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Abstract

We propose a type system for locating the source of type errors in an
applied lambda calculus with ML-style polymorphism. The system
is based on discriminative sum types—known from work on soft
typing—with annotation subtyping and recursive types. This way,
type clashes can be registered in the type for later reporting. The
annotations track the potential producers and consumers for each
value so that clashes can be traced to their cause.

Every term is typeable in our system and type inference is decid-
able. A type derivation in our system describes all type errors
present in the program, so that a principal derivation yields a prin-
cipal description of all type errors present. Error messages are de-
rived from completed type derivations. Thus, error messages are
independent of the particular algorithm used for type inference, pro-
vided it constructs such a derivation.

Categories and Subject Descriptors

D.3.2 [Programming Languages]: Language Classifications—
Applicative (functional) languages; D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Polymorphism; F.3.3
[Logics and Meanings of Programs]: Studies of Program Con-
structs—Type Structure

General Terms

Languages, Theory

Keywords
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1 Introduction

Many functional programming languages have type systems which
are derived from ML’s type system with parametric polymor-
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phism [22]. ML-style polymorphism has proved to be a practical
compromise which allows for expressive polymorphic definitions
while keeping type inference decidable.

However, despite 25 years of experience with ML-style typing and
numerous implementations of type inference algorithms for this
kind of type system, programmers are still struggling with the error
messages reported when the inference algorithm fails. Virtually ev-
ery ML programmer can tell stories about type errors where it took
hours to identify the actual problem with the program. While initi-
ated functional programmers seem to accept this as a fact of life to
be endured in return for the wonderful type soundness guarantee, it
makes life hard for beginners, in fact, too hard for some.

The root of the problem lies in the operational way in which type
inference algorithms produce error messages. Most algorithms are
based on Milner’s algorithmW [22] that traverses the syntax tree
of an expression and composes the type of the expression bottom-
up. At each function applicatione e′, the algorithm recursively
computes the typest of e and t ′ of e′. Next, it has to make sure
that the type ofe really is a function type. Hence, the algorithm
attempts to unifyt with t ′ → β, whereβ is a fresh type variable.
It reports a type error if this unification fails. (Similar unifications
happen at elimination expressions for other type constructors.)

Unfortunately, the point in the expression where the unification fails
may not even be close to the point of the actual mistake in the pro-
gram. For example, when processing

(λ f . f 1) (λy.if y 1 0) (1)

algorithmW first computes the types of the subexpressions as

λ f . f 1 : (int→ α)→ α λy.if y 1 0 :bool→ int

and then tries to unify

(int→ α)→ α .= (bool→ int)→ β

which results (in the worst case) in the error message “Failed to
unify int with bool” issued at the outermost application in ex-
pression (1). Only indirectly does this message point to the actual
problem, namely the mismatch of the type off ’s argument and its
use in the body off :

(λ f . f 1
+
) (λy.if y − 1 0)

That is, f is applied to an argument of typeint which is pro-

ducedby the expression1
+

(the annotation+ flags a producer
expression, which is the source for some value) whereas the func-
tion bound to f consumesits argument as abool in the context



if
− 1 0 (the annotation− indicates an expression used in an

elimination context or a consumer position).

Numerous attempts have been made at explaining type errors and
locating their actual source. They range from instrumentations of
algorithmW through alternative type inference algorithms to ap-
proaches relying on principal typings. Section 6 discusses a repre-
sentative sample of this related work.

1.1 Locating Errors with Multivocal Types

In the present work, we pursue an approach based on the theory of
discriminative sum types, which has been developed for soft typing
[7, 18, 38], and which is closely related to systems with row types
[35, 29]. While row types are usually indexed with record or variant
labels, discriminative sum types are indexed withtype constructors
and the component types are the argument types of the constructors.

Anticipating the formal definition in Section 3.4, the idea of a dis-
criminative sum type is that at each node of a type each type con-
structor may be used at most once. The “unused” type constructors
are hidden in arow variableρ and we use “;” to separate different
type constructors. The separator “;” binds weaker than every type
constructor. For example, in the node(int;ρa → ρb;ρ1) of a type
there are two components, one for the type (constructor)int and
another for→.

The most interesting operation on discriminative sum types is
unification, because it must preserve the above invariant. The
idea here is that types unified componentwise and by substituting
for the row variables if there is no corresponding component (as
with row types). For example, unification of(int;ρa → ρb;ρ1)
with (bool;ρ2) results in the substitutionρ1 7→ (bool;ρ′) and
ρ2 7→ (int;ρa → ρb;ρ′) yielding the substituted term(int;ρa →
ρb;bool;ρ′).

An alternative view would consider each node in a discriminative
sum type as a finite mapν from the set of type constructors to a list
of type nodes, so thatν(χ) are the arguments of type constructorχ.

Each type in a system of discriminative sum types may bemultivo-
cal, that is, it may have more than one top-level type constructor.
The type(int;bool;ρ) is an example for such a multivocal type
whereρ is a (row) type variable. A type like(bool;ρ2) with at
most one type constructor isunivocal.

For the subexpressions of our example, type inference now yields

λ f . f 1 : (((int;ρ1)→ ρ2;ρ3)→ ρ2;ρ4)
λy.if y 1 0 : ((bool;ρ5)→ (int;ρ6);ρ7)

and unification of the two types

(((int;ρ1)→ ρ2;ρ3)→ ρ2;ρ4).= (((bool;ρ5)→ (int;ρ6);ρ7)→ ρ8;ρ9)

succeeds with the multivocal type

(((bool;int;ρ10)→ (int;ρ6);ρ3)→ (int;ρ6);ρ4)

by substitutingρ1 7→ (bool;ρ10), ρ5 7→ (int;ρ10), ρ2 7→ (int;ρ6),
ρ7 7→ ρ3, andρ9 7→ ρ4. In fact, type inference succeeds for the
entire expression and computes the result type(int;ρ6) (which is
univocal, that is, there is at most one type constructor present).

The gain in doing so is that we can inspect the type derivation after
the inference algorithm has completed its work:

λ f . f 1 : (((bool;int;ρ10)→ (int;ρ6);ρ3)
→ (int;ρ6);ρ4)

λy.if y 1 0 : ((bool;int;ρ10)→ (int;ρ6);ρ3)
(λ f . f 1) (λy.if y 1 0) : ((bool;int;ρ10)→ (int;ρ6);ρ3)

In particular, the two program points that actually caused the prob-
lem also have multivocal types:

f : ((bool;int;ρ10)→ (int;ρ6);ρ3) ` 1 : (bool;int;ρ10)
y : (bool;int;ρ10) ` y : (bool;int;ρ10)

However, the typing still does not relate enough information what
exactly happened and why/if these two program points are the cul-
prits for the type error.

For that reason, each type constructor in a discriminative sum type
must carry aflow setannotation. A flow set is a set of program la-
bels that indicate the potential sources and sinks of a value whose
type carries that flow set. Since each type constructor carries a sep-
arate flow set, each component’s flow is traced separately. There is
a further distinction betweensource labelswith superscript+ that
indicate potential producers of a value andsink labelswith super-
script− that indicate potential consumers of a value.

Returning to our example, we first label each source or sink subex-
pression appropriately:

[[λ f .[ f ]3− [1]4+ ]2+ ]1− [λy.if [y]6− [1]7+ [0]8+ ]5+

Looking again atany of the above types involving the multivocal
part(bool;int;ρ10), we find the following annotations:

y : (bool6− ;int4+
;ρ10)

This annotated type indicates that the error stems from the fact the
value of typeint produced at program point 4+ may be consumed
as a value of typebool by theif expression at program point 6−.

It will turn out that a multivocal typet is a sufficient indicator for a
type error, but further machinery is required to report such an error.
As a first step, we consider the set of subexpressions whose type
containst or that consume a value whose type containst. Following
Haack and Wells [14], we visualize such a set as anexpression slice
where subexpressions and subcontexts that do not contribute to the
multivocal type are blanked out using ellipses(..). In the example,
the expression slice associated with(bool6− ;int4+

;ρ10) is

[[λ f .[ f ]3− [1]4+ ]2+ ]1− [λy.if [y]6− (..) (..)]5+

The proposed error message for this expression is the above slice
with additional highlighting of the offending consumers and pro-
ducers as detailed in Section 2.4. In Section 2, we elaborate on
the additional features, annotation subtyping and recursive types,
required to turn type inference for discriminative sum types into a
practically useful framework for locating type errors. We motivate
these extensions with examples.

1.2 Contributions

We have designed a type system with discriminative sum types that
enables the precise localization of the causes of type errors. The
type system is a conservative extension of the Hindley/Milner type
system with parametric polymorphism. It is inspired by work on
soft typing and row types and it inherits many of its properties:



• type inference is decidable, even in the presence of annota-
tion subtyping and recursive types;

• the type inference algorithm can produce a principal type
derivation; we view this principal type derivation as aprin-
cipal description of the type errors in the term;

• type errors are reported by interpreting the completed type
derivation, hence theyare independent of the type inference
algorithm used to compute them.

The technical contributions of the paper are the following. Starting
from an applied lambda calculus, we define a type system with dis-
criminative sum types and ML-style polymorphism, which is pa-
rameterized over a certain style of constraint systems, and prove
subject reduction. Then we extend the calculus with labeling and
establish the correctness of the data flow information in the flow
set annotations by proving subject reduction for the labeled calcu-
lus in the type system with simple annotations and with annotation
subtyping. We show that this information is valid also for the orig-
inal, unlabeled calculus by relating the labeled and the unlabeled
calculus via a reduction correspondence. Further, we prove that our
system is a conservative extension of ML and, conversely, charac-
terize those type derivations that give rise to an ML type derivation.

There is a prototype implementation of the type inference algorithm
with annotation subtyping for an applied lambda calculus.

1.3 Overview

In the following Section, we explain the additional features annota-
tion subtyping and recursive types. Section 3 contains the theoreti-
cal basis of our system. It introduces the labeled calculusλL, a type
system with discriminative sum types and ML-style polymorphism,
and states some technical results. Section 4 discusses extensions
that are required to make the system amenable to a full program-
ming language. Section 5 contains some notes on our prototype
implementation. Finally, we discuss related work in Section 6 and
conclude.

2 Locating Type Errors

The example in the introduction has given some flavor of the kind
of error messages that can be extracted from our type system. How-
ever, the example is chosen so that it does not exert the full power
of the system. Further features, in particular annotation subtyping
and recursive types are needed. The following examples motivate
them and show how error messages can be extracted from typings
in the respective extended system.

2.1 Annotation Subtyping

In the flow sets attached to each type constructor, the type system
performs a flow analysis that tracks the sources (producers, intro-
ductions) and the sinks (consumers, eliminations) of all values. An-
notation subtyping increases the precision of that analysis by mod-
eling the direction of the data flow. For the monomorphic case,
similar type systems have been shown to be equivalent in power to
0CFA [16, 26].

2.1.1 Flowing Forwards

Consider the following example expression:

λx.(x,if true (if true [true]1+ [0]2+) x) (2)

Both conditionals have type(int2+
;bool1+

;ρ) indicating that their
value is either the boolean introduced at point 1+ or the integer
introduced at point 2+. Unfortunately, the same type (including the
annotation) is also inferred for the variablex which cannot assume
either of these values in the given expression.

This so-called “poisoning” is a well-known phenomenon of
equation-based flow analysis. It is due to the analysis equating
the result types of both branches of the outer conditional. These
equations induce an artificial backwards flow that can never happen
during execution of the program.

The remedy is to move from an equation-based system to a
subtyping-based system. To this end, we rely on a subtyping rela-
tion of flow-annotated types that preserves the structure of the types
and only affects the annotations. In the example expression (2), this
approach leads to the following typings:

[true]1+ : (int;bool1+
;ρ)

[0]2+ : (int2+
;bool;ρ)

if true [true]1+ [0]2+ : (int2+
;bool1+

;ρ)
x : (int;bool;ρ)

if true (if true [true]1+ [0]2+) x : (int2+
;bool1+

;ρ)

These typings seem to indicate that—whilex is affected by the type
error—it actually does not contribute to it because its multivocal
type isnot inhabited(its flow sets are empty). However, this infer-
ence is not correct in general as we shall see in Section 2.1.3 below.
Hence, we report the type error as the slice

λx.(..)(x,if (..) (if (..) [true]1+ [0]2+) x).

2.1.2 Flowing Backwards

The above example demonstrates an error caused by an expression
that might evaluate to values of different type. The typing correctly
tracks the values flowing “forward” from their introduction to the
offending expression.

However, the dual situation where two subexpressions want to con-
sume the same value at different types also gives rise to a type error.
Since there may be no producer in the expression, it is necessary
to track the consumers, too. Contrary to information about pro-
ducers of values, the information about consumers of valuesflows
backwards, towards the source of the value. Hence, the subtyping
relation transports consumer labels “from right to left”, so that the
subtype always has more consumer labels than the supertype.

Here is an example that demonstrates the backward flow of con-
sumer labels in action:

λx.(if [x]2− [0]4+ [1]5+ , [x]6− [1]8+)

In this expression,x is used in two different elimination contexts,
once as a boolean and once as a function. Hence, its typing is

x : (bool2− ;((int8+
;ρ1)→6− ρ2);ρ0).

Since only the top-level of this type is multivocal, the only subex-
pressions concerned with the error are 2− and 6− and the occur-
rences of the variablex. Hence, the offending slice is

λx.(..)(if [x]2− (..) (..), [x]6− (..)).



2.1.3 Inhabitation

The next example demonstrates that inhabitation of an expression’s
multivocal type is not always a good indicator for the role of that
expression in a type error.

λx.λy.(if true x [0]4+ ,if true x y,if true y [false]5+)

Here are the typings of the interesting subexpressions:

x : (bool;int;ρx)
y : (bool;int;ρy)

if true x [0]4+ : (bool;int4+
;ρ1)

if true x y : (bool;int;ρ2)

if true y [false]5+ : (bool5+
;int;ρ3)

Although the type of the second subexpression,if true x y, is un-
inhabited, this subexpression is clearly contributing to the type error
in an essential way. In fact, all subexpressions, except the condi-
tions, are essential for obtaining a type error in this case.

Hence, we refrain from using inhabitation of a multivocal type as an
indicator whether a subexpression participates in a type error. How-
ever, it makes sense to indicate the degree of inhabitation visually,
since observing changes in inhabitation can be helpful in certain
cases (cf. the example in Section 2.1.1).

2.2 Recursive Types

The standard implementation of Hindley/Milner-style type infer-
ence fails at programs like

[ f ]0+ [x : xs]1− = [add([ f ]2− xs) ([ f ]3− x)]5+

The reason for this failure is thatx must have typeα and type
list α at the same time. However,x could be assigned the re-
cursive typeµα.list α, which is theoretically sound. Although
ML-style type inference with recursive types is feasible, the result-
ing types are often unintuitive. For that reason, the standard algo-
rithm rules out recursive types by using a unification algorithm with
“occur-check”.

However, a type system to investigate type errors must be able to
give a type to the above term so that a suitable error message can
be extracted from the typing. Hence our system includes recursive
types and it assigns the type

f : (ρ→0+,2−,3− (int5+
;ρ2);ρ0) whereρ = (list1− ρ;ρ1).

How much information can be extracted from this typing?

1. Sinceρ refers to itself, we can deduce that the standard infer-
ence algorithm reports an occurs-check error.

2. The type constructorlist that is involved in the recursive def-
inition is annotated with 1−, indicating that the pattern match-
ing on f ’s argument contributes to the problem.

3. By examining the rest of the typing derivation, we find that
x : ρ andxs: ρ, that is, only the typing of the contextadd[ ] [ ]
does not involve the typeρ.

Hence, the offending slice in the definition off is

[ f ]0+ [x : xs]1− = (..) ([ f ]2− xs, [ f ]3− x)

which exactly pinpoints the source of the problem. In this case, the
typing does not involve a multivocal type. Hence, we mustdefine

which node of the type causes the error. Our choice is the header
node of the loop, indicated by the variableρ in the example.

In the example, functionf only serves as a mediator because the
recursive type does not appear at the top-level off ’s type. Our
reporting phase will indicate this difference visually.

2.3 Flow Classes

The examples above only contain one type error at a time. When
more than one error is present in a program, it is not obvious which
occurrences of multivocal types belong together. For example, con-
sider an expression that contains two copies of expression (2). Each
copy has a number of subexpressions of type(int;bool;ρ), where
the association to a particular consumer or producer is not obvious
because the flow sets in the type are empty.

What is needed is an additional classification of type nodes into
equivalence classes. To this end, each expression and each type
node is equipped with aflow-class label. The expression[e]` at-
taches its flow-class label` to the top-level node ofe’s type. A
flow-class label behaves differently than a source or a sink label.
It is propagated equationally, like the type structure itself, ignoring
the direction of data flow.

With this set-up a flow-class label` records in the type that a value
of this type may be passed through by an expression with this label.
For example, in

[let x = [42]1+ in [x]2]3

the [ ]2 and the[ ]3 attach flow-class labels to the type constructor
int, so that the type of[x]2 is (int1+,2,3;ρ) (remember that flow-
class labels are propagated equationally, that is, they go forwards
and backwards), which is also the type of the whole expression.

In this way, each node in a type has a set of flow-class labels at-
tached to it. Since propagation of these labels is equation-based,
these sets are either disjoint or equal for any given pair of nodes.
Hence, the sets of flow-class labels induce a partition on the set of
type nodes. Moreover, all members of the same partition represent
the same underlying type (after erasure of all flow annotations).

2.4 Collecting and Reporting Type Errors

Our proposed overall procedure for a type error reporting tool is
derived from the above discussion. It works in two phases, a col-
lecting phase and a reporting phase. The collection phase has the
following tasks:

1. Decorate the expression with producer and consumer labels as
well as with flow-class labels. All these labels must be distinct
so that there is a mapping from the set of labels to the set of
subexpressions occurrences in the original expression.

2. Perform type inference for the system proposed in this paper.
The algorithm does not matter as long as it computes a map-
ping that maps each label to the type of the subexpression at
that label.

3. During a traversal of all types of all subexpressions, collect
the following setE of sets of flow-class labels: if a type that
contains a nodet so that eithert is multivocal ort is the header
of a recursive type, thenR∈ E whereR is the set of all flow-
class labels in the nodet. The setR is thescopeof the error
andt theoffender.



At this point, each element ofE corresponds to a type error that
must be fixed separately. The reporting phase picks an element
R∈E and extracts a slice from the original expression that contains
all subexpressions

• whose type contains a node marked withR, or

• that are consumer expressions where the consumed type con-
tains a node marked withR.

With the slice it shows a general description, for example, “re-
cursive type”, “consumer/consumer conflict”, “consumer/producer
conflict”, etc, that is derived from the offenders in the type of the
slice. Furthermore, it highlights each subexpressione of the slice
by taking into account the following questions (depending on the
programmer’s settings):

• Does the offender occur at the top-level ofe’s type? If not,
this indicates thate is merely transmitting the offense.

• What is the degree of inhabitation of the offender’s type? That
is, how many sources and sinks appear in its flow sets? Im-
portant hints can be drawn from changes in inhabitation.

• Is e a consumer or a producer involved in the top-level of the
offending type?

All this information can be readily extracted from the flow sets in a
typing in our system.

In each of the examples in this section, the procedure leads exactly
to the slices reported.

3 Formal System

Our term language consists ofλ-terms with constants and alet-
expression.

Variables x ∈ Var
Constants c ∈ Const
Terms e ::= c | x | e e| λx.e | let x = ein e

We adopt Barendregt’s variable convention [5] and identifyα-
equivalent termse ande′ by writing e≡ e′. The notationFV(e)
denotes the set of free variables ine, ande[x := e′] denotes the re-
sult of substituting the free occurrences ofx in eby e′.

3.1 The calculiλlet and λlet,bool

We generate calculi bynotions of reduction. The following two
relations define the notions ofβ- andlet-reduction:

(β) (λx. e) e′ −→ e[x := e′]
(let) let x = e′ in e −→ e[x := e′]

For each notion of reductionr, −→r denotes the compatible one-
step reduction ofr,−→−→r is the reflexive, transitive closure of−→r ,
and=r is the smallest equivalence relation generated by−→−→r [5].

Theλlet-calculus has no constants and is generated byR= {β, let}.

The calculusλlet,bool extend the calculusλlet by adding the three
constantstrue, false, andif representing the introduction and
elimination constructs for booleans. The following two additional
reduction rules define their operational behavior:

(if.1) if true e2 e3 −→ e2
(if.2) if false e2 e3 −→ e3

We recall the following known property ofλlet andλlet,bool.

FACT 1. The calculiλlet andλlet,bool are confluent.

3.2 The labeled calculusλL

To identify certain subterms of a term and trace their flow during
a sequence of reductions as discussed above, we introduce a new
labeledλ-calculus inspired by labeled reductions of Barendregt [5]
and Abadi et al. [1]. We distinguish different kinds of labels:

Source Labels `+ ∈ Lab+

Sink Labels `− ∈ Lab−

Class Labels ` ∈ Lab
Sets of Class Labels L ∈ P (Lab)
Type Constructors χ ∈ TyCon

The setsLab+, Lab−, andLab are disjoint. Source labels,`+ ∈
Lab+, are attached to introduction expressions (likeλ or true)
and trace the flow of produced values. Sink labels,`− ∈ Lab−,
are attached to elimination contexts (like the first subexpression of
function application or the condition of a conditional) and trace the
attraction towards a consumer. Class labels are propagated equa-
tionally, that is, they flow both forwards and backwards. Sets of
class labels are denoted byL, and type constructors are denoted by
χ ∈ TyConwhere we assume thatbool,→∈ TyCon.

The calculusλL has three additional families of labeling constants.

• The constant[ ]χ,`+ labels an expression that introduces a type
constructorχ with the source label̀+.

• The constant[ ]χ,`− labels a context that eliminates a type con-
structorχ with the sink label̀ −.

• The constant[ ]L annotates an expression with a set of class
labelsL.

We usually write[e]L instead of the juxtaposition[ ]L e. Sometimes
we use the meta variablea to indicate an annotated term.

Six notions of reduction deal with labeling constants:

(L.union) [[e]L1]L2 −→ [e]L1∪L2

(L.swap) [[e]χ,`+ ]L −→ [[e]L]χ,`+

(L.elim) [[e]χ,`+
1
]χ,`−2

−→ e

(L.lam) [λx.e]L −→ λx.e
(L.true) [true]L −→ true

(L.false) [false]L −→ false

TheL.unionrule collapses two consecutive labelings of an expres-
sion into one labeling by merging their label sets. TheL.swaprule
lets source labels̀+ travel outwards over a set of other labelsL. If
a source labeling̀+

1 with constructor annotationχ hits a sink la-
beling`−2 with the same constructor annotationχ, they cancel each
other by theL.elim rule. The rulesL.lam, L.true, andL.falsemove
a labeling out of the way by removing it completely.

The labeledλL-calculus enjoys the same fundamental theorem as
the unlabeled calculi:

PROPOSITION 1. The calculusλL is confluent.

PROOF. All critical pairs are joinable. Hence, the lemma follows
using Theorem 6.2.4 of [4] and Proposition 3.3.5 of [5].

An unlabeled termecan be labeled in many ways, but not all label-



x ↪→ [x]L

e1 ↪→ e′1 e2 ↪→ e′2
e1 e2 ↪→ [[e′1]→,`− e′2]

L

e ↪→ e′

λx.e ↪→ [[λx.e′]→,`+ ]L

e1 ↪→ e′1 e2 ↪→ e′2
let x = e1 in e2 ↪→ [let x = e′1 in e′2]

L

true ↪→ [[true]bool,`+ ]L

false ↪→ [[false]bool,`+ ]L

e1 ↪→ e′1 e2 ↪→ e′2 e3 ↪→ e′3
if e1 e2 e3 ↪→ [if [e′1]bool,`− e′2 e′3]

L

Figure 1. Labeling

ings make sense. The relatione ↪→ a (defined in Figure 1) specifies
how an unlabeled termecan be annotated with labels resulting in a
sensibly labeled counterparta. The relation guarantees that

• every subterm ofecarries a flow-class label ina,

• every introduction of type constructorχ is annotated with a
source label forχ, and

• every elimination of type constructorχ is annotated with a
sink label for kindχ.

LEMMA 1. (Basic Properties of Labeling)

• If e ↪→ a, then a≡ [a′]L for some a′ and L.

• If e ↪→ [a]L1, then e↪→ [a]L2.

• If e1 ↪→ a1, and e2 ↪→ a2, then e1[x := e2] ↪→ a1[x := a2].

With erase(a), we denote the unlabeled term obtained by remov-
ing all labelings froma. The “unlabeled” calculusλlet,bool and its
labeled counterpartλL correspond in the following way:

PROPOSITION 2. (Simulation)

• If e−→ e′, and e↪→ a, then a−→−→ a′ for some a′ with e′ ↪→ a′.

• If e ↪→ a, and a−→ a′, then e−→−→ erase(a′).

3.3 The Damas-Milner Type System

We first recapitulate Damas and Milner’s type system for Mini-ML
[11, 9]. The types, type schemes, and type assumptions are:

Type Variables α ∈ TyVar
Types t ::= α | χ t1 . . . tn
Type Schemes s ::= ∀α.t
Type Assumptions A ::= · | A,x : t x /∈ A

whereα ranges over a set of type variables. Type schemes are
identified moduloα-equivalence, and we writeA(x) for the type
assigned tox in A.

The type system of Mini-ML is defined by the deduction system
in Figure 2. It constructs proofs for the type judgmentA `DM e : t
stating that the termehas typet under type assumptionsA.

T(c)� t
A`DM c : t

A(x)� t
A`DM x : t

A`DM e1 : t2 → t1 A`DM e2 : t2
A`DM e1 e2 : t1

A,x : t2 `DM e : t1
A`DM λx.e : t2 → t1

A`DM e1 : t1 (A, t1) `gen
DM s A,x : s`DM e2 : t2

A`DM let x = e1 in e2 : t2

Figure 2. Typing rules of Mini-ML

The deduction rules rely on the notions oftype instantiationand
type generalization:

DEFINITION 1. (Instantiation) A type t is aninstanceof a type
scheme s, written s� t, if there is a substitution for the bound vari-
ables of s yielding t.

DEFINITION 2. (Generalization) A type scheme is ageneraliza-
tion of type t under some type assumptions A, written(A, t) `gen

DM
∀α.t, if for all α ∈ α, α 6∈ FV(A).

The type system is parameterized over a functionT that maps each
constantc ∈ Const to a closed type scheme. For example, for
λlet,bool the functionT should map the constants involving booleans
as follows:

true : bool
false : bool

if : ∀α.bool→ α→ α→ α

3.4 Discriminative Sum Types with Con-
straints

This section explains the technical foundations of our type system
based on discriminative sum types, flow-set annotations, and recur-
sive types. Constraints are also needed to describe the propagation
of flow-set annotations. Since two different constraint languages
are required, we start by abstracting over the constraint system.
This yields a general framework for program analysis using con-
strained types with discriminative sums. We rely on an abstract no-
tion of constraint systemwhich is similar to Jones’s predicates [19]
and Odersky et al.’s notion of constraints [25].

DEFINITION 3. (Constraint System) A constraint system over a
type language is a structure(Ω,`) whereΩ is a constraints lan-
guage extending a type language and` is an entailment relation
`⊂ P (Ω)×P (Ω), such that the following holds:

(i) C∪D `C,

(ii) if C1 `C2, and C2 `C3, then C1 `C3, and

(iii) If C ` D, thenφ(C) ` φ(D).

where C and D are sets of constraints, andφ is a substitution of type
variables.

Hence, the entailment relation associated with a constraint system
must be monotone, transitive, and closed under substitutions. For



notational convenience we usually writeC,D for the union (con-
junction) of two constraint setsC andD.

Discriminative sum types are a variation of row types introduced
by Wand [35] and Remy [29] originally intended for the purpose of
typing records and variants. While row types are usually indexed
with record or variant labels, discriminative sum types are indexed
with type constructorsand the component types are the argument
types of the constructors. Similar constructions have been used for
soft typing systems [7, 18, 38]. For performing the flow analysis
required for error reporting, we annotate each type constructor in a
discriminative type with aflow set.

Row Variables ρ ∈ RowVar
Set Variables υ ∈ SetVar
Sets of Type Constr’s Θ ∈ P (TyCon)
Flow Set Ann’s uL ::= υL | `;uL∪{`} ` /∈ L
Types tΘ ::= ρΘ | χu t1 . . . tn; tΘ∪{χ} χ /∈Θ
Type Schemes s ::= ∀ρυ.C⇒ t
Type Assumptions A::= · | A,x : t x /∈ A

A type tΘ is either a row variableρΘ or it consists of variants in-
dexed by type constructorsχ which are not mentioned inΘ. Each
variant consists of a type termχu t1 . . . tn where the type constructor
is annotated with a flow set, followed by further variants which are
restricted so thatχ cannot appear again. The superscript on a row
variablerestrictsthe types that may be substituted for the variable.
We sometimes omit the superscript, when the restriction is obvious
from the context.

Each type constructor carries a flow set annotationu. A flow set
annotationu is a set of labels and a set variableυ. Again, a su-
perscript on a flow set annotations,uL, indicates that certain labels
cannot appear in the flow set.

A type scheme∀ρυ.C ⇒ t represents the sets of types that may
be obtained fromt by applying substitutions for the row variablesρ
and the set variablesυ, restricted by a set of constraintsC of a given
constraint system(Ω,`). The following definition of substitution
serves to formalize the instantiation relation between a type scheme
and its instance types.

DEFINITION 4. (Substitution) A substitutionφ is a finite mapping
from set variables to flow set annotations, and from row variables
to types. We extend substitutions to total mappings on constraints,
flow set annotations, types, type schemes, and type assumptions in
the usual capture-avoiding manner.

DEFINITION 5. (Instantiation) A pair of a set of constraints and
a type(C′, t ′) is an instance of the type scheme∀ρυ.C⇒ t, written
s� t, if there is a substitutionφ with domain{ρυ} so that(C′, t ′) =
(φC,φt).

The next relation describesgeneralizationsof a typet with respect
to a type assignmentA and constraintsD.

DEFINITION 6. (Generalization) A pair of a constraint set and a
type scheme,(C1,s), is a generalization of a type t with respect to a
type assignment A and constraints D, written(D,A, t) `gen (C1,s)
with s≡ ∀ρυ.C2 ⇒ t, if the following holds

(i) for all α ∈ ρ∪υ, α ∈ FV(t)\ (FV(C1)∪FV(A)),

(ii) C1,C2 ` D and D`C1,C2.

Similar to the previous variant defined for the Damas-Milner type
system, the generalization relation specifies which type variables
may be quantified over. In addition, it splits up the given constraint
set taking into account that only a part without quantified variables
stays outside the type scheme.

The following system of syntax-directed deduction rules defines a
general framework for constrained type systems with discrimina-
tive sum types. An instance of the framework is determined by a
constraint system(Ω,`) and a functionT that defines closed type
schemes for all constants.

T(c)� (D, t) C ` D
C | A` c : t

A(x)� (D, t) C ` D
C | A` x : t

C | A` e1 : (t2 →u t1; t→) C | A` e2 : t2
C | A` e1 e2 : t1

C | A,x : t2 ` e : t1
C | A` λx.e : (t2 →u t1; t→)

D | A` e1 : t1 (D,A, t1) `gen(C,s) C | A,x : s` e2 : t2
C | A` let x = e1 in e2 : t2

The conclusion of a deduction using those rules yields a type judg-
mentC | A ` e : t meaning that in the context of constraintsC and
type assumptionsA, the termehas typet.

The rules for function application and for abstraction are different
from the usual presentations because they only determine that the
component for the function type constructor→ is defined in the
type. However, they donot rule out the presence of other type con-
structors,i.e., multivocal types. Thelet rule differs from the one
used in HM(X) [25], by having a less restrictive generalization re-
lation. In particular, HM(X) restricts generalization to abstracting
only solvable constraints.1 Since the intended use of the system is
prescriptive (that is, a program analysis setting), we can safely re-
strict ourselves to constraints that are always solvable. The rules for
constants and variables additionally require that the constraints re-
sulting from the instantiation of the type scheme are satisfied under
the constraints present in the context.

3.5 Structural Properties

This section explores basic properties of the type system that are in-
dependent of the stated operational semantics. The lemmas devel-
oped here will later help proving several subject reduction results.
The first lemma establishes that typing is stable under substitutions.

LEMMA 2. (Type Instantiation) Letφ be a substitution. If C| A`
e : t, thenφ(C) | φ(A) ` e : φ(t).

The next two lemmas establish the admissibility of weakening of
typing contexts, first for type assignments, then for constraints.

LEMMA 3. (Weakening of Type Assignments) If C| A ` e : t, and
A,A′ is a valid type assumption, then C| A,A′ ` e : t.

LEMMA 4. (Weakening of Constraints) If C| A` e : t, and D`C,
then D| A` e : t.

1Their generalization relation is(D,A, t) `gen(C1∧∃ρυC2,s) in
the notation of Definition 6.



The following Substitution Lemma is essential to show subject re-
duction for reductions involving substitution. The lemma also has
to take into account the generalization relation because type assign-
ments register type schemes, whereas type judgments only assign
types to terms.

LEMMA 5. (Substitution Principle) If C| A,x : s,A′ ` e : t, and it
also holds that D1 | A` e′ : t ′, (D1,A, t ′) `gen (D2,s), and C` D2,
then C| A,A′ ` e[x := e′] : t.

3.6 Subject Reduction forλlet and λlet,bool

Subject Reduction holds for our generic type system if reduction
preserves typings. For the calculusλlet subject reduction can be
established independently of the choice of a constraint system.

THEOREM 1. (Subject Reduction forλlet) If C |A` e: t, and e−→
e′, then C| A` e′ : t.

Assuming the following type bindings for booleans

true : ∀ρυ.(boolυ;ρ{bool})
false : ∀ρυ.(boolυ;ρ{bool})

if : ∀ρρ′υ.(boolυ;ρ{bool})→ ρ′→ ρ′→ ρ′

the corresponding property also holds for theλlet,bool-calculus.

THEOREM 2. (Subject Reduction forλlet,bool) If C | A ` e : t, and
e−→ e′, then C| A` e′ : t.

3.7 Subject Reduction for λL with Simple
Flow Constraints

The first constraint system, calledsimple flow constraints, traces
class labels using the following constraint languageΩS:

Simple Flow Constraints cs ::= ` ; t | ` ; u

A constraint̀ ; t expresses a shallow labeling oft with `. It means
that a certain typet must at least havè in every set attached to
its top-level type constructor. A constraint` ; u means that̀ is
member of the flow setu. This is formalized by the two relations
C` ` ; u (for annotations) andC` ` ; t (for types) defined as the
smallest relation satisfying the following rules:

C ` ` ; `;u
C ` ` ; u

C ` ` ; `′;u ` 6= `′

` ; ρ ∈C
C ` ` ; ρ

C ` ` ; u C` ` ; t
C ` ` ; χu t1 . . . tn; t

Whenever the type contains a row variable, the judgment is turned
into a constraint. In contrast, set variables can always be instanti-
ated to satisfy the judgment. This formulation of constraint entail-
ment leaves substitution implicit. In an implementation, we have to
add equality/substitution constraints of the formυ = u.

The next two lemmas state some properties about the entailment re-
lation for simple flow constraints. They are needed to prove subject
reduction for the type system equipped with simple flow constraints
as constraint language. We use the short-hand notationL ; t for
the set of constraints̀1 ; t, . . . , `n ; t with L≡ {`1, . . . , `n}.

LEMMA 6. If C ` L1 ; t, and C` L2 ; t, then C` L1∪L2 ; t.

LEMMA 7. If C ` L ; (t1 →u t2; t), then C` L ; t1, C` L ; u,
C ` L ; t2, and C` L ; t.

C ` u≤ u′

C ` `;u≤ `;u′

`−1 ; . . . ;`−n ;υ≤ `+
1 ; . . . ;`+

m;υ′ ∈C `−i ∈ Lab− `+
j ∈ Lab+

C ` `−1 ; . . . ;`−n ;υ≤ `+
1 ; . . . ;`+

m;υ′

C ` ρ≤ ρ ρ≤ ρ′ ∈C
C ` ρ≤ ρ′

p1 . . . pn = polarity(χ) (∀1≤ i ≤ n) C ` ti ≤pi t ′i
C ` u≤ u′ C ` t ≤ t ′

C ` χu t1 . . . tn; t ≤ χu′ t ′1 . . . t ′n; t ′

Figure 3. Entailment of Refined Flow Constraints

We define the following type bindings for labeling constants. They
make use of simple flow constraints to express the occurrence of
the appropriate labels in flow set annotations of the involved types.

[ ]L : ∀ρρ′υ.{L ; ρ}⇒ (ρ→υ ρ);ρ′{→}

[ ]χ,` : ∀ρρρ′υυ′.(χ`;υ ρ;ρ{χ})→υ′ (χ`;υ ρ;ρ{χ});ρ′{→}

In the first type scheme, the constraint guarantees that the set of
labelsL is attached to the top-level node of the type substituted for
ρ. The second type scheme does not have a constraint, it just installs
the (source or sink) label` on top of the type constructorsχ.

Given the previous development, we may now define a type system
for λL that expresses flow information by using the constraint sys-
tem of simple flow constraintsand the above type bindings. The
following subject reduction result shows that typing is preserved
under labeled reductions ofλL.

THEOREM 3. (Subject Reduction forλL) If C |A` a : t, and a−→
a′, then C| A` a′ : t.

3.8 Subject Reduction for λL with Refined
Flow Constraints

As explained in Section 2.1.1, the flow information gained from
typings of the type system using simple flow constraints can be
rather imprecise. It shares flow information between all occur-
rences of expressions with the same type, hence the flow informa-
tion of these expressions coincide. We improve on this shortcoming
by introducing a second, subtyping-based constraint system.

The second constraint system, calledrefined flow constraints, is an
extension of the first one. Its constraint languageΩR extendsΩS.

Refined Flow Constraints cr ::= cs| u≤ u′ | t ≤ t ′

In addition to the constraints fromΩS, there are two other forms of
constraints. The constraintu≤ u′ expresses that (i) every positive
label that occurs inu also occurs inu′ and (ii) every negative label
that occurs inu′ also occurs inu. That is, it is “subset” for posi-
tive labels and “superset” for negative labels. The constraintt ≤ t ′

expresses that the flow sets in the annotations of the typest andt ′

relate by≤. However, the structure of the typest andt ′ is identical,
the “subsetting” happens only on the annotation level.

The entailment relatioǹ for the constraint systemΩR is the least
relation defined by the rules shown in Figure 3 (again leaving sub-
stitution implicit). It guarantees that negative labels cannot travel
from left to right, and positive labels cannot travel from right to



left. Subtyping on a row variable is either suspended (and turned
into a constraint) or immediately satisfiable in the reflexive case.
Subtyping on a type constructor demands that subsetting on the an-
notations holds and that all arguments of the type constructor are in
the subtype relation according to the polarity of the type construc-
tor. The polarity of an argument of a type constructor indicates
whether the constructor is covariant⊕ or contravariant	 in this ar-
gument. The polarity of the constructor,polarity(χ) ∈ {⊕,	}∗, is
a sequence of such indicators. Hence, We definet ≤⊕ t ′ ast ≤ t ′

andt ≤	 t ′ ast ′ ≤ t.

Satisfiability of subtyping constraints is transitive.

LEMMA 8. If C ` t1 ≤ t2, and C` t2 ≤ t3, then C` t1 ≤ t3.

The following lemma enables us to prove subject reduction.

LEMMA 9. If C ` (t1 →u t2; t) ≤ (t ′1 →u′ t ′2; t ′), then C` t ′1 ≤ t1,
C ` t2 ≤ t ′2, C` u≤ u′, and C` t ≤ t ′.

Using the subtyping constraints we can refine the type bindings for
the labeling constants.

[ ]L : ∀ρρ′ρ′′υ.{L ; ρ,ρ≤ ρ′}⇒ (ρ→υ ρ′);ρ′′{→}

[ ]χ,` : ∀ρρρ′υυ′.(χ`;υ ρ;ρ{χ})→υ′ (χ`;υ ρ;ρ{χ});ρ′

The type for labeling constants for positive and negative labels is
exactly the same as before. However the constraint given in the type
schemes of the labeling with sets of flow-class labels has changed.
Instead of simply using the same type variable for argument and
result, the argument now needs to have a subtype of the result.

For proving subject reduction in this calculus, we must be able to
weaken a type assumption to a subtype. This property only holds
for properly labeled terms.

LEMMA 10. If e ↪→ a, C | A,x : t ′,A′ ` a : t, and C` t ′′ ≤ t ′, then
C | A,x : t ′′,A′ ` a : t.

The second type system forλL with flow information uses the sec-
ond constraint system ofrefined flow constraintsand the new type
bindings for the labeling constants.

Subject reduction also holds for labeling reductions ofλL in this
setting provided we are dealing with a sensibly labeled term ob-
tained by the labeling relation↪→. The labeling relation guarantees
that we can always coerce to supertypes.

THEOREM 4. (Subject Reduction) If e−→ e′, e ↪→ a, and C| A`
a : t, then there exists an a′ such that C| A` a′ : t, and e′ ↪→ a′.

3.9 Conservativity over Mini-ML

In this section, we investigate the question how derivability in our
system relates to derivability in the Damas-Milner system, and vice
versa. Clearly, our system should be conservative in the sense that
any expression which has an ML type is also typeable in our sys-
tem. Since this property is trivial (recall that every expression is ty-
peable), we show that an ML typeable expression has a type deriva-
tion without multivocal types in our system. Formally, the judgment
V `U t (defined in Figure 4) characterizes such univocal types.

Basically, univocal types have only one defined type constructor
in the discriminative sum. Further, we must guarantee that each
row variableρ appearing besides a single type constructor does not
interfere with other free variables occurring elsewhere. Hence, the

V `U ρ ρ /∈V

V1 `U t1 . . . Vn `U tn
V1∪ . . .∪Vn∪{ρ} `U χu t1 . . . tn;ρ{χ} ρ /∈ FV(t1)∪ . . .∪FV(tn)

Figure 4. Univocal types

judgmentV `U t states thatt is a univocal type assuming there is
the set of fresh row variablesV available.

Using the judgment for univocal types we specialize the rules of the
generic type system with multivocal type to be able to recognize
those deductions where only univocal types occur.

T(c)� (D, t) C `U D V `U t V ∩ (FV(C)∪FV(A)) = /0
C | A`U c : t

A(x)� (D, t) C `U D V `U t V ∩ (FV(C)∪FV(A)) = /0
C | A`U x : t

C | A`U e1 : (t2 →u t1;ρ→) C | A`U e2 : t2
C | A`U e1 e2 : t1

C | A,x : t2 `U e : t1 ρ /∈ (FV(C)∪FV(A))
C | A`U λx.e : (t2 →u t1;ρ→)

D | A`U e1 : t1 (D,A, t1) `gen(C,s) C | A,x : s`U e2 : t2
C | A`U let x = e1 in e2 : t2

By construction, each term that is typeable only with univocal types
is also typeable under the less restrictive system with multivocal
types. This property is expressed by the following lemma.

LEMMA 11. If C | A`U e : t then C| A` e : t.

Completeness is captured as follows: if there is a Damas-Milner-
typing for a terme, then there is also a typing with univocal types
of a corresponding labeled terma.

THEOREM 5. (Completeness) If ÀDM e: t, and e↪→ a, then there
exists some C,A′, t ′ such that C| A′ `U a : t ′.

Finally, the following Soundness Theorem shows that the systems
`U allows us to identify those terms that are also typeable under the
Damas-Milner type system.

THEOREM 6. (Soundness) If e↪→ a and C| A`U a : t, then there
exists some A′, t ′ such that A′ `DM e : t ′.

Taken together these results imply that our procedure for identify-
ing type errors by looking for multivocal types is correct.

4 Extensions

A number of extensions are required to make the system amenable
to a full-blown programming language. Sum types, product types,
and recursive data types are easy to add. For example, to analyze
programs with lists, we only need to find a sound type scheme for
the list constructors. These type schemes look daunting but they
are straightforward to generate automatically using theV `U t judg-
ment from Section 3.9:

nil : ∀ρ0ρ1υ0.list
υ0 ρ0;ρ1

cons : ∀ρ0ρ1ρ2ρ3ρ4ρ5ρ6υ0υ1υ2υ3.

(ρ1 →l+1 ;υ0

((listl−3 ;υ1 ρ2;ρ5) →l+2 ;υ2(listl+4 ;υ3 ρ3;ρ6);ρ4);ρ0)



The generation principle of the extended type schemes for construc-
tors can be used to generate extended type schemes from arbitrary
ML type schemes (which is necessary in the presence of modules,
libraries, etc). First, fresh row variables are added according to the
judgmentV `U t. Then, each type constructor in the ML type is
assigned a fresh label (possibly reflecting the name of the function
and its defining module) with polarity defined by its occurrence in
the type.

5 Implementation

At present, there is a prototype implementation of the type inference
engine for refined flow constraints (with annotation subtyping) but
without recursive types. The prototype relies on a naive implemen-
tation of row unification and is very inefficient.

However, there are a number of efficiently implemented type infer-
ence algorithms available that should be fairly straightforward to
adapt to our system. Good starting points would be the system of
Henglein and Rehof [18], the Wallace framework of Pottier [28],
and the soft typing implementation of Wright [38]. The Wallace
framework is probably the most advanced of these, it provides con-
ditional constraints, rows, and subtyping. However, it only supports
polymorphic lets at the top-level.

6 Related Work

6.1 Alternative Type Inference Algorithms

Lee and Yi [20] compare the error reporting capabilities of Milner’s
bottom-up algorithmW , which performs unification only at func-
tion applications, and a folklore variation calledM , which passes
the expected type in a top-down manner and hence requires unifica-
tion at lambda abstractions and variables. They refute the (previous)
folklore thatM is better at error reporting thanW by showing that
the error behavior of both is incomparable.

McAdam [21] tries to avoid the bias of a particular traversal order
of the syntax tree by unifying at each expression the substitutions
collected in traversing the subexpression.

Mitchell’s type inference algorithms [23] return an typing judgment
with a type environment and the computed type. The judgment is
computed bottom-up by unifying the types (as usual) and the type
environments.

Chitil [8] identifies the lack of compositionality of the usual infer-
ence algorithms as one important reason, why type error messages
are hard to comprehend. He proposes a type inference algorithm
that is essentially similar to Mitchell’s but which also treatslet-
bound variables in a compositional way and computes principal
typings. Based on the results of the inference algorithm Chitil de-
fines an explanation graph and provides the means to navigate it.
A similar algorithm has also be proposed by Damas as algorithm
T [10]. Principal typings have been investigated separately, Wells
[37] gives a good overview of their use in theory and practice.

6.2 Type Errors

Wand [34] instruments unification in a type inference algorithm for
an implicitly typed lambda calculus. Each substitution created dur-
ing a unification is annotated with the program point (a function
application or some other elimination construct) that caused the uni-

fication. When a clash between two different type constructors is
detected, the list of program points that led to each constructor is
printed along with the location where the clash occurred.

Walz and Johnson [33] also base their approach on inspecting the
unification procedure. By looking for maximum flows in graphs
representing the unification problems they locate program points
for each clash occurring during unification. With their approach the
order how unification proceeds affects the final result of program
points that are reported.

Beaven and Stansifer [6] provide detailed explanations of the types
of expressions in a (partially instantiated) typing derivation. In case,
the typing derivation is incomplete due to a unification failure, they
propose to investigate the two types that led to the failure.

Duggan and Bent [12] criticize earlier attempts to locate the source
of type errors. They propose to provide an explanation for the unifi-
cation steps taken by the type inference algorithm prior to the error.
The form of this explanation is a graph of subexpressions with their
associated effect on the substitution constructed during type infer-
ence. They describe an efficient unification algorithm extended by
gathering the information required for generating the explanation.

Heeren and others [15] describe a type inference engine for a
Haskell subset that is geared towards generating good error mes-
sages. Instead of committing to a particular strategy of solving the
equality constraints arising, they create a constraint graph during an
initial traversal of the syntax tree. In varying the way that this graph
is traversed and simplified, they can simulate a number of type in-
ference algorithms, includingW andM . They propose a number
of heuristics that generate error messages from the constraint graph.
We believe that our type system provides a formal justification for
their constraint graph and their heuristics may be adaptable to ex-
tract error messages from our typings.

Haack and Wells [14] define a slicing-based approach to finding
the source of a type error. They separate type inference in two
phases, generation of equality constraints between types and con-
straint solution. Each equality is annotated with the program point
the caused the generation of the constraint. The solver propagates
the annotation when decomposing equalities. For a program with a
type error, the generated constraint set is not solvable. The authors
show that each minimal unsolvable subset determines a minimal
program slice that exhibits the type error. The problem with their
approach is that the notion of a minimal unsolvable subset is not
unique and they do not give an algorithm that enumerates all such
minimal unsolvable subsets. In contrast, our approach yields a prin-
cipal description of the type errors via the type inference algorithm
for multivocal types. Our slices are not determined by annotations
on constraints, but rather by flow labels inferred by a flow analysis.

6.3 Row Types

Rémy and Wand [36, 30, 31] introduce row types, the heart of our
approach, for modeling record and variant types. They give sound
and complete type inference algorithms for their respective systems.

Pottier [28] considers type inference for constrained type systems
with subtyping. His constraint logic includes conditional con-
straints and rows, which clearly subsumes the facilities required for
inferring multivocal types. The system is phrased as an instance of
the HM(X) framework [25], which provides the actual type infer-
ence algorithm for free.



Skalka and Smith [32] have specialized row types to set types,
which are record types with “just the labels”. They employ con-
ditional constraints to infer precise types for the usual operations
on sets. Our application does not require this precision.

6.4 Soft Typing

Soft typing, or dynamic typing, is a type theory geared at establish-
ing typing properties of programs in dynamically typed languages
like Scheme. In such a language, each value is tagged with its type
and each operation is guarded by a dynamic check that stops execu-
tion if an argument does not have the required type. The use of soft
typing is twofold. On the one hand, the inferred types provide doc-
umentation to the programmer. On the other hand, an implemen-
tation can make use of inferred types to omit dynamic type checks
and potentially optimize data representations by omitting type tags.

Our type system with multivocal types is similar to a soft typing
system. However, there is no attempt to reconcile typings by insert-
ing dynamic check operations. Instead, we aim at finding the loca-
tions that would cause the insertion of a dynamic check. Hence, we
view our work as complementary to the work on soft typing in that
it could provide guidance to the users of such a system.

The techniques used to infer soft typings are similar to the ones
employed in this work. However, since one goal of soft typing is
the ability to omit checks, such systems also try to infer information
about theabsenceof type constructors where our system is only
concerned about their presence.

Cartwright and Fagan [7] is the pioneering work in that area. Their
type system includes discriminative unions, recursive types, and
parametric polymorphism. The system and their algorithm are in-
spired by earlier work on subtyping [24] and record typing [29].

Aiken et al. [3] propose an extended soft typing system that drops
the restriction on unions and adds intersection types and conditional
types. Their system provides a simpler formalism with more accu-
rate typings.

Henglein [17] defines a dynamic typing discipline which precisely
formalizes the role of the dynamic tagging and tag-check opera-
tions. He defines an equational theory for these operations and de-
fines a weaker rewriting theory that gives rise to optimally placed
tagging and tag-check operations inminimal safe completions).

Henglein and Rehof [18] give a framework that enables a transla-
tion of Scheme programs to ML programs. Their work extends soft
typing by not just considering the elimination of tag checks but also
the introduction of tags. It also extends it towards modularity in that
program fragments can be type checked and translated separately.
Furthermore, it guarantees minimal safe completions in the pres-
ence of polymorphism. A main difference of our approach is that
we need not worry about the placement of tag operations because
we are not interested in running the code as long as some types are
multivocal. However, it might be revealing to show where the tag
operationwould be putto narrow down the cause of the error.

Wright’s system [38] is very similar to our multivocal types. It also
extends Hindley/Milner-style polymorphism with recursive types
and discriminative unions (calledtidy types). Type constructors
carry a flag that indicates presence or absence of the constructor.
In contrast, we are only tracking the presence of constructors but
our set annotations track the sources and sinks of computed values.

Flanagan and Felleisen [13] use set-based analysis to discover pro-
gramming errors in a dynamically typed language (Scheme). The
cited work provides a framework for simplifying constraints for set-
based analysis to the point where the analysis can be performed
component-wise. The goals of that work are similar, but the tools
are different.

6.5 Flow Analysis

From the vast literature on flow analysis, the following papers ex-
hibit the correspondence between flow analysis (using abstract in-
terpretation or constraints) and annotated type systems. This corre-
spondence was noted independently by Palsberg and O’Keefe [26]
and Heintze [16]. The first work shows the equivalence of a type
system with recursive types, subtyping, and> and⊥ types with
a constraint-based flow analysis. Heintze’s work relates abstract
interpretation-based flow analysis with annotated type systems. It
characterizes 0CFA in terms of an annotated type system with sim-
ple types and subtyping and exhibits the difference to simple typing
(without subtyping) which performs an equational flow analysis.
Similar observations can be made for polyvariant flow analysis and
intersection types [27].

7 Conclusion

We have designed a type system based on discriminative sum types
with recursive types and annotation subtyping. This system pro-
vides the essential information for discovering the sources of type
errors in programs with ML-style type inference. The paper estab-
lishes the theoretical framework for the system and reports initial
experiments with a prototype implementation. These experiments
are encouraging. In fact, all examples have been checked with the
implementation. Further work is needed to scale the implementa-
tion to a full language and to address advanced features like over-
loading, existential types, and rank-n polymorphism.
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[31] Didier Rémy. Type inference for records in a natural exten-
sion of ML. In Carl A. Gunter and John C. Mitchell, editors,
Theoretical Aspects of Object-Oriented Programming: Types,
Semantics, and Language Design. The MIT Press, 1994.

[32] Christian Skalka and Scott Smith. Set types and applications.
Electronic Notes in Theoretical Computer Science, 75, 2003.

[33] Janet A. Walz and Gregory F. Johnson. A maximium flow ap-
proach to anomaly isolation in unification-based incremental
type inference. In POPL1986 [2], pages 44–57.

[34] Mitchell Wand. Finding the source of type errors. In
POPL1986 [2], pages 38–43.

[35] Mitchell Wand. Type inference for record concatenation and
multiple inheritance. InProceedings of the 1989 IEEE Sym-
posium on Logic in Computer Science, pages 92–97, Pacific
Grove, CA, June 1989. IEEE Computer Society Press. To ap-
pear inInformation and Computation.

[36] Mitchell Wand. Type inference for record concatenation and
multiple inheritance.Information and Computation, 93(1):1–
15, July 1991.

[37] Joseph B. Wells. The essence of principal typings. InProc.
29th Int’l Coll. Automata, Languages, and Programming,
number 2380 in Lecture Notes in Computer Science, pages
913–925. Springer-Verlag, 2002.

[38] Andrew K. Wright and Robert Cartwright. A practical soft
type system for Scheme.ACM Transactions on Programming
Languages and Systems, 19(1):87–152, January 1997.


	Introduction
	Locating Errors with Multivocal Types
	Contributions
	Overview

	Locating Type Errors
	Annotation Subtyping
	Flowing Forwards
	Flowing Backwards
	Inhabitation

	Recursive Types
	Flow Classes
	Collecting and Reporting Type Errors

	Formal System
	The calculi let and let,bool
	The labeled calculus L
	The Damas-Milner Type System
	Discriminative Sum Types with Constraints
	Structural Properties
	Subject Reduction for let and let,bool
	Subject Reduction for L with Simple Flow Constraints
	Subject Reduction for L with Refined Flow Constraints
	Conservativity over Mini-ML

	Extensions
	Implementation
	Related Work
	Alternative Type Inference Algorithms
	Type Errors
	Row Types
	Soft Typing
	Flow Analysis

	Conclusion
	References

