
Demonstration Abstract: Haskell Type Browser

Matthias Neubauer
Universität Freiburg

neubauer@informatik.uni-freiburg.de

Peter Thiemann
Universität Freiburg

thiemann@informatik.uni-freiburg.de

Categories and Subject Descriptors

D.3.2 [Programming Languages]: Language Classifications—
Applicative (functional) languages; D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Polymorphism; F.3.3
[Logics and Meanings of Programs]: Studies of Program Con-
structs—Type Structure

General Terms

Languages

Keywords

Haskell, Type Inference, Polymorphism, Type Errors, Debugging

1 Introduction

Despite 25 years of experience with ML-style typing and numerous
implementations of type inference algorithms for this kind of type
system, programmers are still struggling with error messages re-
ported when the inference algorithm fails. Virtually every Haskell
programmer can tell stories about type errors where it took hours to
identify the actual problem with the program. While initiated func-
tional programmers may accept this as a fact of life, it makes life
especially hard for beginners, in fact, too hard for some.

The root of the problem lies in the operational way in which type
inference algorithms produce error message. Most algorithms com-
pose the type of an expression by unification of type fragments dur-
ing a traversal of the expression’s syntax tree. A type error occurs
whenever a unification fails. Unfortunately, the point of failure may
not even be close to the point of the actual mistake in the program.
Hence, the error messages often lead to confusion.

In previous work, we have designed a type system based on dis-
criminative sum types with recursive types and annotation subtyp-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Haskell’04, September 22, 2004, Snowbird, Utah, USA.
Copyright 2004 ACM 1-58113-850-4/04/0009 ...$5.00

ing that enables the precise location of the causes of type errors
[5]. The resulting system is a conservative extension of the clas-
sical Hindley/Milner type system with parametric polymorphism,
and has some additional properties which go beyond the classical
system: type inference always produces a principal type derivation
(even in case of type errors in the classical sense), and type error re-
ports are extracted from the complete type derivation—that is, type
errors are independent of the actual algorithm used to compute the
type derivation.

We have implemented these ideas in the Haskell Type Browser tool,
a system that allows programmers to interactively explore the type
structure of both faulty and type correct Haskell modules. Given
a Haskell module, the tool generates an interactive XHTML page
rendering a highlighted version of the Haskell source code of the
module. Additional navigation elements enable the interactive in-
vestigation of the module’s type structure in various ways.

2 Using The Haskell Type Browser

Running the type browser is a matter of executing the command
htb module.hs. The command constructs a type derivation and
generates an XHTML page, module.hs.html, and an EcmaScript
program, module.hs.js, as output. Viewing the XHTML page in
a web browser highlights the different type errors and enables the
interactive exploration of the module’s typing structure. Figure 1
shows the XHTML view for a small sample module with two type
errors.

The navigator pop-up window (shown in the upper-right corner)
presents an overview of all type errors in the module. It provides
buttons to select between errors and to select different degrees of
highlighting. Selecting a type error highlights source locations that
may be involved in the type error. Different types of highlighting
indicate the different roles of source code fragments in the type
error. HTB distinguishes between source fragments that produce,
consume, or transfer type constructors.

The type window pop-up (topmost window) appears after clicking
on a subexpression in the module. It displays the type of the clicked
subexpression and offers buttons to manually navigate through the
expression’s syntax tree.

3 Implementation Notes

The implementation has two parts. The first part is written in
Haskell and implements a considerable part of a Haskell compiler
front-end. It translates the source code of the explored Haskell
module to XHTML and creates a description of the complete typ-

Figure 1. Sample module viewed with the Haskell Type
Browser.

ing structure of the module including discriminative sum types and
recursive types [5]. The latter information is encoded as one big
EcmaScript object literal.

The second part is written in EcmaScript1 [1] and implements the
interactive type browser environment. It runs in a regular web
browser after being loaded together with the annotated XHTML
output of the Haskell source code. The EcmaScript type browser
interprets the type structure object emitted by the first part and adds
suitable navigation elements to the web page.

The type browser applies to one module at a time and performs
type inference according to our type discipline [5]. One problem
in the implementation was the import of type, class, and instance
information through the module system. Instead of implementing
the Haskell module system, we adapted the compilation manager
of a current version of GHC [2] to export the initial typing envi-
ronment for a module instead of compiling it. We then use GHC’s
information as additional input for our own type inference system.

The abstract syntax, the parser, and the pretty printer for Haskell
modules are adapted from an existing Haskell library [4]. We
changed the Haskell syntax library such that the abstract syntax also
registers the exact source location of every lexeme of the original
source code which allows us to reconstruct the layout of the original
source code for the final XHTML output.

The type inference engine is inspired by Jones’s work Typing
Haskell in Haskell [3] and extended in two ways. First, the han-
dling of typing constraints (e.g., type class constraints) follows the
HM(X) approach for type inference with constraint types [6]. So
far, we added support for one instance of several constraint sys-
tems, Haskell 98 type classes. Second, type terms are represented as
(mutable) term graphs instead of (immutable) tree structures. This
allows us to share common subterms instead of copying terms sev-
eral times. Also, recursive types are just cycles in the term graphs.
Unification is accomplished by applying a union-find algorithm on
term graphs. To handle the peculiarity of discriminative sum types
(that is, types with several, different type constructors on top), each
type variable can carry a sorted list of type constructors instead of
just a single type constructor.

The XHTML output page for the source code features unique id at-
tributes for each subexpression of the module. In addition, syntactic
categories, such as keywords, expressions or variables, are anno-
tated by separate class attributes [7]. This way, an EcmaScript

1EcmaScript is the standardized language behind JavaScript.

program can dynamically change the appearance of parts of the
Haskell module.

The second part, the interactive type browser environment, is im-
plemented in EcmaScript and is started after loading the XHTML
output and the object literal representing the typing structure into a
web browser. After analyzing the typing structure, it opens the nav-
igator pop-up window displaying type errors and installs event han-
dlers on each XHTML node of the source code. If the user selects
a specific type error, appropriate source locations are highlighted in
the source code window. Clicking on a source location triggers an
event handler that opens a second type of pop-up window, the type
exploration window.

4 Conclusion

Our preliminary experiments with admittedly small examples
demonstrate that the idea of a type browser based on discrimina-
tive sum types appears to work. Problem spots that we are cur-
rently focusing on is the adequate visualization of recursive types,
intelligent navigation in large source files, and the display of flow
information.

We are planning to release a first public version of our tool in
the near future. The broader application, especially to real world
Haskell code, will show whether our approach is generally helpful
to understand the type structure of Haskell modules and to locate
type errors.

5 References

[1] ECMAScript Language Specification. http://www.
ecma-international.org/publications/files/
ECMA-ST/Ecma-262.pdf, Dec. 1999. ECMA International,
ECMA-262, 3rd edition.

[2] The Glasgow Haskell compiler. http://www.haskell.org/
ghc/.

[3] M. P. Jones. Typing Haskell in Haskell. In E. Meijer, editor,
Proceedings of the 1999 Haskell Workshop, number UU-CS-
1999-28 in Technical Reports, 1999. ftp://ftp.cs.uu.nl/
pub/RUU/CS/techreps/CS-1999/1999-28.pdf.

[4] S. Marlow, S. Panne, and N. Winstanley. hsparser: The 100%
pure Haskell parser, 1998. http://www.pms.informatik.
uni-muenchen.de/mitarbeiter/panne/haskell_libs/
hsparser.html.

[5] M. Neubauer and P. Thiemann. Discriminative sum types lo-
cate the source of type errors. In O. Shivers, editor, Proc. Inter-
national Conference on Functional Programming 2003, pages
15–26, Uppsala, Sweden, Aug. 2003. ACM Press, New York.

[6] M. Odersky, M. Sulzmann, and M. Wehr. Type inference with
constrained types. Theory and Practice of Object Systems,
5(1):35–55, 1999.

[7] XHTML 1.0: The extensible hypertext markup language.
http://www.w3.org/TR/xhtml1, Jan. 2000.

