
of the applied call-by-name lambda calculus.

None of the cited works guarantees terminating specialization and a guar-
antee that programs does not expand. Furthermore, in none of the works the
specialization algorithm is type driven as is the case for our algorithm. The
only type-driven specialization algorithms that we know of are Hughes’s type
specialization [14] and constructor specialization by Dussart and others [6]. But
those specializers have different goals and target functional languages without
concurrency.

Program slicing [16, 25] and application extraction [26] are transformations
which are in spirit related to the effect of our specialization effort. The main
difference is that we achieve the extraction with a pure specialization approach.
While the relation between program specialization and program slicing has been

15

subject of some study [21], our work gives further indication of a deep relation
between both techniques.

While the inspiration for our calculus comes from the work on calculi for com-
munication as outlined in the introduction, the actual formulation is inspired by
the capability calculus by Walker and others [27]. Our calculus may be viewed as
a specialized instance of the capability calculus, first, with respect to the typing
discipline (simple types instead of polymorphism) and, second, with respect to
the application area, channel-based communication.

7 Conclusion

We have defined a framework for component adaption and specialization based
on an intermediate language with concurrent functional processes. The frame-
work allows removal of dead code by specializing conditionals. We have proved
the soundness of the specialization algorithm. The specialization algorithm ter-
minates always and never expands a source program beyond its original size.

References

1. Gustavo Bobeff and Jacques Noyé. Molding components using program specializa-
tion techniques. In WCOP 2003, Eighth International Workshop on Component-
Oriented Programming, Darmstadt, Germany, July 2003.

2. Charles Consel. Program adaptation based on program transformation. ACM
Computing Surveys, 28(4es):164, 1996.

3. Charles Consel, editor. Proceedings of the 1997 ACM SIGPLAN Symposium on
Partial Evaluation and Semantics-Based Program Manipulation, Amsterdam, The
Netherlands, June 1997. ACM Press.

4. Clemens Czyperski. Component Software, Beyond Object-Oriented Programming.
Addison-Wesley, 1998.

5. Olivier Danvy, Robert Glück, and Peter Thiemann, editors. Dagstuhl Seminar
on Partial Evaluation 1996, number 1110 in Lecture Notes in Computer Science,
Schloß Dagstuhl, Germany, February 1996. Springer-Verlag.

6. Dirk Dussart, Eddy Bevers, and Karel De Vlaminck. Polyvariant constructor spe-
cialization. In William Scherlis, editor, Proc. ACM SIGPLAN Symposium on
Partial Evaluation and Semantics-Based Program Manipulation PEPM ’95, pages
54–63, La Jolla, CA, USA, June 1995. ACM Press.

7. Sandro Etalle and Maurizio Gabbrieli. Partial evaluation of concurrent constraint
languages. ACM Comput. Surv., 30(3es):11, 1998.

8. Vladimir Gapeyev, Michael Y. Levin, and Benjamin C. Pierce. Recursive subtying
revealed. Journal of Functional Programming, 12(6):511–548, November 2002.

9. Simon Gay and Malcolm Hole. Types and subtypes for client-server interactions.
In Doaitse Swierstra, editor, Proceedings of the 1999 European Symposium on Pro-
gramming, number 1576 in Lecture Notes in Computer Science, pages 74–90, Am-
sterdam, The Netherlands, April 1999. Springer-Verlag.

10. Simon Gay, Vasco Vasconcelos, and Antonio Ravara. Session types for inter-process
communication. Technical Report TR-2003-133, Department of Computing Sci-
ence, University of Glasgow, 2003.

16

11. Marc Gengler and Matthieu Martel. Self-applicable partial evaluation for the pi-
calculus. In Consel [3], pages 36–46.

12. John Hatcliff, Torben Æ. Mogensen, and Peter Thiemann, editors. Partial
Evaluation—Practice and Theory. Proceedings of the 1998 DIKU International
Summerschool, number 1706 in Lecture Notes in Computer Science, Copenhagen,
Denmark, 1999. Springer-Verlag.

13. Haruo Hosoya, Naoki Kobayashi, and Akinori Yonezawa. Partial evaluation scheme
for concurrent languages and its correctness. In L. Bougé et al., editors, Euro-
Par’96 - Parallel Processing, number 1123 in Lecture Notes in Computer Science,
pages 625–632, Lyon, France, 1996. Springer-Verlag.

14. John Hughes. Type specialisation for the λ-calculus; or, a new paradigm for partial
evaluation based on type inference. In Danvy et al. [5], pages 183–215.

15. Neil Jones, Carsten Gomard, and Peter Sestoft. Partial Evaluation and Automatic
Program Generation. Prentice-Hall, 1993.

16. Naoki Kobayashi. Useless code elimination and programm slicing for the pi-
calculus. In Atsushi Ohori, editor, Proceedings of the First Asian Symposium on
Programming Languages and Systems, number 2895 in Lecture Notes in Computer
Science, pages 55–72, Beijing, China, November 2003. Springer-Verlag.

17. Mihnea Marinescu and Benjamin Goldberg. Partial-evaluation techniques for con-
current programs. In Consel [3], pages 47–62.

18. Matthias Neubauer and Peter Thiemann. Protocol specialization. Technical Report
212, Institut für Informatik, University of Freiburg, Germany, August 2004.

19. Oscar Nierstrasz. Regular types for active objects. In Proceedings OOPSLA ’93,
pages 1–15, October 1993.

20. Benjamin C. Pierce and Davide Sangiorgi. Typing and subtyping for mobile pro-
cesses. In Proc. of the 8th Annual IEEE Symposium on Logic in Computer Science,
pages 376–385. IEEE Computer Society Press, 1993.

21. Thomas Reps and Todd Turnidge. Program specialization via program slicing. In
Danvy et al. [5], pages 409–429.

22. Ulrik Schultz, Julia Lawall, Charles Consel, and Gilles Muller. Toward automatic
specialization of Java programs. In 13th European Conference on Object-Oriented
Programming (ECOOP ’99), Lisbon, June 1999. Springer-Verlag.

23. Ulrik P. Schultz. Black-box program specialization. In WCOP’99, Fourth Inter-
national Workshop on Component-Oriented Programming, Lisbon, Portugal, June
1999.

24. Ulrik P. Schultz, Julia L. Lawall, and Charles Consel. Automatic program spe-
cialization for java. ACM Transactions on Programming Languages and Systems
(TOPLAS), 25(4):452–499, 2003.

25. Frank Tip. A survey of program slicing techniques. Journal of Programming
Languages, 3(3):121–189, 1995.

26. Frank Tip, Peter F. Sweeney, Chris Laffra, Aldo Eisma, and David Streeter. Practi-
cal extraction techniques for Java. ACM Transactions on Programming Languages
and Systems, 24(6):625–666, November 2002.

27. David Walker, Carl Crary, and Greg Morrisett. Typed memory management via
static capabilities. ACM Transactions on Programming Languages and Systems,
22(4):701–771, July 2000.

