
 
 

 
 
 

Proceedings of the IEEE ICRA 2009 Workshop on  

People Detection and Tracking  
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Editors: 

Kai O. Arras 

Oscar Martinez Mozos 

 

 

Tuesday, May 12, 2009, 9am-5pm 

Room 405, Session TW-F5 



Goal and Organization 
  
 
As robots enter more domains in which they socially interact and cooperate closely with humans, 
the ability of machines to detect and track humans is becoming a key technology for many areas in 
robotics. This workshop brings together key researchers in the domain of people detection and 
tracking with an emphasis to unite people from the vision community and the community that has 
mostly worked with range finders. The goal is to provide a representative survey of the state-of-
the-art and to transfer knowledge within and across the communities. 

 
 
 

Workshop Chairs 
 
• Kai O. Arras, Social Robotics Lab, Univ. of Freiburg, Germany 

• Oscar Martinez Mozos, Robotics and Real-Time Group, Univ. of Zaragoza, Spain 

  
 
Program Committee 
 
• Wael Abd-Almageed, Inst. for Advanced Computer Studies, Univ. of Maryland, USA 

• Wolfram Burgard, Autonomous Intelligent Systems Lab, Univ. of Freiburg, Germany 

• Henrik Christensen, College of Computing, Georgia Inst. of Technology, USA 

• James L. Crowley, INRIA Grenoble Research Center, France 

• Tsutomu Hasegawa, Intelligent Robots and Vision Systems Lab, Kyushu Univ., Japan 

• Patric Jensfelt, CAS, KTH Stockholm, Sweden 

• Ryo Kurazume, Dept. of Intelligent Systems, Kyushu Univ., Japan 

• Bastian Leibe, UMIC Research Centre, RWTH Aachen Univ., Germany 

• Ales Leonardis, Visual Cognitive Systems Laboratory, Univ. of Ljubljana, Slovenia 

• Larry Matthies, Jet Propulsion Laboratory, NASA, USA 

• Bernt Schiele, Multimodal Interactive Systems Group, Univ. of Darmstadt, Germany 

• Roland Siegwart, Autonomous Systems Lab, ETH Zurich, Switzerland 

• Luciano Spinello, Autonomous Systems Lab, ETH Zurich, Switzerland 

• Josephine Sullivan, Learning, Recognition, Visualisation Group, KTH Stockholm, Sweden 

 

Homepage 

http://srl.informatik.uni-freiburg.de/conferences/icra09ws 



Table of Contents 
 

Invited talks 

• Situation Models: A Tool for Observing and Understanding Activity,  
J.L. Crowley, P. Reignier, R. Barranquand, INRIA Grenoble Research Center, France 

• Visual People Detection: Different Models, Comparison and Discussion, 
B. Schiele, M. Andriluka, N. Majer, S. Roth, C. Wojek, Univ. of Darmstadt, Germany 

• A Trained System for Multimodal Perception in Urban Environments, 
L. Spinello, R. Triebel, R. Siegwart, Autonomous Systems Lab, ETH Zurich, Switzerland 

• Multi-target Tracking on a Large Scale: Experiences from Football Player Tracking, 
J. Sullivan, P. Nillius, S. Carlsson, KTH Stockholm, Sweden 

Regular Talks 

• Results from a Real-time Stereo-based Pedestrian Detection System on a Moving Vehicle,  
M. Bajracharya, B. Moghaddam, A. Howard, S. Brennan, L. H. Matthies, JPL, Caltech, USA 

• Motion Planning for People Tracking in Uncertain and Dynamic Environments, 
T. Bandyopadhyay, N. Rong, M. Ang, D. Hsu, W. S. Lee, SMART Centre and National Univ. of Singapore 

• Improved Multi-Person Tracking with Active Occlusion Handling, 
A. Ess, K. Schindler, B. Leibe, L. Van Gool, RWTH Aachen Univ., Germany, and ETH Zurich, CH 

• Visual Person Tracking Using a Cognitive Observation Model, 
S. Frintrop, A. Königs, F. Hoeller, D. Schulz, Univ. of Bonn and FKIE Wachtberg, Germany 

• Multi-model Hypothesis Group Tracking and Group Size Estimation, 
B. Lau, K. O. Arras, W. Burgard, Autonomous Intelligent Systems Group, Univ. of Freiburg, Germany 

• Spatially Grounded Multi-hypothesis Tracking of People, 
M. Luber, G. Diego Tipaldi, K. O. Arras, Social Robotics Lab, Univ. of Freiburg, Germany 

• Multi-Layer People Detection using 2D Range Data, 
O. M. Mozos, R. Kurazume, T. Hasegawa, Univ. of Zaragoza, Spain, and Univ. of Kyushu, Japan 

Posters 

• Visual Receding Horizon Estimation for Human Presence Detection, 
D. Brulin, E. Courtial, G. Allibert, École Nat. Sup. d'Ingénieurs de Bourges and Univ. d'Orléans, France 

• Multiple People Detection from a Mobile Robot using Double Layered Laser Range Finders, 
A. Carballo, A. Ohya, S. Yuta, Intelligent Robot Laboratory, Univ. of Tsukuba, Japan 

• Estimation of Pedestrian Distribution in Indoor Environments using Multiple Pedestrian Tracking, 
M. Emaduddinand, D. A. Shell, Computer Science Dept., Univ. South. California, USA 

• Improved Human Detection using Image Fusion, 
E. T. Gilmore, P. Frazier, M. Chouikha, Howard University in Washington, DC, USA 

• Real-Time Object Tracking and Classification Using a Static Camera, 
S. Johnsen, A. Tews, Hamburg Univ. of Technology, Germany and CSIRO, Australia 

• A Dioptric Stereo System for Robust Real-time People Tracking, 
E. Martinez, A. P. del Pobil, Robotic Intelligence Lab, Jaume-I Univ. Castellón, Spain 

• Experimental Evaluation of a People Detection Algorithm in Dynamic Environments, 
D. L. Rizzini, S. Caselli, Robotics and Intelligent Machines Laboratory, Univ. of Parma, Italy 

• Robust Stereo-Based Person Detection and Tracking for a Person Following Robot, 
J. Satake, J. Miura, Dept. of Information and Computer Sciences, Toyohashi Univ. of Technology, Japan 

• Stream Field Based People Searching and Tracking Conditioned on SLAM, 
K-S. Tseng, A. C-W. Tang, MSRL, ITRI, Hsinchu, and National Central Univ., Taiwan 

 



Schedule 
 

Time Title, Speaker 

9.00 
Welcome and Introduction to the Workshop  
Kai O. Arras, Oscar Martinez Mozos 

SESSION 1: People Detection/Tracking using Vision 

9.15 
Visual People Detection: Different Models, Comparison and Discussion  
Bernt Schiele, Mykhaylo Andriluka, Nikodem Majer, Stefan Roth, Christian Wojek 

9.40 
Multi-target Tracking on a Large Scale: Experiences from Football Player Tracking  
Josephine Sullivan, Peter Nillius, Stefan Carlsson 

10.05 
Results from a Real-time Stereo-based Pedestrian Detection System on a Moving Vehicle  
Max Bajracharya, Baback Moghaddam, Andrew Howard, Shane Brennan, Larry H. Matthies 

Coffee Break (10.30 - 10.50 am) 
10.50 Poster Spotlight 1, Kai O. Arras 

10.55 
Improved Multi-Person Tracking with Active Occlusion Handling  
Andreas Ess, Konrad Schindler, Bastian Leibe, Luc Van Gool 

11.20 
Visual Person Tracking Using a Cognitive Observation Model  
Simone Frintrop, Achim Königs, Frank Hoeller, Dirk Schulz 

Lunch Break (11.45 am - 1.10 pm) 
SESSION 2: People Detection/Tracking using Laser 

1.10 Poster Spotlight 2, Oscar Martinez Mozos 

1.15 
Spatially Grounded Multi-hypothesis Tracking of People  
Matthias Luber, Gian Diego Tipaldi, Kai O. Arras 

1.40 
Multi-Layer People Detection using 2D Range Data  
Oscar Martinez Mozos, Ryo Kurazume, Tsutomu Hasegawa 

2.05 
Multi-model Hypothesis Group Tracking and Group Size Estimation  
Boris Lau, Kai O. Arras, Wolfram Burgard 

SESSION 3: Multiple Sensors and/or Applications 

2.30 
Situation Models: A Tool for Observing and Understanding Activity 
James L. Crowley, Patrick Reignier, Remi Barranquand 

2.55 
A Trained System for Multimodal Perception in Urban Environments  
Luciano Spinello, Rudolph Triebel, Roland Siegwart 

Coffee Break (3.20 - 3.50 pm) 
3.50 Poster Spotlight 3, Kai O. Arras 

3.55 
Motion Planning for People Tracking in Uncertain and Dynamic Environments  
Tirthankar Bandyopadhyay, Nan Rong, Marcelo Ang, David Hsu, Wee Sun Lee 

SESSION 4: Poster Session (4.20 - 5.00 pm) 
 



 
 
 
 

Invited Talks 



Proceedings of the IEEE ICRA 2009 
Workshop on People Detection and Tracking 
Kobe, Japan, May 2009 
 

  

  

Abstract— In this paper we describe the use of situation 
models for observing and understanding activity. Observing 
activity in natural environments can be an extremely complex 
perceptual problem. Situation models provide a means to both 
focus attention in such systems and to provide default 
reasoning to accommodate missing and erroneous observations. 
We briefly review the use of situations models in Cognitive 
Science and then describe how such models can be used to 
provide services based on observation of human activity. We 
present a layered component-oriented software architecture in 
which components for perception and action maintain a 
situation model for use in providing human services. We 
describe how this model can be used to observe activity. 

I. INTRODUCTION 

Human activity is extremely rich. Real world scenes can 
contain an overwhelming number of possible agents and 
objects to detect and observe.  As are result, systems and 
services based on observation of activity must, either 
implicitly or explicitly, be able to choose where to look next 
and what to look for. Designers of system for observing 
activity are increasingly confronted with the problem of 
control of attention. 

Attention is not the only problem confronting designers of 
systems for observing activity. Activity in the real world 
often occurs in less than ideal viewing conditions. Poor 
lighting, background clutter, object texture, and occlusions 
can degrade the reliability of even the most well designed 
systems. Thus systems and services must be able to detect 
and discard uncertain and unreliable observations, and if 
appropriate, substitute default information. In addition, many 
services require real time information from perception. In 
such systems it may be preferable to provide an immediate 
response with default information and to use background 
processes to verify that the response was correct.  

Current systems for observing activities tend to be 
constructed in an ad-hoc manner with control structures that 
are hard-wired into the system design. Such systems are 
generally restricted to detecting a very small set of activities 
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observed within a highly controlled environment.  Adapting 
such systems to different operating environments or 
modifying such systems to observe different forms of 
activity can involve extensive reprogramming.   

In this paper we propose an approach for constructing 
systems for observing activity based on a model from 
Cognitive Science. We propose the use of situation models 
to organize, control, and interpret perception of activity. We 
will first provide some background from Cognitive Science 
concerning the use of situation models as a model of human 
cognition. We then describe how to use such a model to 
build software systems that provide services. We propose a 
layered, component-oriented software architecture for 
building situation aware services, and examine how situation 
models can be used to structure perceptual components and 
to provide default information for understanding activity. 
We conclude with a discussion of the problems of 
automatically acquiring situation models through 
developmental learning.  

II. SITUATION MODELS AS MODELS FOR COGNITION 

Situation models have been proposed by Johnson-Laird [1], 
as a cognitive theory for human mental models.  Over the 
last 25 years, theories about situation models have been 
adopted and developed by a large community of cognitive 
psychologists. Key publications include [2], [3] as well as 
[4].  

Situations are defined as a set of relations between 
entities, where a relation is a predicate function and an entity 
is anything that can be observed. According to Radansky [2], 
a situation model is a mental representation of a described or 
experienced situation in a real or imaginary world.   
Situation models are commonly composed of four primary 
types of information: 
1) A spatial-temporal framework  (spatial locations, time 

frames) 
2) Entities (people, objects, ideas, etc. ) 
3) Properties of entities (color, emotions, goals, shape, etc. 

) 
4) Relational information (spatial, temporal, causal, 

ownership, kinship, social, etc. )  
Situation models can be structured along dimensions of 

space, time, causality, actors and objects. Extensions of 
situations models have been proposed to represent intentions 
of actors.  It is commonly assumed that both general world 
knowledge (knowledge about concept types, e.g., scripts, 
schemas, categories, etc ) and referent specific knowledge 
(knowledge about specific entities, independent of the 
situation) are used in constructing situation models.  

Situation Models: A Tool for Observing and Understanding Activity  
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Situation models are used for representations of: 
1) Information about events. 
2) Information about sequences of events.  
3) Information about collections of episodes  

We have adapted the concept of situation model to 
construct systems and services based on monitoring and 
observing human activity [5], [6], [7]. Although most of our 
implementations have been constructed using smart 
environments, such services can also be designed using 
robotic systems. Indeed, our approach to smart environments 
is to see the environment as a form of "inside out" robot, 
observing and interacting with occupants. Thus we maintain 
that models for understanding activity in smart environments 
may also be adapted for construction of autonomous robots.  

III. SITUATION MODELS FOR OBSERVING ACTIVITY 

Situation models can be used to addresses the twin problems 
of focus of attention, and operation with unreliable, 
erroneous or missing data. They can also be used to 
decouple services from the time constraints normally 
imposed by real-time (or near real-time) vision systems.  We 
present our technique in the context of a service-oriented 
architecture constructed using a layered, component-based, 
software model. For the robotics and vision communities, 
these concepts may require some explanation.  

The term "service" is used here in its most general form. 
Generally, it will refer to assistance that informatics systems  
provide to people.  User services can be designed as 
software agents that interact and assist people. Over the last 
few years, we have constructed a variety of services that 
observe and model human activity in order to provide 
assistance that is dependent on human context. Such systems 
are generally said to be "context aware". Exampels include 
services for lecture recording [8], meeting services [9], 
monitoring of the health and well-being of elderly, and 
availability monitoring [7]. As sensor and actuator 
technology mature, we can expect to see the emergence of 
an increasing variety of such systems for domestic services 
(cleaning, logistics, cooking), commercial services 
(shopping, queue management, customer assistance), health 
monitoring and assisted living, security monitoring, and a 
variety of other application domains. All of these examples 
require observing and understanding the actions of humans. 
We believe that situation models will provide an important 
component for such systems.  

We note that the term "service oriented" also has a more 
technical meaning for the software engineering community. 
In software engineering, a "service oriented" system is one 
in which software components interact according to a well-
defined contract. For example, a location service integrates 
information from a variety of sources to estimate the current 
location of a user.  Although the two uses of the term 
"service" are not incompatible, they can cause some 
confusion. Thus we will use the explicit term "software 
services" for services that are primarily designed to interact 
with software components. We will interchangeably use 

"user services" or simply "services" for systems that interact 
with and assist people.  

Modern software systems are generally designed using a 
layered architecture. A layered architecture organizes the 
system into a hierarchy of interchangeable components, with 
well-defined interfaces. The design and operation at a 
particular layer may proceed independently of the 
underlying components. Components that make up a 
particular layer may be reused or shared by a variety of 
services. Components that are temporarily inoperative may 
be replaced with alternative components. A common 
example of this approach is provided by the current 
generation of location aware services on mobile devices that 
can interchangeably use location information from GPS, cell 
phone repeaters, or WIFI repeater identity. Components for 
providing location from WIFI, GPS or cell-phone repeaters 
are a form of "perceptual component" that operate in parallel 
using competing methods to make available a key piece of 
information: current location.  We propose a similar 
approach to building components for observing activity. 
Perceptual components can be constructed to observe a 
scene with competing methods to provide information that 
may then be shared between different services.  

A situation model falls naturally at the interface between 
user services and perceptual components. For user services, 
the situation model provides a default reasoning system that 
can complete or repair partial or missing information from 
sensing. For the perceptual components, the situation model 
can be used to focus attention on the objects and events that 
are relevant to a service, allowing irrelevant objects or 
events to be ignored. The situation model can be used to 
predict possible events, both to focus attention, and to 
prepare a reaction before the event occurs.  

In the following, we describe a layered architecture for 
context aware user services based on observation of activity. 
We then describe the elements of the situation model, and 
describe how such a model can be used to configure and 
control perceptual components, to focus attention, predict 
events, and to provide default reasoning for observation of 
activity.  

A. Services, Sensors, and Components  

We are interested in services that provide assistance through 
the observation of human activity. A service determines 
requirements for perception and action, without specifying 
how these requirements are to be met.  Hard-wiring the 
interconnection between sensor signals and actuators is 
possible, and can provide simplistic services that are 
hardware dependent and have limited utility. Separating 
services from their underlying hardware makes it possible to 
build systems that operate in a larger range of environments, 
for a larger variety of functions. However such separation 
requires that the sensor-actuator layer provide logical 
interfaces, or standard API's, that are function centered and 
device independent. Hardware independence and generality 
require abstractions for perception and action.  



  

 
Fig. 1. A layered model for systems that observe human activity. 

 
A layered architecture of user services is shown in figure 

1.  At the lowest layer, the service's view of the world is 
provided by a collection of physical sensors and actuators.  
This corresponds to the sensor-actuator layer. This layer 
depends on the technology and encapsulates the diversity of 
sensors and actuators by which the system interacts with the 
world. Information at this layer is expressed in terms of 
sensor signals and device commands.  

Service abilities for perception and action are provided by 
components for perception and action. Components make 
observations about the environment, interact with users, and 
take actions to impart changes to the environment.   

In our systems, services maintain information about users 
and the environment in a situation model. The situation 
model has the form of a network of situations. Each situation 
has three facets: Observation, Reaction and Prediction. The 
observation facet specifies the entities, properties and 
relations needed to define the situation. This can act as a 
specification that serves to activate and configure a set of 
perception components capable of providing observations 
about the required entities and their relations. The reaction 
facet specifies how the service should behave in each 
situation, including both the desired state of the 
environment, and a specification communications that the 
service should make with the user. The Prediction facet 
indicates possible changes to the current situation, by 
pointing to adjacent situations and describing the events that 
can indicate the change. 

Sensors are devices that make measurements, ranging 
simple devices that measure temperature or humidity, to 
devices that capture motion (infrared motion detectors), 
acoustic energy (microphones) and images (cameras) or 3D 
structure (range sensors, stereo vision systems). Actuators 
impart change on the environment. Such devices can range 
from information displays, control of lighting and sound 
systems, motorized controls for doors, windows and window 
blinds, as well as mobile robotic devices for logistics, 
cleaning or entertainment.  

Components for perception and action operate at a higher 
level of abstraction than sensors and actuators.  While 
sensors and actuators operate on device-specific signals, 
perception and action operate in terms of environmental 
state. Perception interprets sensor signals by detecting, 
recognizing and observing people, things and events.  Action 
components alter the environment to being it to a desired 
state. Tightly coupling perception and action can offer many 
advantages. Controlling action with perception allows a 
service to adapt action in accordance with the effect on the 
environment. Action can also be used to reconfigure the 

environment to improve perception, or even to probe the 
environment as part of perception.   

B. Components for Perception and Action 

Perception and action components are autonomous 
assemblies of modules executed in a cyclic manner by a 
component supervisor. Components communicate via 
synchronous data streams and asynchronous events in order 
to provide software services for action or perception. We 
propose a data-flow process architecture for software 
components for perception and action [10], [11], [12]. 
Component based architectures, as described in Shaw and 
Garlan [13], are composed of auto-descriptive functional 
components joined by connectors. Such an architecture is 
well adapted to interoperability of components, and thus 
provides a framework in which components can employ 
competing methods to accommodate sensor modes that are 
unreliable or available in only limited conditions.  

Components are controlled by a supervisory module. The 
component supervisor interprets commands and parameters, 
supervises the execution of the transformation, and responds 
to queries with a description of the current state and 
capabilities of the component. The auto-critical report from 
modules allows a component supervisor to monitor the 
execution time and to adapt the schedule of modules for the 
next cycle so as to maintain a specified quality of service, 
such as execution time or number of targets tracked.  Such 
monitoring can be used, for example, to reduce the 
resolution of processing an image by selecting 1 pixel of N 
[14] or to selectively delete targets judged to be 
uninteresting or erroneous [15]. 

 
Figure 2. An example of perceptual component based on visual tracking 

 
In addition to recognition, the supervisory component 

provides execution scheduling, self-monitoring, parameter 
regulation, and communications. The supervisor acts as a 
scheduler, invoking execution of modules in a synchronous 
manner.  For self-monitoring, a component applies a model 
of its own behavior to estimate both quality of service and 
confidence for its outputs. Monitoring allows a process to 
detect and adapt to degradations in performance due to 
changing operating conditions by reconfiguring its 
component modules and operating parameters.  Monitoring 
also enables a process to provide a symbolic description of 
its capabilities and state.  



  

Homeostasis or "autonomic regulation of internal state" is 
a fundamental property for robust operation in an 
uncontrolled environment. A component is auto-regulated 
when processing is monitored and controlled so as to 
maintain a certain quality of service. The process supervisor 
maintains homeostasis by adapting module parameters to 
maximize estimated quality of service.  For example, 
processing time and precision are two important state 
variables for a tracking process. Quality of service measures 
such as cycle-time, number of targets, or precision can be 
maintained by dropping targets based on a priority 
assignment or by changing resolution for processing of some 
targets.  

During the communication phase, the supervisor may 
respond to requests from other components. These requests 
may ask for descriptions of process state, process 
capabilities, or may provide specification of new recognition 
methods. The supervisor acts as a programmable interpreter, 
receiving snippets of code script that determine the 
composition and nature of the process execution cycle and 
the manner in which the process reacts to events. 
Recognition procedures are small procedures interpreted by 
a lightweight language interpreter [16]. In our 
implementation, such procedures may be preprogrammed or 
they may be downloaded to the component during 
configuration as snippets of code using a lisp-like language.   

For most human activities, there are a potentially infinite 
number of entities that could be observed and an infinite 
number of possible relations for any set of entities. The 
appropriate entities and relations must be determined with 
respect to the service to be provided. This is the role of the 
situation model. The situation model allows the system to 
focus computing resources, to provide missing information, 
and to determine appropriate or inappropriate system actions 
for the current state of the activity.  

Perceptual components communicate using Streams, 
Events, and Queries. Streams are synchronous 
communication channels for communicating continual data 
such as image frames or acoustic signals. An important role 
for perceptual components is to process streams in order to 
observe entities and their properties. Events are 
asynchronous messages generated by components in 
response to changes in entities or their properties.  Events 
may be sent to other components or to the situation model. 
Queries are communication transactions in which a service, 
the situation model, or another component exchange 
messages with the component supervisor in order to 
interrogate a component about its entities and their 
properties.  

C. Assembling Components to Provide Services  

We have constructed a middle-ware environment [17] that 
allows us to dynamically launch and connect components on 
different machines. This environment, called O3MiSCID, 
provides an XML based interface that allows components to 
declare input command messages, output data structures, as 
well as current operational state.    In this environment, a 

user service may be created by assembling a collection of 
perceptual components.  

Available components are discovered by interrogating an 
component data-base. An open research challenge is to 
provide an ontological system for indexing components 
based on function in a manner that is sufficiently general to 
capture future functionalities as they emerge. In addition the 
component data-base provides information about message 
formats and data types for communication of streams, events 
and queries.   

Figure 3 shows a simple example of a service provided by 
an assembly of perceptual components. This service 
integrates information from multiple cameras to provide 3-D 
target tracking.  A set of tracked entities is provided by a 
Bayesian 3D tracking process that tracks targets in 3D scene 
coordinates. This process specifies the predicted 2-D Region 
of Interest (ROI) and detection method for a set of pixel-
level detection components. These components use color, 
motion or background difference subtraction to detect and 
track blobs in an image stream from a camera. The 
O3MICID middle-ware makes it possible to dynamically 
add or drop cameras to the process during tracking.  

 
Fig. 3. An example of an assembly of perceptual components. The 3D 
Bayesian blob tracker provides a ROI and detection method for a number of 
2D entity detection components. The result is used to update a list of 3D 
blobs. 

D. Entities and Relations 

Situations are defined as relations between entities.  An  
"entity" is anything that can be observed.  This solipsistic 
viewpoint admits that the system can only see what it knows 
how to see. At the same time, it sidesteps existential 
dilemmas related to how to define notions of "object" and 
"class".   

Formally, entities are correlated sets of observations. 
Entities are grounded in the software components for 
observation of activity, typically through some form of 
tracking process that correlates observations over time. 
Entities can be decorated with properties that make possible 
the determination of relations between entities.  

A relation is a predicate or binary function computed on 
the properties of one or more entities. Relations have an 
arity, that specifies the number of properties that serve as 
arguments. An arity-1 relation is true when a property is 
observed to be within some range of values, or is otherwise 
signaled as true by a sensor. Examples can include (standing 
person) or (running person). Relations of Arity-2 include 



  

many of the classical spatial and temporal relations as well 
as more abstract functions describing social-behaviour or 
emotion. Spatial relations can be 2D or 3D and relative or 
absolute, depending on the requirements of the service.  
Examples can include absolute  position of actors (at podium 
person), (seated-at table person), relative position (facing 
person1 person2), or even refer to the posture of persons 
(standing person). Observing human interaction can require 
perceptual components that detect more abstract social 
behaviour, such as (talking-to person1 person2) or (smiling-
at person1 person2).  

As mentioned above, the number of potential relations 
that might be observed is an unbounded set. The situation 
model for a service specifies the relations between that are 
required, the entities (agents and objects) that must be 
observed, the properties that are needed to determine 
relations. The task of the system designer is to provide 
perceptual components that can detect and track the required 
entities, measure the required properties, and detect when 
the required relations are true.  

Human attention is an important relation in social 
situations. In our approach, we have adopted the attention 
model developed by Maisonnasse [18]. In this work, 
attention is defined as a cognitive process of selectively 
concentrating on one aspect of the environment while 
ignoring other things. We include attention of agents as one 
of the fundamental relations for describing social situations. 

E. Generalizing with Roles 

In most situations, the exact identity of the entity is not 
important. Thus we have generalized situation models by the 
introducing of the concept of "role" [5]. A role is a form of 
abstract model for an entity. In applying a situation model to 
describe a scene, a system will select from available entities 
to determine which entity can "fill" each role.  

Operationally, a role is an abstract generalization for a 
class of entities. Role classes are typically defined based on 
the set of actions that entities in the class can take (actors), 
or the set of actions that the entities can enable (props). 
Formally, role is a function that selects an entity from the set 
of observed entities.  

A “role” is NOT an intrinsic property of an entity, but 
rather, is an interpretation applied to an entity by the system. 
Entities are assigned to roles by a role assignment process. 
Role assignment generally occurs by applying a set of tests 
to available entities.  The role assignment process acts as a 
form of  "filter" [19] that sorts entities based on the 
suitability of their properties. The most suitable entity wins 
the role assignment.  

In our experiments for automatic learning of situation 
models [6], we have discovered that roles provide 
generalization, making it possible to greatly accelerate 
learning. Reactions learned for a situation composed of one 
set of entities can be used to understand a different set of 
entities.  

F. Situations as Scripts for Understanding Activity 

The situation model acts as a non-linear script for 
interpreting activity and predicting the corresponding 
appropriate and inappropriate actions for services. This 
framework organizes the observation of interaction using a 
hierarchy of concepts: scenario, situation, role, entity and 
relations. A situation is defined as a configuration of 
relations over a set of entities playing roles. Thus a situation 
is a form of state, expressed as a logical expression (a 
conjunction of predicates).  This logical expression is 
composed of predicates whose arguments are roles.  This 
concept generalizes and extends the common practice of 
defining situations based on the relative position of actors 
and objects. 

Relations test the properties of entities that have been 
assigned to roles. As mentioned above, situations also 
predict possible future situations. This is captured by the 
connectivity of a situation network. Changes in the logical 
expression of relations or in the selection of entities playing 
roles are represented as changes in situation. Such changes 
can trigger system actions. 

A situation is a form of state, expressed as a logical 
expression (a conjunction of predicates).  Situations are 
organized into networks, with transition probabilities, so that 
possible next situations may be predicted from the current 
situation. In our systems, the situation model drives focus of 
attention by specifying the entities and relations that should 
be attended. When a service is initiated, a list of relevant 
entities and relations are provided, along with the relevant 
configuration information. This list is used to initiate and 
configure the relevant perceptual and action components 
needed to maintain the situation model.   

Each situation contains a list of expected relations, as well 
as expected observed entities and their expected properties. 
Transitions between situations can be triggered by events, 
and do not require verification for the entire set of relations, 
entities and properties. Thus it is possible for a situation to 
provide default values for relations, and properties that have 
not been verified. When interrogated by a service, a situation 
model may respond with the default values, whether or not 
these values can be currently verified. Such a response can 
be provided without waiting for an actual verification to 
occur. However, this verification can be used as an integrity 
check for the situation model   

When a system responds with a default value, it is good 
practice for the system to query the relevant perceptual 
components to verify that the default value is correct.  In 
some cases, this may indicate a divergence between the 
situation model and the environment. Such a divergence can 
be used to trigger a diagnostic process to recover from the 
current error, by adapting perception to changes in the 
environment or by developing the situation model by adding 
new situations or behaviours.   



  

IV. 5. LEARNING SITUATION NETWORKS 

We distinguish the concepts of adaptation from development 
[20]. Adaptation allows a system to maintain consistent 
behaviour across variations in operating environments. The 
environment denotes the physical world (e.g., in the street, 
lighting conditions), the user (identification, location, goals 
and activities), social settings, and computational, 
communicational and interactive resources. Development 
refers to the acquisition of abilities, in this case encoded as 
situation models composed of the entities, roles and relations 
with which situation is described and service actions are 
performed.  

Systems for providing services based on observing 
activity must both adapt and develop. Adaptation is 
necessary to maintain consistent behaviour while 
accommodating changes in the operating environment, task, 
user population, preferences or some other factors. At the 
same time, human activity is too complex to be fully 
captured in a pre-programmed situation model. An activity 
model must develop through observation and interaction 
with users. A fundamental challenge is to provide both 
automatic adaptation and automatic development without 
disruption.  

Current learning technologies, such as hidden Markov 
models and neural networks, require large sets of training 
data – something that is difficult to obtain for an 
uncontrolled  environment. Development of context models 
requires new ways of looking at learning, and suggests the 
need for a new class of minimally supervised learning 
algorithms. This requires that learning be studied as part of a 
semi-autonomous system. It requires that systems have 
properties of self-description, self-evaluation and auto-
regulation, and may well lead to new classes of learning 
algorithms specifically suitable to developing and evolving 
context models in a non-disruptive manner.  

We are currently experimenting with techniques for 
adapting activity models based on pre-defined stereotypical 
situations [21]. We are exploring different approaches to 
learning for development of activity models starting from a 
predefined stereotypical model using feedback about the 
system actions. Because the different components of the 
model (entities, roles, relations, and situations) depend on 
each other, these cannot be developed simultaneously. Thus 
we have focused on the development of the situation 
networks and the associated system actions.  

Bayesian models (in particular Hidden Markov Models 
[22] as well as algorithms based on first-order logic [23] can 
be used to represent and adapt the situation network. 
However, these approaches do not have desirable properties 
concerning the extension of the number of situations. 
Bayesian models require a large amount of example data to 
extend the number of states. First-order logic algorithms 
cannot create new predicates (problem of higher order 
logic), which is necessary for the extension of situations. 
Thus we propose an approach for changes in the structure of 
the situation network, as shown in figure 4. 

 The input to the algorithm is a predefined situation 
network along with feedback from prior use mediated by a 
supervisor. The supervisor corrects, deletes or preserves the 
actions executed by the system while observing a user in the 
environment. Each correction, deletion, or preservation 
generates a training example for the learning algorithm 
containing current situation, roles and configuration of 
relations, and the (correct) (re)action. The differences 
between the actions given in the training examples and the 
actions provided in the predefined situation network will 
drive the different steps of the algorithm. 

Initially, our approach has been to directly modify system 
actions using the existing situation network. If action A is 
associated with situation S, and all training examples 
indicate that action B must be executed instead of A, then B 
is associated to S and the association between A and S is 
deleted. 
 

 
Fig 4: Overview of the algorithm for adapting system actions  

V. CONCLUSIONS 

 Activity models for context aware services can be expressed 
as a network of situations concerning a set of roles, entities 
and relations. Roles are abstract classes for entities. Entities 
may be interpreted as playing a role, based on their current 
properties.  Relations between entities playing roles define 
situations.  This conceptual framework provides default 
reasoning, focus of attention, and real time response for 
services that require observation of human activity. This 
model can also provide a  basis for adaptation and 
development of non-disruptive software services for aiding 
human-to-human interaction.   

Socially aware observation of activity and interaction is a 
key requirement for development of non-disruptive context 
aware user services. For this to become reality, we need 
methods for robust observation of activity, as well as 
methods to automatically learn about activity without 
imposing disruptions. The framework and techniques 
described in this paper are intended as a foundation for such 
observation. 



  

REFERENCES 

[1] P. N. Johnson-Laird, Mental Models: Towards a 
Cognitive Science of Language, Inference, and 
Consciousness, Harvard Univ. Press, Cambridge, MA, 
1983. 

[2] Radvansky, G. A., & Zacks, R. T.  (1997).  The retrieval 
of situation-specific information.  In M. A. Conway 
(Ed.)  Cognitive Models of Memory, pp. 173-213. 
Cambridge, MA: MIT Press.  

[3] Zwaan, R. A. Radvansky, G. A., "Situation Models in 
Language Comprehension and Memory, 
PSYCHOLOGICAL BULLETIN,  VOL 123; 
NUMBER 2, pages 162-185, 1998. 

[4] P.N. Johnson-Laird, Mental models, MIT Press 
Cambridge, MA, USA, 1989. 

[5] J. L. Crowley, "Context Driven Observation of Human 
Activity", European Symposium on Ambient 
Intelligence, Amsterdam, 3-5 November 2003 

[6] J. L. Crowley, O. Brdiczka, and P. Reignier. Learning 
Situation Models for Understanding Activity In The 5th 
International Conference on Development and Learning 
2006 (ICDL06), Bloomington, Il., USA, June 2006 

[7] O. Brdiczka, J. L. Crowley, P. Reignier,  Learning 
situation models for providing context-aware services, 
in "IEEE Transactions on Man, Systems and 
Cybernetics, Part B", Volume 38, Number 1, January 
2008. 

[8] F. Metze, P. Gieselmann, H. Holzapfel, T. Kluge, I. 
Rogina, A. Waibel, and M. Wolfel, J. Crowley, P. 
Reignier and D. Vaufreydaz, F. Bérard, B. Cohen, J. 
Coutaz, V. Arranz, M. Bertran and H. Rodriguez, "The 
FAME Interactive Space", 2nd Joint Workshop on 
Multimodal Interaction and Related Machine Learning 
Algorithms, MLMI, Edinburgh, July 2005. 

[9] M. Danninger, T. Kluge, R. Stiefelhagen, 
"MyConnector: analysis of context cues to predict 
human availability for communication", International 
Conference on Multimodal Interaction, ICMI 2006: 
pp12-19, Trento, 2006. 

[10] Software Process Modeling and Technology, edited by 
A. Finkelstein, J. Kramer and B. Nuseibeh, Research 
Studies Press, John Wiley and Sons Inc, 1994. 

[11] J. Rasure and S. Kubica, “The Khoros application 
development environment “, in Experimental 
Environments for computer vision and image 
processing, H. Christensen and J. L. Crowley, Eds, 
World Scientific  Press,  pp 1-32, 1994. 

[12] J. L. Crowley, "Integration and Control of Reactive 
Visual Processes", Robotics and Autonomous Systems, 
Vol 15, No. 1, decembre 1995 

[13] M. Shaw and D. Garlan, Software Architecture: 
Perspectives on an Emerging Disciplines,  Prentice Hall, 
1996. 

[14]  J. Piater and J. Crowley, "Event-based Activity 
Analysis in Live Video using a Generic Object 
Tracker", Performance Evaluation for Tracking and 
Surveillance,  PETS-2002, Copenhagen, June 2002. 

[15]  D. Hall, R. Emonet, and J. L. Crowley, "An automatic 
approach for parameter selection in self-adaptive 

tracking." In International Conference on Computer 
Vision Theory and Applications (VISAPP), Setubal, 
Portugal, Feb. 2006. 

[16] A. Lux,  "The Imalab Method for Vision Systems", 
International Conference on Vision Systems, ICVS-03, 
Graz, april 2003. 

[17] R. Emonet,  D. Vaufreydaz,  P. Reignier,  J. Letessier, 
"O3MiSCID: an Object Oriented Opensource 
Middleware for Service Connection, Introspection an  
Discover",  1st IEEE International Workshop on 
Services Integration in Pervasive Environments - June 
2006.  

[18] J. Maisonnasse, N. Gourier, O. Brdiczka and P. 
Reignier, Attentional Model for Perceiving Social 
Context in Intelligent Environments, Artificial 
Intelligence Apllications and Innovations 2006. 

[19] O. Brdiczka,  J. Maisonnasse,  P. Reignier, Automatic 
Detection of Interaction Groups, 2005 International 
Conference on Multimodal interaction, ICMI '05, Trento 
It., october 2005 

[20] J Coutaz, J. L. Crowley, S. Dobson, and D. Garlan, 
"Context is Key", Communications of the ACM, Special 
issue on the Disappearing Computer, Vol 48, No 3, pp 
49-53 March 2005.  

[21] R.  Barraquand and J. L. Crowley, "Learning Polite 
Behavior with Situation Models", Third International 
Conference on Human Robot Interaction (HRI 2008), 
12-15 March 2008, Amsterdam, The Netherlands 

[22] L. R. Rabiner, A Tutorial on Hidden Markov Models 
and selected Applications in Speech Recognition. 
Readings in speech recognition. p. 267-296, 1990. 

[23] J. R. Quinlan, Learning Logical Definitions from 
Relations. Machine Learning. 5(3), p. 239-266, 1990. 

 



Proceedings of the IEEE ICRA 2009 
Workshop on People Detection and Tracking 
Kobe, Japan, May 2009 
 

Visual People Detection – Different Models, Comparison and Discussion

Bernt Schiele, Mykhaylo Andriluka, Nikodem Majer, Stefan Roth and Christian Wojek
Department of Computer Science, TU Darmstadt

Abstract

Over the last few years, visual people detection has made
impressive progress. The paper gives an overview of some
of the most successful techniques for people detection and
also summarizes a recent quantitative comparison of sev-
eral state-of-the-art methods. As a proof-of-concept we
show that the combination of visual and laser-based peo-
ple detection can result in a significant increase in perfor-
mance. We also briefly discuss future research directions
for visual people detection.

1. Introduction
People detection is one of the most challenging prob-

lems in computer vision due to large variations caused by
articulation, viewpoint and appearance. At the same time
detecting and tracking people has a wide range of applica-
tions including robotics, image and video indexing, surveil-
lance and automotive safety. Consequently visual people
detection has been researched intensively with a rapid rate
of innovation. Recently, several researchers have reported
impressive results [23, 33, 6, 18, 1, 36] for this task.

The aim of this paper is threefold. First, we provide an
overview of some of the most successful methods for vi-
sual people detection. Second, we summarize a compara-
tive study of sliding-window techniques [35]. And third,
we show the potential of combining visual people detection
with other modalities such as laser.

Broadly speaking there are two major types of ap-
proaches for visual people detection. Sliding-window meth-
ods exhaustively scan the input images over positions and
scales independently classifying each sliding window (e.g.
[23, 33, 6]). Other methods generate hypotheses by evi-
dence aggregation often using part-based human body mod-
els (e.g. [12, 9, 21, 18, 37, 28, 1]). After discussing some
of the most successful sliding-window approaches in sec-
tion 2 we summarize a comparative study of such methods
in section 3. Section 4 briefly describes a part-based model
that has shown to outperform sliding-window techniques in
the presence of partial occlusion. Section 5 then describes
an experiment to complement visual people detection with a

laser-range finder thereby significantly reducing the number
of false positives of the visual people detector. The last sec-
tion 6 discusses promising research directions to improve
the performance of today’s visual people detection meth-
ods.

2. Sliding-window techniques
Sliding window detection systems scan the image at

all relevant positions and scales to detect a person. Con-
sequently there are two major components: the feature
component encodes the visual appearance of the person,
whereas the classifier determines for each sliding window
independently whether it contains the person or not. As
typically many positions and scales are scanned these tech-
niques are inherently computationally expensive. Fortu-
nately, due to recent advances in GPUs, real-time people de-
tection is possible as e.g. demonstrated by [34]. In [35] we
conducted a quantitative comparison that we briefly sum-
marize in section 3.

As a complete review on people detection is beyond the
scope of this work, we focus on most related work. An
early approach [23] used Haar wavelets and a polynomial
SVM while [33] used Haar-like wavelets and a cascade of
AdaBoost classifiers. Gavrila [13] employs a hierarchical
Chamfer matching strategy to detect people. Recent work
often employs statistics on image gradients for people de-
tection. [30] uses edge orientation histograms in conjunc-
tion with SVMs while [6] uses an object description based
on overlapping histograms of gradients. [27] employs lo-
cally learned features in an AdaBoost framework and Tuzel
[32] presents a system that exploits covariance statistics on
gradients in a boosting classification setting. Interestingly,
most approaches use discriminant classifiers such as Ada-
Boost or SVMs while the underlying object descriptors use
a diverse set of features. Therefore the following section
briefly describe some of these features in more detail.

Haar wavelets have first been proposed by Papageor-
giou and Poggio [23]. They introduce a dense overcomplete
representation using wavelets at the scale of 16 and 32 pixel
with an overlap of 75%. Three different types are used,
which allow to encode low frequency changes in contrast:
vertical, horizontal and diagonal. Thus, the overall length of
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the feature vector for a 64× 128 pixel detection window is
1326 dimensions. In order to cope with lighting differences,
for each color channel only the maximum response is kept
and normalization is performed according to the window’s
mean response for each direction. Additionally, the origi-
nal authors report that for the class of people the wavelet
coefficient’s sign is not carrying information due to the va-
riety in clothing. Hence, only the absolute values for each
coefficient is kept. During our experiments we found that
an additional L2 length normalization with regularization
of the feature vector improves performance.

Histograms of oriented gradients have been proposed
by Dalal and Triggs [6]. Image derivatives are computed
by centered differences in x- and y direction. The gradient
magnitude is then inserted into cell histograms (8 × 8 pix-
els), interpolating in x, y and orientation. Blocks are groups
of 2 × 2 cells with an overlap of one cell in each direc-
tion. Blocks are L2 length normalized with an additional
hysteresis step to avoid one gradient entry to dominate the
feature vector. The final vector is constituted of all norma-
lized block histograms with a total dimension of 3780 for a
64× 128 detection window.

Shape Context has originally been proposed as a fea-
ture point descriptor [4] and has shown excellent results for
people detection in the generative ISM framework [18, 28].
The descriptor is based on edges which are extracted with a
Canny detector. Those are stored in a log-polar histogram
with location being quantized in nine bins. For the radius
9, 16 and 23 pixels are used, while orientation is quantized
into four bins. For sliding window search we densly sam-
pled on a regular lattice with a support of 32 pixels (other
scales in the range from 16 to 48 pixels performed worse).
For our implementation we used the version of Mikolajczyk
[20] which additionally applies PCA to reduce the feature
dimensionality to 36 dimensions. The overall length of all
descriptors concatenated for one test window is 3024.

Classifiers. The second major component for sliding-
window approaches is the deployed classifier. For the clas-
sification of single windows two popular choices are SVMs
and decision tree stumps in conjunction with the AdaBoost
framework. SVMs optimize a hyperplane to separate posi-
tive and negative training samples based on the global fea-
ture vector. Different kernels map the classification problem
to a higher dimensional feature space. For our experiments
we used the implementation SVM Light [16]. In contrast,
boosting is picking single entries of the feature vector with
the highest discriminative power in order to minimize the
classification error in each round.

3. Comparison of sliding-window techniques
In [35] we conducted a systematic evaluation of different

feature/classifier combinations. For this we reimplemented
the respective features and classifiers. Comparisons with

published binaries (whenever available) verified that our
reimplementations perform at least as good as the originally
proposed feature/classifier combinations. In the following
we report on some of the results that illustrate the state-of-
the-art in sliding window based detection techniques.

To evaluate the performance for the introduced features
and their combination with different classifiers we use the
established INRIA Person dataset 1. This data set contains
images of humans taken from several viewpoints under
varying lighting conditions in indoor and outdoor scenes.
Unlike the original authors [6] we test the trained detectors
on the full images. We do so, in order not only to evaluate
the detector in terms of false positive detections per win-
dow (FPPW) but with respect to their frequency and spatial
distribution. This gives a more realistic assessment on how
well a detector performs for real image statistics. For fur-
ther details see [35]

Due to space constraints we cannot report all the quanti-
tative results from [35]. However, we still report the major
results and figure 1 contains the results for four different
settings.
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Figure 1. Recall-Precision detector performances for different fea-
tures (Haar, HOG, Dense Shape Context, combination of Dense
Shape Context and Haar) and linear SVM-classifier

Single feature detection. We start by summarizing the
evaluation of using all features individually in combination
with the three classifiers AdaBoost, linear SVM and RBF
kernel SVM. First of all, the HOG descriptor and the similar
Shape Context descriptor consistently outperform the other
features (e.g. Haar-like features) independent of the learn-
ing algorithm. Overall, RBF kernel SVMs together with the
gradient-based features HOG and Shape Context show the
best results. All features except shapelets show better per-
formance with the RBF kernel SVM compared to the lin-
ear SVM. AdaBoost achieves a similarly good performance
in comparison with RBF kernel SVMs in particular for the
Haar-like wavelet, the HOG feature and for shapelets. It
does slightly worse for the dense Shape Context descriptor.

1http://pascal.inrialpes.fr/data/human

2



Multi-cue detection. A closer look on the single de-
tectors’ complementarity reveals that different features in
combination with different classifiers have a varying perfor-
mance on the individual instances. This can be explained
by the fact, that the features encode different information.
While gradients encode high frequency changes in the im-
ages, Haar wavelets as they are proposed by [23] also en-
code much lower frequencies. Figure 1 shows the combi-
nation of dense Shape Context features with Haar wavelets.
In particular figure 1 shows, that in fact both features on
their own cannot reach the performance that is reached with
their combination. Compared to the state-of-the-art HOG
object detector we improve recall considerably about 10%
at 80% precision. Figure 2 shows sample detections of this
multi-cue detector.

Figure 2. Sample detections at a precision of 80%. Red bound-
ing boxes denote false detections, while yellow bounding boxes
denote true positives. First row shows detection by the publically
available HOG detector[6]; second row depicts sample detections
for our combination of dense Shape Context with Haar wavelets in
a linear SVM

Failure analysis. To get a feeling about the achievable
performance of sliding-window based techniques we com-
plete our brief summary with a failure case analysis. In par-
ticular, we analyzed the missing recall and the false positive
detections at equal error rate (149 missing detections / 149
false positives) for the feature combination of Shape Con-
text and Haar wavelets in combination with a linear SVM.
Missing recall mainly occurred due to unusual articulations
(37 cases), difficult background or contrast (44 cases), oc-
clusion or carried bags (43 cases), under- or overexposure
(18 cases) and due to detection at too large or too small
scales (7). There were also 3 cases which were detected
with the correct height but could not be matched to the an-
notation according to the PASCAL criterion due to the very
narrow annotation.

False positive detections can be categorized as follows:
Vertical structures like poles or street signs (54 cases), clut-
tered background (31 cases), too large scale detections with
people in lower part (24 cases), too low scale on body parts
(28 cases). There were also a couple of “false” detec-
tions (12 cases) on people which were not annotated in the
database (mostly due to occlusion or at small scales). Some
samples of missed people and false positives are shown in
figure 3.

(a) Unusual articulation (b) Difficult contrast (c) Occlusion
(d) Person carrying

goods

(e) Detection on parts (f) Too large scale
(g) Detection on vertical

structures

(h) Cluttered

background

(i) Missing

annotation

Figure 3. Missed recall (upper row) and false positive detections
(lower row) at equal error rate

4. Part-based models for people detection

Part-based models have a long history in computer vision
for object detection in general and for people detection in
particular (e.g. [12, 9, 21, 18, 37, 28, 1]). There are two
major components of these models. The first uses low-level
features or classifiers to model individual parts or limbs of a
person. The second component models the topology of the
human body to enable the accumulation of part evidence.

A wide range of models have been proposed e.g. for
upright people detection in traffic scenes [18], to estimate
the pose of highly articulated people (e.g. in sports scenes
[25]), or for upper body detection and pose estimation [11],
e.g. for movie indexing. In this section we briefly summa-
rize one of our own models [1] that builds upon and extends
a number of previous approaches. The model is inspired
by the pictorial structures model proposed by [10, 15], but
uses more powerful part representations and detections, and
as we will show outperforms recent pedestrian detectors
[6, 28].

A part-based person model [1]. Following the gen-
eral pictorial structures idea, a person is represented as a
joint configuration of her body parts. In such a model the
problem of locating a person in a test image is formulated
as search for the modes of the posterior probability distri-
bution p(L|E) of the body part configuration L given the
image evidence E and (implicit) class-dependent model pa-
rameters θ. In our model, the configuration is described as
L = {xo,x1, . . . ,xN}, where xo is the position of the body
center and its scale, and xi is the position and scale of body
part i. The image evidence, which here is defined as a set
of local features observed in the test image, will be denoted
as E = {eapp

k , epos
k |k = 1, . . . ,K}, where eapp

k is an ap-
pearance descriptor, and epos

k is the position and scale of the
local image feature with index k.

An important component of the pictorial structures
model is an implicit model of a-priori knowledge about pos-
sible body configurations, which must be expressive enough
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Figure 4. Comparison of our pedestrian detector with 4D-ISM de-
tector [29] and HOG [6].

to capture all important dependencies between parts. For
particular object categories, such as walking people, we can
introduce auxiliary state variables that represent the artic-
ulation state or an aspect of the object, such as different
phases in the walking cycle of a person [17], and make the
parts conditionally independent. As we are not interested in
knowing the articulation state, but only the object and limb
positions, the articulation state a can be marginalized out:
p(L|E) =

∑
a p(L|a,E)p(a).

From decomposing p(L|a,E) ∝ p(E|L, a)p(L|a),
assuming that the configuration likelihood can be ap-
proximated with product of individual part likelihoods
[10] p(E|L, a) ≈

∏
i p(E|xi, a), and assuming uniform

p(xi|a), it follows that

p(L|a,E) ≈ p(xo)
∏

i

p(xi|a,E)p(xi|xo, a). (1)

Figure 5. Graphical model structure describing the relation be-
tween articulation, parts, and features.

Please refer to [1] for the details concerning model train-
ing and inference. In the experiment (as presented in de-
tail in [1]) we use shape context feature descriptors [3] and
the Hessian-Laplace interest point operator [19] as detector.
Ee compare the above detector on a challenging dataset of
street scenes containing 311 side-view pedestrians with sig-
nificant variation in clothing and articulation2. Fig. 4 shows
the comparison of our detector with two state-of-the-art de-
tectors. Using the same training set as [28] our detector

2Available at www.mis.informatik.tu-darmstadt.de.

Figure 6. Example detections at equal error rate of our detec-
tor (top), 4D-ISM (middle) and HOG (bottom) on the “TUD-
Pedestrians” dataset.

outperforms the 4D-ISM approach [28] as well as the HOG-
detector [6]. Increasing the size of the training set further
improves performance significantly.

Fig. 6 shows sample detections of the 3 methods on test
images. The 4D-ISM detector is specifically designed to
detect people in cluttered scenes with partial occlusions. Its
drawback is that it tends to produce hypotheses even when
little image evidence is available (image 3 and 4), which re-
sults in increased number of false positives. The HOG de-
tector seems to have difficulties with the high variety in ar-
ticulations and appearance present in out dataset. However,
we should note that it is a multi-view detector designed to
solve a more general problem than we consider here.

Summary. From these experiment we can conclude that
part-based people model can outperform sliding-window
based methods (such as HOG) in the presence of partial
occlusion and significant articulations. It should be noted
however, that part-based models tend to require a higher res-
olution of the person in the image than most sliding-window
based approaches.

5. Combining vision and laser to improve peo-
ple detection

Cameras are not the only sensor that can be used for peo-
ple detection. In robotics laser range scanners are widely
used for tasks like localization and position estimation but
have been also used for people detection [2] and place clas-
sification [22]. Recent approaches to fuse visual and laser
information for classification and object detection tasks
show promising results [26, 24, 38, 31]. This section ex-
plores a simple yet effective technique to combine vision
and laser information for improved people detection. As
visual people detection is never perfect laser range infor-
mation is used to constrain the search space of plausible
hypotheses.

Setting. The platform used for data acquisition is a Peo-
pleBot that runs a distributed component architecture devel-
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oped during the CoSy project. The robot is equipped with a
SICK LMS (180◦ fov, 1◦ angular resolution) mounted ap-
proximately 30 cm above the floor and a color camera stereo
head located 97cm above the LMS. Only one camera is used
for visual people detection. The camera is calibrated using
the CALIB toolbox [5] while the transformation parameters
between the camera and the LMS coordinate system are set
by measuring the robots geometry.

Approach. In this section we use a sliding-window ap-
proach for people detection where we choose the HOG de-
scriptor as feature and a linear SVM as classifier (see sec-
tion 2). To achieve good generalization performance in var-
ious environments we decided to train the classifier on the
INRIA people data set (see section 3). As expected the vi-
sual people detector already achieves good results. Figure 7
shows sample detections as well as typical false positive de-
tections e.g. on partial people or vertical edge structures.

Many false positive detections do not fulfill simple con-
straints assuming that people usually walk on the floor and
therefore the object scale is proportional to distance. This
assumption can be formulated with the following two con-
straints to prune the space of valid hypotheses obtained
from the HOG detection stage; (1): laser range measure-
ments projected onto the image plane should hit the lower
third (legs) of the detection window hi. We denote the set
of the associated range values that meet this condition with
Ri. And (2): detection scale si of hi is bounded by a factor
proportional to the largest/smallest distance measurement
found in Ri : s∗/min(Ri) + c > si > s∗/max(Ri) − c
where s∗ is a scale estimate at 1m distance and c is a small
constant accounting for errors in scale estimations. Both pa-
rameters are in pixel units and dependent on camera param-
eters. Since all detection hypotheses have the same aspect
ratio we set si to the detection window width.We initially
set s∗ to 550 and c to 25. These values are estimated from a
subset of the recorded data.

If a visual person hypothesis does not meet these con-

(a) (b) (c)
Figure 7. The PeopleBot Robot (a). Typical false positives from
visual people detection (b). Rejection by simple range based con-
straints (c).

straints it is rejected. Figure 7(c) shows the effect of reject-
ing hypotheses that do not match these two constraints.

Evaluation. We evaluate this simple procedure on two
sequences. Sequence (A) (samples shown in figures 7(b)
and 9(c)) is recorded in an office sized room and sequence
(B) (samples shown in figures 9(a) and 10) in a large foyer
of a university building. Ground truth is annotated man-
ually in form of bounding boxes and is quite complete in
the sense that occluded people or people entering the visual
field are also annotated if approximately half of the person
is visible. As a consequence we cannnot expect to reach
full recall. For both sequences the robot was placed to have
a good visual view of the scene. Due to the nature of the
concurrent distributed component architecture the sampling
process for each sensor is asynchronous and tends to vary
slightly with the overall system load. We aligned the laser
and the vision sensor in a semi-automatic fashion such that
each image frame is associated to the laser scan with the
smallest temporal difference.

Sequence A. This sequence consists of 1023 image
frames sampled at 2.5 Hz on average while laser recordings
reach 20.8 Hz. The environment is an office sized room with
people entering and leaving the room through two door-
ways. People might occlude each other and be occluded
by the wall. Figure 8(a) shows the detection performance
for this sequence.The HOG detector reaches a maximal re-
call of 89.2% with a precision of 67.3% The equal error rate
(EER) is 82.2%. The use of laser range information clearly
improves precision to 95% with a loss smaller than 0.25%
in maximally achievable recall.

Sequence B. The second sequence consists of 124 im-
ages sampled at 0.7 Hz on average while laser recordings
reach 37.5 Hz. In this sequence more people appear also at
large scales so that they are not fully visible. The HOG de-
tector reaches a maximal recall of 87.1% with a precision of
56% The EER is 81.7%. Laser range information improves
precision to 92.8% at 83.9% recall (i.e. 3.2% loss in recall).

Loss of recall is a sign that the posed constrains are not
necessarily true for all ground truth instances. This hap-
pens in cases where a true positive hypothesis occludes the
laser which leads to rejection of a true positive detection at a
smaller scale due to the missing laser readings. Not achiev-
ing full precision means that cases occur where false posi-
tive detections fulfill the laser constraints. This happens if
multiple hypotheses at similar scales are found as true pos-
itive hypotheses or if a false positive hypothesis and laser
range readings fulfill the constraints by chance. See Figure
9 for failure cases and figure 10 for sample detections.

Conclusion. Overall, in terms of EER, the proposed
combination of camera and laser information improves pre-
cision/recall by 12.8% / 7 % on sequence A and 11.1% / 2.2
% on sequence B. This improvement is clearly signifi-
cant and highly encouraging given the simplicity of the de-
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Figure 8. Detection performance for test sequences A and B. HOG detection in blue. Laser constrained HOG in red.

(a) (b)

(c) (d)
Figure 9. Visual detection only (a) & (c). Laser constrained de-
tections (b) & (d). The laser range based constraints correct one
false positive but also reject one true positive detection. True pos-
itive detections are marked yellow, missed objects blue and false
detections are red.

scribed algorithm. We believe that this clearly demonstrates
the potential to combine camera and laser information and
that more elaborate algorithms should enable to improve
performance further.

6. Conclusion and discussion

The primary aim of this paper was to give an overview
of promising techniques for visual people detection (sec-
tions 2–4). In recent years the field has been moving
rapidly thereby continuously improving detection perfor-
mance. Given today’s state-of-the-art in visual people de-
tection it is clear however that the currently achievable
performance is often neither sufficient nor satisfactory for
many applications. In this last section we briefly discuss

several research directions that have the potential to im-
prove overall performance.

Motion cues. It is clear that human motion is an impor-
tant cue for people detection. Quite surprisingly however,
motion is seldom used for people detection. Notable excep-
tions are the work by Viola et. al [33], Dalal and Triggs [7]
and Wojek et al. [36]. All three papers clearly demonstrate
the potential gain when using motion information for visual
people detection. However, we strongly believe that the cur-
rent approaches still leave room for further improvement.

Integration of detection and tracking. Both detection
and tracking people are challenging problems. People de-
tectors have been shown to be able to locate pedestrians
even in complex scenes, but false positives have remained
frequent. Tracking methods are able to find a particular in-
dividual in image sequences, but are severely challenged by
real-world scenarios such as crowded scenes. Therefore it
is a promising research direction to combine the advantages

Figure 10. HOG hypotheses thresholded at EER on the left. Laser
constrained hypotheses on the right.
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of both detection and tracking in a single framework. In
[1] we have proposed such an integrated framework that al-
lows to detect and track multiple people in cluttered scenes
with reoccurring occlusions. While this research direction
is again largely under-explored we strongly believe that this
is a highly promising route to pursue.

System integration. It seems clear that the integration
of all of the above mentioned information into a single over-
all system has the potential to obtain an improved overall
performance. Due to the complexity of this task however
relatively view such systems exist. Probably the best known
examples are the system by Gavrila and colleagues [14] and
more recently the work by Ess and colleagues [8]. In these
systems different components are integrated such as stereo
and depth estimation, structure from motion, texture based
classifiers and part-based people detectors.

Combination with other sensor modalities. Section 5
already demonstrated the potential of combining vision and
laser information to improve overall detection performance.
While this research direction has gained attention recently
[26, 24, 38, 31] it is again under-explored and has the poten-
tial to enable robust people detection e.g. for robotics and
automative applications.
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Abstract—This paper presents a novel approach to detect
and track multiple classes of objects based on the combined
information retrieved from camera and laser rangescanner.
Laser data points are classified using Conditional Random
Fields (CRF) that use a set of multiclass Adaboost classified
features. The image detection system is based on Implicit Shape
Model (ISM) that learns an appearance codebook of local
descriptors from a set of hand-labeled images of pedestrians and
uses them in a voting scheme to vote for centers of detected
people. We propose several extensions in the training phase
in order to automatically create subparts and probabilistic
shape templates, and in the testing phase in order to use
these extended information to select and discriminate between
hypothesis of different classes. Finally the two information are
combined during tracking that is based on kalman filters with
multiple motion models. Experiments conducted in real-world
urban scenarios demonstrate the usefulness of our approach.

I. INTRODUCTION

Urban environments are complex scenes where often

multiple objects interact and move. In order to navigate

and understand such environment a robot should be able

to detect and track multiple classes of objects: most im-

portant pedestrians and cars. The ability to reliably detect

these objects in real-world environments is crucial for a

wide variety of applications including video surveillance and

intelligent driver assistance systems. Pedestrians are partic-

ularly difficult to detect because of their high variability in

appearance due to clothing, illumination and the fact that the

shape characteristics depend on the view point. In addition,

occlusions caused by carried items such as backpacks or

briefcases, as well as clutter in crowded scenes can render

this task even more complex, because they dramatically

change the shape of a pedestrian. Cars are large objects

that dramatically change their shape with respect to the

viewpoint: for example a side view of a car is totally different

from its back view. Shape symmetries can easily create false

detections and shadows can drive off detection systems.

Our goal in this paper is to detect pedestrians and cars

and localize them in 3D at any point in time. In particular,

we want to provide a position and a motion estimate that

can be used in a mobile robotic application. The real-

time constraint makes this task particularly difficult and

requires faster detection and tracking algorithms than the

existing approaches. Our work makes a contribution into

this direction. The approach we propose is multimodal in the

sense that we use laser range data and images from a camera

cooperatively. This has the advantage that both geometrical

structure and visual appearance information are available for

a more robust detection.

Managing detection of multiple classes in laser range data

is a complex task due the problem of data segmentation.

Often range data is grouped in consistent clusters and then

classified, using heuristic rules and therefore creating a

strong prior in the algorithm. In this paper, we propose

an elegant solution to train and classify range data using

Conditional Random Fields (CRF) through the use of a

boosted set of features. Moreover each scan point will be

labeled with a probability of owning to a certain class. In

order to manage occlusions in complex visual scenarios a

new extension of the Implicit Shape Model (ISM) for camera

data classification has been developed. Finally, each detected

object is tracked using a greedy data association method and

multiple Extended Kalman Filters that use different motion

models. This way, the filter can cope with a variety of

different motion patterns for several persons simultaneously.

In particular, the major contributions of this work are:

• An improved version of the image-based object detector

by Leibe et al. [14]. It consists in several extensions to

the Implicit Shape Model (ISM) in the training step, in

the detection step and in the capability of coping with

multiple classes. We introduce an automatic subpart

extraction that is used to build an improved hypotheses

selection, the concept of superfeatures that define a

favorable feature selection that maintaining information

richness. Moreover we introduce an automatically gen-

erated probability template map to ease the multiclass

hypothesis selection.

• The combined use of Conditional Random Fields and

camera detection to track objects in the scene.

This paper is organized as follows. The next section describes

previous work that is relevant for our approach. Then, we

give a brief overview of our overall object detection and

tracking system. The following section presents in detail

our detection method based on conditional random fields

for 2D laser range data. Then, we introduce the implicit

shape model (ISM) and present our extensions. Subsequently,

we explain our EKF-based tracking algorithm. Finally, we

present experiments and conclude the paper.

II. PREVIOUS WORK

Several approaches can be found in the literature to

identify a person in 2D laser data including analysis of local



minima [20], [24], geometric rules [26], or a maximum-

likelihood estimation to detect dynamic objects [10], or

learning AdaBoost classifiers from a set of geometrical

features extracted from segments [2] or from Delaunay

neighborhoods [21]. Most similar to our work is the work of

[5] that makes use of a Conditional Random Field in order

to label points to extract objects from a collection of laser

scans.

In the area of image-based people detection, there mainly

exist two kinds of approaches (see [9] for a survey). One

uses the analysis of a detection window or templates [8],

[25], the other performs a parts-based detection [6], [11].

Leibe et al. [14] presented an image-based people detector

using Implicit Shape Models (ISM) with excellent detection

results in crowded scenes. An extension of this method

that proposes a feature selection enhancement and a nearest

neighbor search optimization has been already shown in

[22][23].

Existing people detection methods based on camera and

laser rangefinder data either use hard constrained approaches

or hand tuned thresholding. Zivkovic and Kröse [27] use

a learned leg detector and boosted Haar features extracted

from the camera images to merge this information into a

parts-based method. However, both the proposed approach to

cluster the laser data using Canny edge detection and the ex-

traction of Haar features to detect body parts is hardly suited

for outdoor scenarios due to the highly cluttered data and the

larger variation of illumination encountered there. Therefore,

we use an improved clustering method for the laser scans

and SIFT features for the image-based detector. Schulz [19]

uses probabilistic exemplar models learned from training

data of both sensors and applies a Rao-Blackwellized particle

filter (RBPF) in order to track the person’s appearance in

the data. However, in outdoor scenarios lighting conditions

change frequently and occlusions are very likely, which is

why contour matching is not appropriate. Moreover, the

RBPF is computationally demanding, especially in crowded

environments. The work of Douillard [5] also uses image

features in order to enhance object detection but it doesn’t

explicitly handle occlusions and separate image detection

hypotheses.

III. OVERVIEW OF THE METHOD

Our system is composed of three main components: an

appearance based detector that uses the information from

camera images, a 2D-laser based detector providing struc-

tural information, and a tracking module that uses the com-

bined information from both sensor modalities and provides

an estimate of the motion vector for each tracked object. The

laser based detection applies a Conditional Random Field

(CRF) on a boosted set of geometrical and statistical features

of 2D scan points. The image based detection system extends

the multiclass version of the Implicit Shape Model (ISM)[13]

and uses Shape Context descriptors [3] computed at Harris-

Laplace and Hessian interest points. It also uses the laser

based detection result projected into the image to constrain

the position and scale of the detected objects. Then, the

tracking module applies an Extended Kalman Filter (EKF),

to the combined detection results where two different motion

models are implemented to account for a high variety of

possible object motions. In the following, we describe the

particular components in detail.

IV. APPEARANCE BASED DETECTION

Our image-based people detector is mostly inspired by the

work of Leibe et al. [14] on scale-invariant Implicit Shape

Models (ISM). In summary, an ISM consists in a set of

local region descriptors, called the codebook, and a set of

displacements and scale factors, usually named votes, for

each descriptor. The idea of the votes is that each descriptor

can be found at different positions inside an object and at

different scales, and thus a vote points from the position of

the descriptor to the center of the object as it was found

in the training data set. To obtain an ISM from labeled

training data, all descriptors are first clustered, usually using

agglomerative clustering, and then the votes are computed by

adding the scale and the displacement of the objects’ center

to the descriptors in the codebook. For the detection, new

descriptors are computed on a given test image and matched

against the descriptors in the codebook. The votes that are

cast by each matched descriptor are collected in a 3D voting

space, and a maximum density estimator is used to find the

most likely position and scale of an object.

A. Extensions to ISM

In the past, we presented already several improvements

of the standard ISM approach (see [23], [22]). Here, we

show some more extensions of ISM to further improve

the classification results. These extensions concern both the

learning and the detection phase and are described in the

following.

1) ISM Extensions in the Learning Phase:

a) Learning of Subparts: The aim of this procedure is

to enrich the information that is obtained from the voters by

distinguishing between different object subparts from which

the vote was cast. We achieve this by learning a circular

histogram of interest points from the training data set for

a given object class. The number of bins of this histogram

is determined automatically by using K-means clustering.

The number K of clusters is obtained using the Bayesian

Information Criterion (BIC). Note that this subpart extraction

does not guarantee a semantical subdivision (i.e.: legs, arms

in the case of pedestrians) of the object but it is interesting to

see that it nevertheless resembles this automatically without

manual interaction by the user (see Fig. 1, left).

b) Applying a Template Mask: The idea here is to

extract a common segmentation mask from the training

data for each object by averaging over all masks from the

particular object instances. This mask is later used to discard

outlier voters by overlaying the mask at the hypothetical

center of the object. Chamfer matching has been widely used

in literature [4] to compute such a mask. However, it heavily

depends on a robust detection of the contour edges and is

strongly affected by noise. A more robust method is to build a



Fig. 1. Left: Probabilistic template and overlayed subparts are both
automatically computed from the training set (in this case on the class
’pedestrian’). It is important to notice that even though the subparts are
computed without a semantic subdivision, their segmentation shows legs,
arms and upper body.Right: Superfeatures are stable features in image and
descriptor space. This figure depicts Shape Context descriptors with Hessian
Interest point (in red) in the case of pedestrian class. In green are depicted
the selected superfeatures.

probabilistic template map from the individual segmentation

masks in the training set. All the segmentation masks are

collected, centered with respect to their center of gravity

and averaged. Strong responses (common areas of the same

objects) have high probability, whereas various details are

softened in the average but still kept.

2) Learning Superfeatures: The original ISM does not

perform feature selection but it maintains the complete

probability distribution generated by extracted features of

the training set. This has the disadvantage to potentially

generate false positive due to inevitable feature mismatches.

We here propose a method to drive the detection while

still maintaining information richness. The idea is to find

good features in the image space (namely 〈x, y, scale〉) and
descriptor space (n-d space) that could vote for the object

center with more weight to ease the hypothesis selection.

The procedure can be sketched in three steps.

1) Interest points of the entire training dataset are col-

lected.

2) Dense areas of interest points reflect a high informative

content. We employ mean shift mode seeking with a

uniform kernel in order to locate such areas.

3) On each convergence point descriptors are collected in

pools. These pools are clustered using unsupervised

clustering with average linkage in order to group

closely similar features. We use the best 50% of the

resulting groups (ranked by quantity) and collect them

as superfeatures.

Noticeably, the resulting superfeatures inherently reflect the

skeleton of the objects and constitute key points in the shape

of the objects (see Fig. 1, right).

B. ISMe: extensions in testing phase

In this subsection we explain how we combine the richer

learning information in order to obtain a better detection.

1) Using superfeatures: Superfeatures and features vote

for object centers in the same voting space: the votes

generated by the first are bigger than the latter. The resulting

hypothesis score is enriched by their support. In visually sim-

ple scenes it is possible to apply just superfeature codebooks

in order to obtain a very fast detection.

2) Using subparts and prob. template in the cost function:

Each hypothesis is now defined by an angular histogram

in which the bins are defined by the subparts. Moreover,

the probabilistic template is used to prune feature matches

that lie far outside the probabilistic shape (that is scaled

according to the hypothesis). In order to determine which of

the hypotheses better represents an object of a given class, we

use a maximum likelihood estimation method. In particular,

we solve:

Hs = argmaxp(H|Θ), (1)

whereH represents the set of hypotheses and Θ is the feature

assignment. In order to achieve the solution we consider

pairwise comparisons. Given each pair of hypotheses ha and

hb, their relative histogramsWa = {wa
1 , ..., w

a
q }, and Wb we

compute:

V =

q
∑

i

vi (2)

where

vi =

{

1 if wa
i > wb

i

−1 otherwise
(3)

Then a simple sign condition is used to check which of the

two hypotheses is the best. If we perform this simple and fast

comparison on the setH, we obtain hmax = argmaxp(H|Θ)
and put it in the selected hypothesis set Hc.

3) Discriminate between object classes: In the previous

subsection we explained how we selected the best object

hypothesis for each class. Here we explain how we dis-

criminate among hypothesis of different classes. In order to

not bias the multiclass detection towards a class that has

more features or codebook occurrences we used a common

measure to do hypothesis selection. This comes from the

probabilistic template area ratio. Each assigned feature for

a certain hypothesis occupies a scaled square area in the

probabilistic template. The ratio of the occupied area on

the total object area is the score of each class hypothesis.

For each object class hypothesis a score si is computed

taking into account the overlapping area (if present) between

hypotheses of different classes:

si = ri −
∆o

#o
(4)

where ri is the area ratio and ∆o is the overlap ratio of the

areas, and #o is the number of overlaps. The best score si

defines the current winning object hypothesis. The features

involved in the voting of this hypothesis are then removed

from the voting space and the selection process (subparts

voting and object class selection) continues until a detection

with a minimum strength dt is available.

This two step process is necessary to handle occlusions

and multiple classes in a computationally feasible time: each

hypothesis competes with the rest of its class to become the

best hypothesis of its class. Then it is evaluated against all



the other candidates of the other class and then, if it is the

case, selected.

V. STRUCTURE BASED DETECTION

For the detection of objects in 2D laser range scans,

several approaches have been presented in the past. Most of

theses approaches have the disadvantage that they disregard

the conditional dependence between data points in a close

neighborhood: the fact that the label yi of a given scan

point zi is more likely to be yj if we know that yj is the

label of zi’s neighbor zj is not reflected. One way to model

this conditional independence is to use Conditional Random

Fields (CRFs) [12], as has been shown by Douillard et al.[5].

CRFs represent the conditional probability p(y | z) using an

undirected cyclic graph, in which each node is associated

with a hidden random variable yi and an observation zi. In

our case, the yi is a discrete label that ranges over 2 different

classes (pedestrian and car) and the observations zi are 2D

points in the laser scan. Assuming a maximal clique size of

2 for the graph, we can compute the conditional probability

of the labels y given the observations z as:

p(y | z) =
1

Z(z)

N
∏

i=1

ϕ(zi, yi)
∏

(i,j)∈E

ψ(zi, zj , yi, yj), (5)

where Z(z) =
∑

y′

∏N

i=1 ϕ(zi, y
′
i)

∏

(ij)∈E
ψ(zi, y

′
i, y

′
j) is

usually called the partition function and E is the set of edges

in the graph. To determine the node and edge potentials ϕ

and ψ we use the log-linear model:

ϕ(zi, yi) = ewn·fn(zi,yi), ψ(zi, zj , yi, yj) = ewe·fe(zi,zj ,yi,yj)

where fn and fe are feature functions for the nodes and the

edges in the graph, and wn and we are the feature weights

that are determined in the training phase. The computation of

the partition function Z is intractable due to the exponential

number of possible labelings y′. Instead, we compute the

pseudo-likelihood, which approximates p(y | z) and is

defined by the product of all likelihoods computed on the

markov blanket (direct neighbors) of node i.

pl(y | z) =

N
∏

i=1

ϕ(zi, yi)
∏

zj∈N (zi)

ψ(zj , zi, yj , yi)

∑

y′

(

ϕ(zi, y
′
i)

∏

zj∈N (zi)

ψ(zj , zi, y
′
i, y

′
j)

)

Here, N (zi) denotes the set of direct neighbors of node i. In
the training phase, we compute the weights wn and we that

minimize the negative log pseudo-likelihood together with a

Gaussian shrinkage prior as in [18]:

L(w) = − log pl(y | z) +
(w − ŵ)T (w − ŵ)

2σ2
(6)

For the minimization of L, we use the L-BFGS gradient

descent method [15]. Once the weights are obtained, they

are used in the inference phase to find the labels y that

maximize Eq. (5). Here, we do not need to compute the

partition function Z , as it is not dependent on y. We use max-

product loopy belief propagation to find the distributions of

each label yi. The final labels are then obtained as those that

are most likely for each node.

A. Node and Edge Features

As node features fn we use a set of statistical and geo-

metrical features such as height, width, circularity, standard

deviation, kurtosis, etc. (for a full list see [21]). We compute

these features in a local neighborhood around each point,

which we determine by jump distance clustering. We can

then use these features as an input to the CRF classification

algorithm. However as stated in [18], and also from our

own observation, the CRF is not able to handle non-linear

relations between the observations and the labels, which is

a consequence of the log-linear model described above. To

overcome this problem, we apply AdaBoost [7] to the node

features and use the outcome of AdaBoost as features for the

CRF. For our particular classification problem with multiple

classes, we train one binary AdaBoost classifier for each

class against the others. As a result, we obtain a set of weak

classifiers hi (decision stumps) and corresponding weight

coefficients αi so that the sum

gk(z) =
M
∑

i=1

αihi(f(z)) (7)

is positive for observations that are assigned with the class

label k and negative otherwise. To obtain values between

0 and 1 we apply the inverse logit function l(x) = (1 +
exp(−x))−1, which has a sigmoid shape and ranges between

0 and 1, to each value gj . We do this for two reasons:

First we obtain values that can be interpreted as likelihoods

of corresponding to class k. Second, by applying the same

technique also for the edge features, the resulting potentials

are better comparable. The resulting node features are then

computed as

fn(zi, yi) = l(gyi
(zi)), (8)

i.e. the scalar component of the vector l(g) that corresponds
to the class with label yi. For the edge features, we don’t

apply AdaBoost, but instead compute two values, namely the

Euclidean distance dij between the points zi and zj and a

value gij defined as

gij(zi, zj) = sign(gi(zi)gj(zj))(|gi(zi)| + |gj(zj)|) (9)

This feature has a high value if both zi and zj are classified

equally (its sign is positive) and low otherwise. Its absolute

value is the sum of distances from the decision boundary of

AdaBoost, which is given by g(z) = 0. We define the edge

features then as follows:

fe(zi, zj , yi, yj) =

{

(l(dyi,yj
) l(gyi,yj

)T if yi = yj

(0 0)T otherwise
(10)

Here, we omitted the arguments zi and zj of the functions

dij and gij for brevity. The intuition behind Eq. (10) is that



edges that connect points with equal labels have a non-zero

feature value and thus yield a higher potential. The latter is

sometimes referred to as the generalized Potts model (see [1],

[17]).

a) Connectivity: Nowadays many laser scanners have

multilayer scanning capabilities. The CRF connectivity is

defined by a separate Delaunay triangulation for each layer.

Between layers connectivity is assured by connecting points

located in the same vertical. This assures a good layer

connection for the flow of BP and lessen the arc count with

respect to a full triangulation.

VI. TRACKING OBJECTS FOR SENSOR FUSION

In order to fuse the information coming from both sensors

(camera and laser) and to simultaneously keep track of the

object we use an EKF based tracking system, first introduced

in [23]. Here, each object is tracked with several motion

models (in this case: brownian motion and linear velocity)

in order to cope with pedestrian and car movements. We per-

form tracking in the laser data, therefore camera detections

are projected and assigned to segments in the laser data.

In order to reliably track wide objects, like cars, tracking

single segments are not enough. Single segments tend to be

spatially very unstable due to the noise present in outdoor

environments and the scatter resulting from the distance with

respect to the observer. We therefore group segments with

the same class label using Delaunay triangulation and a trim

distance rule. The resulting cluster will have a more stable

position and a probability of being a class that is the average

of its members. Each Kalman filter state (〈x, y, (vx, vy)〉) is
augmented with N states where N is the number of classes

present in the detector. Indeed, the observation vector z fed

to the tracking system consists of the position of the cluster

and the class label probability. The matrix H that models

the observations to mapping in the Kalman Filter x = Hz is

defined by H = [Hlsr;Hcam] in order to manage multiple

inputs from different sensors.

VII. EXPERIMENTAL RESULTS

A car equipped with several active and passive sensors is

used to acquire the datasets. In particular, we use a monoc-

ular camera in combination with a 2D laser range finder in

front of the car. An accurate camera-laser synchronization

and calibration has been developed for this work.

A. Image training datasets

The scope of this paper is to detect pedestrians and cars,

we therefore used a pedestrian dataset and three different

datasets for cars: front view, side view, back view. The

class car itself consists in multiple classes because of its

different visual appearance with respect to the viewpoint.

The pedestrian dataset consists of 400 images of persons

with a height of 200 pixels at different positions and dressed

with different clothing and accessories such as backpacks and

hand bags in a typical urban environment. Each car dataset

consists in a set of 100 pictures taken in several urban scenes

with occlusions due to people or traffic signs.

B. Laser training datasets

The laser detector has been trained using 203 annotated

laser scans containing clutter, pedestrians and cars. There is

not distinction between car views in the laser detector due

to a not dramatic viewpoint change in the range data. The

range data is organized in 4 layers with a relative orientation

of 0.8◦. Each layer has a resolution of 0.25◦ and maximum

range of 30m.

C. Qualitative and quantitative multiclass results

In order to determine the performance of our detector we

created two datasets consisting of cars and pedestrians. The

image based detection uses Shape context descriptors [3]

from Hessian-Laplace and Harris-Laplace [16] interest point.

The quantitative results of the performance of pedestrian

based image detection are shown in the precision-recall graph

of Fig. 2-left. In the graph is shown a comparison with

respect to a naive ISM implementation that does not uses

hypothesis selection, Adaboost based Haar detector and our

previous version of the image detector (labeled as ISMe1.0).

The performance increase of our approach is mainly related

to the introduction of the new hypothesis selection system.

The performance of image based detection for cars is shown

in Fig. 2-middle where a comparison with ISM and ISMe1.0

is shown. For clarity the results are averaged between the

three different views of the class car. In general we can notice

from the results that pedestrian classification is harder than

car classification due to shape complexity and flexibility.

In order to justify our approach for laser range data

detection we evaluated CRF against Boost classifier that

uses the same set of features, the resulting precision-recall

graph is shown in Fig. 2-right for pedestrian and in fig.

3-left for cars. Then we evaluated the current performance

of combining the information togheter. A very informative

way of showing the potential of our method is shown in

the two graph of Fig. 3-middle and Fig. 3-right in which

we show that combining the two information increases the

hit rate and decreases the false positives. We show some

qualitative results extracted from the testing datasets in Fig.

4-right in which cars are correctly detected from both sensors

but the pedestrian is detected only with the laser and not

with the camera due to its pose configuration and its visual

neighborhood. Another result is shown in Fig. 4-left in

which the camera classifier detects a false positive located on

vertical structures of the trolleybus and detects the person on

the scooter as a pedestrian due its visual similarity. Thanks

to the structure information obtained from the laser the

system can discriminate the false positive. Moreover, we

show qualitative tracking results in Fig. 5, Fig. 7, Fig. 6

where passing cars and a crossing pedestrian are correctly

tracked using multiple sensor information.

VIII. CONCLUSIONS

In this paper we presented a method to reliably detect

and track multiple classes (cars and pedestrian) in outdoor

scenarios using 2D laser range data and camera images.

We showed that the overall performance of the system is
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Fig. 4. Detections from multiple sensors. Green: laser based pedestrian detections; Yellow: laser based car detections; Magenta: camera based pedestrian
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Fig. 5. Tracking cars in an intersection. A bounding box surrounds the tracked object with annotated distance and a colored marker that refers to the
track in the laser plane.

Fig. 6. Tracking a pedestrian that crosses the road. A bounding box surrounds the tracked object with annotated distance and a colored marker that refers
to the track in the laser plane. In the laser plane it is visible a false track associated with one steady detection of a cylinder concrete by the laser based
detector. For clarity, the laser tracked cluster is plotted into the image (green points).

Fig. 7. Tracking cars in an intersection. A bounding box surrounds the tracked object with annotated distance and a colored marker that refers to the
track in the laser plane. It is important to notice that also in case of the extreme closeup of the truck the track is still maintained



improved using a multiple sensor system. We presented

several novel extensions to the ISM-based image detection

in order to cope with multiple classes. We showed that a

system based on CRF has better performance than a simpler

Adaboost based classifier and presented tracking results on

combined data. Finally, we presented experimental results on

real-world data that point out the usefulness of our approach.
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Abstract

Multi-target tracking requires locating the targets and la-
beling their identities. The latter is a challenge when many
targets, with indistinct appearances, frequently occlude one
another, as in football and surveillance tracking. We present
an approach to solving this labeling problem.

When isolated, a target can be tracked and its identity
maintained. While, if targets interact this is not always the
case. We build a track graph which denotes when targets
are isolated and describes how they interact. Measures of
similarity between isolated tracks are defined. The goal is to
associate the identities of the isolated tracks, by exploiting
the graph constraints and similarity measures.

We formulate this as a Bayesian network inference prob-
lem, allowing us to use standard message propagation to
find the most probable set of paths in an efficient way. The
high complexity inevitable in large problems is gracefully
reduced by removing dependency links between tracks. We
apply the method to a 10 min sequence of an international
football game and compare results to ground truth.

1. Introduction

A multi-target tracking system capable of analyzing
hours of footage reliably and robustly could potentially help
automate many useful applications. There are numerous
situations involving people/objects moving and interacting
in a particular domain where the tracks of the targets over
time provide a rich source of information for analysis of be-
havior. Such domains include - traffic-pedestrian junctions,
travelers at airports, insect/animal tracking and team games.

However, automatic visual multi-target tracking in such
domains with frequent interactions is a challenging prob-
lem (even when only considering instances with favorable
viewing conditions). Given long enough sequences, situ-
ations will arise where it is not possible to reliably main-
tain a target’s identity, when it occludes and/or is occluded
by other targets, using continuity of appearance or motion

alone. Some form of identity re-initialization is required
when the interacting targets separate. This re-initialization
can take the form of linking tracks before and after the in-
teraction based on matching certain properties of the tracks
involved. This in essence is the approach taken in this paper.

We see multi-target tracking as a two-stage process,
when there are no real-time constraints. Initially targets are
detected and tracked using background subtraction and con-
tinuity of motion constraints. When two or more targets
meet and cannot be disambiguated a new track is formed
and follows this target group. The process is repeated for
all targets throughout the sequence. The result is a track
graph with the different tracks as nodes and edges denoting
how the tracks split and merge into new tracks.

In the second stage we try to find each target’s path
through the graph. This is achieved by exploiting the con-
straints imposed by the graph structure and by the feature
vectors extracted to describe the appearance (e.g. image
intensity, gait patterns) of each track. We view this as an in-
ference problem where we want to find the most likely set of
paths for the targets given the appearance of the tracks. This
can be solved efficiently using Bayesian network inference.

For long sequences, with many targets, finding the global
optimum of the resulting posterior becomes intractable due
to the combinatorial explosion that occurs with the numer-
ous split and merge situations. We solve this by reducing
the dependencies between the tracks. In effect it means that
similarities between tracks are only used for tracks within
a certain time window. The size of this time window can
be set dynamically to meet set criteria for complexity and
memory use.

Over the last couple of years, many algorithms and re-
sults have been presented [7, 4] with regard to the problem
of multiple object tracking. Prevalent are algorithms based
on kalman filtering [12, 6], advanced techniques of particle
filtering [11, 10, 9, 3] and multiple-hypothesis trackers [4].
The quality of the results presented though improving have
yet to be shown working robustly on long sequences (>30
secs). Therefore, one of our major contributions is that we
evaluate the performance of our method on a continuous 10



minute clip of an international football match and demon-
strate its viability in solving large scale problems. The re-
sults obtained are promising.

1.1. Paper Overview

The paper is organized as follows. Section 2.1 provides
a more detailed review of the track graph, mentioned in
the introduction, the assumed starting point of our target
linking algorithm. Section 2.2 describes the problem we
wish to solve, of linking the identities of the nodes in our
track graph. In Section 2.3 the solution space, imposed by
the track graph, is defined and parameterized. Section 2.4
states the problem as an inference problem and shows how
Bayesian network inference can be used to find the solu-
tion. For large problems containing thousands of nodes it
is necessary to find an approximate solution. Section 2.4.1
discusses how this can be done by assuming independence
between nodes distant in time. Section 3 reports on apply-
ing our method to football tracking. The experimental set-
up is described, as well as a brief review of how the track
graph is constructed. The results of the path finding are then
presented. To finish conclusions are made focusing on the
quality of the results obtained and upon the scalability and
generic nature of the solution put forward in the paper. Also
discussed are possible improvements and future avenues of
research involving combining unsupervised clustering and
our path finding algorithm to provide a complete solution to
the labeling problem.

2. Linking Identities in the Track Graph

2.1. Preliminaries

The theory in this paper assumes we have access to a
track graph summarizing the interactions that occur be-
tween the targets in the sequence being analyzed. There-
fore, before proceeding further we must introduce more for-
mally the concept of the track graph. Each node in the
graph represents a track. A track is a temporal sequence
of image regions, one per frame (see figure 1). Each re-
gion corresponds to the spatial extent of one or more targets.
During a track neither the number of targets it represents
changes nor do the identities of these targets. The edges in
the graph indicate when

• the targets from separate tracks merge (due to partial
occlusion) to begin a new track or

• the targets in a track separate/split to begin several new
tracks, each with fewer targets than the parent one.

Figure 2 displays a small example of such a track graph.
The white nodes indicate tracks of a single target and grey
those representing multiple targets.

Single player track

Multiple player track
Figure 1. Single and multiple target tracks from a football game.
The top row shows a single target track, shown in white. The
bottom row is a multiple target track, shown in black. Tracks are
sandwiched between interactions with other tracks. During a track
the number of targets involved and their identities remain fixed.

There are, of course, numerous possible ways to obtain
this graph [1]. For now though this issue is set aside and as-
sumed to have been solved, however, we revisit it in section
3 while reviewing the methods put forward in [1].
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Figure 2. An example of a simple track graph. Each node cor-
responds to a track: white - an individual target, grey - multiple
targets. The edges of the graph are directed corresponding to the
temporal constraints and indicate when tracks merge or separate.

2.2. General Approach

On top of the track graph it is assumed that there are fea-
ture vectors measured from each single target track. These
feature vectors can consist of elements such as color, shape,
position and velocity. Using the feature vectors to compare
tracks and the constraints imposed by the track graph we
find the most likely configuration of paths. To do this we
parameterize the solution space imposed by the track graph



so that we have a state vector that can represent all possible
configuration of paths through the track graph. The paths
are then found by inferring the state given the features of
the tracks.

2.3. The solution space

Each targets path through the graph is known when it
is known exactly how the incoming targets are distributed
into the outgoing tracks when a track is split up. Therefore,
we will represent the solution space by viewing the splits as
track switches. Each split/switch has a state variable rep-
resenting how the targets are distributed into the outgoing
tracks.

When defining the state variables of the split nodes care
must be taken so that the state space becomes as compact
as possible. Each set of values of the state variables should
correspond to one unique solution. This can be done in the
following way.

Let N be the number of incoming targets for a particu-
lar split node. It doesn’t matter how many incoming tracks
the node has, so we can assume it has one single incom-
ing track, as in Figure 3. Moreover, let the node have m
outgoing tracks, each having nj , j = 1, ...,m targets also
summing up to a total of N targets.

N

n1
nmn2

Figure 3. The size of the state variable of a split node is determined
by the number of outgoing tracks and how many targets, ni are in
each track i.

The number of ways to distribute the targets into the out-
going tracks can be found through a process of iteratively
selecting the targets to go into a track. Each track i selects
ni targets from the targets not yet selected. In this way each
track can select its targets in

(
N−

Pi−1
j=1 nj

ni

)
different ways.

Hence, the total number of states of the split node is

m∏
i=1

(
N −

∑i−1
j=1 nj

ni

)
. (1)

Note that the incoming targets is considered an ordered
set while the selection in the process above is unordered. To
define the ordering in the outgoing tracks we let them keep

their relative ordering within each outgoing track, as illus-
trated with the example in Figure 4. This avoids getting re-

Figure 4. All three states of a node splitting three incoming targets
into one double and one single target track.

dundant states, which would happen when two targets in the
same track are switched in one split node and then switched
back when entering a subsequent split node, which is equiv-
alent to the targets not getting switched in either node.

The variable representing the split state of the node is a
product of the “selection states” of the outgoing tracks of
the node. Getting the selection states from the node state is
a matter of using integer divisions and the modulo operator.

Let each split node, Ti, have a discrete state variable Si

which represents exactly how the targets are split into the
outgoing tracks. The number of values Si can take is given
by (1). Moreover, let

S = {Si;Ti is a split node} (2)

be the set of state variables for all the split nodes. Then S
can represent all possible solutions of paths given the track
graph. There is also a one-to-one mapping between the val-
ues of the state variables and the solution space.

2.3.1 Computing the number of targets in the tracks

This section described how the number of targets in each
link is computed. Let lij be the link count, i.e. the number
of targets in the link between tracks Ti and Tj .

1. Let all link counts be undefined, lij = 0.

2. Set link counts to all single tracks to one,
lij = 1, Ti connected to Tj and (Ti or Tj are single track)

3. For nodes with all links but one defined, set the undefined
link so that number of targets in equals number of targets
out.

4. . Repeat 3 until no more links are updated.

The above procedure will propagate the number of tar-
gets through the track graph. In practice there will be in-
consistencies and some links will be left undefined. These
parts of the graph are left unresolved at this point, but there
are several possibilities how they could be handled in the
future, e.g. by better modeling or by merging nodes.



2.4. The Inference Problem

Let each single track i have feature vector Ai and let

A = {Ai;Ti is a single target track} (3)

be the set of all feature vectors.
We would like to infer the paths given the measurements

using the max posterior estimate,

Ŝ = argmax
S

P (S|A). (4)

As usual, Bayes formula can be used to instead maximize
the product of the prior and the likelihood function.

P (S|A) ∝ P (A|S)P (S) (5)

The split node state variables S are local and causally
independent. The measurements on the other hand, depend
on the state variables in the sense that the values of the state
variables define the targets’ paths. Tracks on the same path
contain the same target, hence their measurements are de-
pendent. Measurements from different targets are assumed
to be independent.

We note that every path ends at a tail node, i.e. a node
with no outgoing links. The tail nodes are used as represen-
tatives for the paths. Let

Atails = {Ai;Ti is a tail node} (6)

be the set of tail node features. Further, let

path(Ai, s) = {Aj ;Tj are on the same path as Ti

given S = s}
(7)

be the feature vectors of all tracks on the path defined by
the state s and leading to the track Ti. Then the likelihood
function can be factorized as

P (A|S) =
∏

Ai∈Atails

P (path(Ai, s)|S = s). (8)

The dependencies between state variables and feature
vectors can be viewed in a Bayesian network showing the
causal dependencies between the nodes. The track graph in
Figure 2 has the Bayesian network in Figure 5.

Inference on a Bayesian network can be done efficiently
using message propagation. We use the junction tree algo-
rithm, [2, 5]. This algorithm creates a secondary structure,
the junction tree, consisting of cliques and sepsets. The
cliques are the smallest sets of variables on which the in-
ference can be solved using local computations and mes-
sage propagation. The sepsets show the common variables
between neighboring cliques which are the margins that is
computed when performing the message propagation.

The most probable configuration of a Bayes net can be
found by using max-marginalization in the message prop-
agation. We have used Kevin Murphy’s implementation in
the Bayes Net Toolbox for Matlab [8]. All we have to pro-
vide are the likelihoods for the cliques and the priors.

S6

path(A9)path(A10) path(A13) path(A17)path(A18)

S7 S12 S16

(a)

S6 S7
path(A9) path(A10) S6 S7 S6 S7 S12

path(A13) S6 S7 S12 S6 S7 S12 S16
path(A17) path(A18)

(b)

Figure 5. Bayesian network (a) and junction tree (b) for the track
graph in Figure 2

2.4.1 Reducing complexity

Message propagation will solve the inference problem ef-
ficiently and it will give a globally optimal solution (under
the assumptions). For large problems though, there will be
a combinatorial explosion.

To apply this approach to large scale problems it is nec-
essary to reduce the complexity. We do this by dropping the
dependencies between feature vectors and split nodes that
are more than a certain number of links away. The effect is
that we optimize shorter but overlapping paths in the graph.
A Bayes net for our track graph can look like the Bayes net
in Figure 6. As can be seen, paths to all single target tracks
are taken into account, but the levels of dependencies have
been reduced. In this case the paths to T17 and T18 have
dropped the dependencies to the split nodes T6 and T7. In
effect this means that the tracks T17 and T18 will not be
compared with tracks above T6 and T7. It also mean that
the complexity have been reduced and for larger problems
this is crucial.

S6

path(A8) path(A9) path(A10) path(A11) path(A13)path(A14)path(A15)

S7 S12

path(A17)path(A18)

S16

(a)

S6
path(A8) path(A15) S6 S6 S7

path(A9) path(A10) path(A11) S6 S7 S6 S7 S12
path(A13) path(A14) S12 S12 S16

path(A17) path(A18)

(b)

Figure 6. To reduce the complexity we remove dependencies be-
tween tracks that are distant in time. The result is that the al-
gorithm optimizes shorter local paths that are overlapping. The
Bayesian network (a) now has paths to all single track nodes with
ancestors and A17 and A18 does not depend on S6 and S7 any-
more. (b) shows the resulting junction tree.

2.4.2 Building the Bayes Net

The Bayes net is built through the following procedure.

1. For each split node Ti in the track graph, add the state vari-
able Si.

2. For each single track node Ti with ancestors:



(a) Add an observed node representing all paths leading to
Ai.

(b) In a breadth-first fashion collect split nodes that are an-
cestors to Ti until the product of the split nodes’ state
sizes (the clique size) have reached a set limit.

(c) Connect the collected split nodes’ state variables to the
new observed node.

2.4.3 Computing the Conditional Probability Tables

For the inference algorithm we need to provide the proba-
bility distributions for each clique in the junction tree. The
probability distribution is the product of the prior and the
likelihood. In this paper we use a flat prior.

The conditional probability tables are computed as de-
scribed below.

1. For each observed node in the BN representing paths leading
to Ai:

(a) Get the parents Spa

(b) For each combined state spa of the variables in Spa

(the number of combined states is the product of the
size of each state variable S ∈ Spa):

i. Compute the likelihood
P (path(Ai, spa)|Spa = spa)

Basically, at this step we go through all paths in the local
graph around the split nodes associated with parents, Spa,
of the observed node. In our example with the Bayes net
in Figure 6, when computing the likelihoods of for paths
leading to T17 we go through all possible paths from T11,
T8 and T15 to T17.

2.4.4 Computing the Likelihoods

The likelihoods in this case are the probability density for
the measurements given that they all are from the same
model. This model is considered unknown, but if there is
a set of models, M, that will make the measurements in-
dependent we can compute the likelihood in the following
way.

P (path(Ai, spa)|Spa = spa)

=
∫

M∈M
P (path(Ai, spa)|Spa = spa,M)P (M)

=
∫

M∈M

∏
Aj∈path(Ai,spa)

P (Aj |M)P (M)

(9)

Sometimes it is easier to find a pairwise measure how
likely two tracks contain the same target. These can be used
in such a way that all pairwise similarity measure are used

exactly once.

P (path(Ai, spa)|Spa = spa)

≈
∏

Aj∈path(Ai,spa)\Ai

P (Ai, Aj) (10)

Since we have overlapping paths, the similarity measure be-
tween the other members in the path will be used in the
cliques for paths originating from the those members.

3. Football Tracking
At this stage we focus on applying our method to the

problem of tracking football players in a competitive pro-
fessional game. Football occurs in a structured closed envi-
ronment where it is relatively easy to perform reliable effec-
tive image processing, but on the other hand provides many
complicated and challenging motions and interactions be-
tween players. It is a happy compromise between analyzing
generic video sequences and those engineered in the lab.

Here we review an approach to constructing the track
graph and to defining a measure of similarity between single
player tracks. This takes us to the assumed starting point of
our Bayesian inference problem.Camera System Involved

Figure 7. Multi-camera system used to capture a stationary, high-
resolution video covering a large area.

3.1. Extracting the Track Graph

Figure 7 displays the multi-camera system used to pro-
vide a high resolution, wide-field of view video of the foot-
ball game. The resulting video allows all the players to be
seen at all times. As the cameras are stationary it is possi-
ble to perform reliable and accurate background subtraction
to highlight the positions of the targets in each image (see
figure 8 (a)). Temporal analysis of the foreground regions
found at each frame, matching the regions in one frame to
those in the next (figure 8 (b)), allows the identification of
the single and multiple player tracks and the interactions
between them. There are two teams wearing two distinctly
colored uniforms, as well as the officials. It is possible to as-
sign each single track to one of these three categories based
on simple matching of exemplar rgb histograms. Figure 12
displays a portion of the track graph obtained from exam-
ining our football clip in this manner. For the interested



(a) foreground regions (b) matched regions
Figure 8. (a) The foreground regions found by background sub-
traction. (b) An example of matching the found regions between
one frame and the next. Note that one of the examples is a split,
marking the end of one track and the beginning of two more.

reader, the complete graph is included as part of the supple-
mentary material. We manually obtained the ground truth
for the identity of the team A single target tracks. The tem-
poral extent of each player’s single tracks are displayed in
figure 9. We would like to obtain this figure automatically.
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Figure 9. The temporal extent of the team A single player tracks
for the ten minute clip examined. Each line corresponds to a single
player track. The shaded areas display when the major congestion
events occur.

3.2. Similarity Measure Between Player Tracks

We now define a measure of similarity between every
pair of single player tracks from the same team. In foot-
ball a player’s identity is frequently revealed by his position
relative to his teammates. Most obviously the goal-keeper
is always behind all his teammates. We exploit this simple
idea. For each single player track we build a histogram sum-
marizing the player’s position relative to his teammates for
the duration of the track. Each bin of the histogram corre-
sponds to a particular configuration of teammates to the left,
right, behind and in front of the player. There a fixed num-
ber of such configurations as there are eleven players on a
team, see [1] for details. Let Iij

s denote the similarity score
between two tracks based on comparing their relative spatial
position histograms. This measure is particularly effective
for matching tracks of long duration. Such tracks, generally,
occur when the team is in typical formations and the players
are in set positions within these formations. However, many
of the shorter tracks occur when the team is in transition be-
tween typical team formations rendering the relative spatial
position information less effective. To compensate for this
deficiency we define temporally local measures.

Two tracks Ti and Tj are temporally close if the end of

Ti occurs before and within t frames of the start of Tj . If t
is small enough and Ti and Tj represent the same player, it
is reasonable to assume continuity of appearance and mo-
tion. On this basis we construct appearance and motion
based measures between temporally close track pairs. The
appearance measure relies on cross-correlating the appro-
priate spatio-temporal volumes at the ends involved. This
measure is denoted by Iij

i . The velocity of the targets at the
ends of these tracks is also estimated. Given these velocities
and the final position of Ti, an estimate of the start position
of Tj is obtained. The difference between this estimate and
actual value is then used as our motion measure - Iij

d . After
appropriate rescaling of the different I’s a combined simi-
larity matrix is produced:

Iij =

(
(1− 2α)Iij

s + αIij

i + αIij

d if Ti, Tj temporally close.
Iij
s otherwise

(11)
with 0 ≤ α ≤ 1, see figure 10. The similarity scores

are then converted into the appropriate form, (eqn 10), by
setting P (Ai, Aj) = exp(−λIij), with λ > 0.

Figure 10. The pairwise similarity scores for the team A tracks.
Black indicates high similarity and white low similarity. The rows
of the matrix have been re-ordered to group tracks of the same
identity together and to reveal the structure within the matrix. The
red lines denote the sub-blocks of constant identity.

3.3. Results

We are now almost ready to present the identity linking
results. Before running the inference procedure, the num-
ber of targets in each link is computed. In many parts of
our football clip graph, it is not possible to determine the
number of targets in each link and sometimes there are in-
consistencies (the number of input and output targets at an
interaction are unequal). Presently our theory cannot han-
dle such situations, thus these parts of the graph are left
unsolved. Accordingly, the Bayes net is divided into parts,
which are analyzed separately. For our football graph 14
separate parts are isolated. In figure 12(b) we can see an ex-
plicit demonstration of solutions found for some split nodes.



For a clearer picture of the quality of the results obtained
the found paths (for team A players) within largest parts are
shown in figure 11. As can be seen, the majority of the
tracks are correctly linked.
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Figure 11. Estimated paths for the three largest consistent parts
of the graph. Each line represents a single player track and row
an estimated path. The color and symbol denote the true identity
of the track. Ideally there should only be one color and symbol per
row. On several occasions a target’s trajectory is split into several
paths. This is caused by links in a part having an undetermined
number of targets. The rest of the parts contain a similar number
of tracks and quality of results to the bottom graph.

To summarize the overall results - 85% (out of 73) of the
connections considered are correctly resolved. However,
not all decisions made at each split node have the same de-
gree of confidence associated with them. Fortunately, as we

are working with probabilities and within a Bayesian frame-
work we can compute the absolute probability for each pos-
sible resolution of a particular split node. Comparing the
relative value of the most probable to the next most proba-
ble resolution provides a confidence level of our estimate.
By only including estimates that are certain, we can elim-
inate some of the connection errors. Figure 13 shows the
percentage of correct connections as we remove the less cer-
tain split estimates. When 25% of the connections remain
we have 100% correct connections.

1 1.2 1.4 1.6

40

60

80

100

Threshold

% correct links 

% links above threshold 

Figure 13. The percentage of correct connections. Using the
marginal probabilities we can remove uncertain estimates. We
threshold on the ratio between the most and second most proba-
ble state of a split node. This increases the percentage of correct
links, but reduces the number of connections made. At a thresh-
old of 1.6 we make no wrong connections, but only 25% of the
connections are left (out of 73).

4. Conclusions and Future Research
When tracking multiple targets over a long period, it is

inevitable that inter-target occlusions will occur where it is
not possible to immediately link the identities of the tar-
gets entering and those exiting the interaction. It is there-
fore necessary to compare targets over extended periods of
time in the attempt to link their identities. In this paper
we achieve this by considering a two-stage solution. The
first stage involves the construction of a track graph de-
scribing the interactions between targets. The second stage,
the focus of this paper, exploits the track graph and sim-
ilarity measurements between the tracks to infer the most
likely configuration of paths for all targets. This is achieved
by parameterizing the solution space imposed by the track
graph and inferring the parameters given the measurements.
To make large scale problems computationally feasible we
only consider tracks within a certain window of interactions
to be explicitly dependent.

Promising results on a challenging (and relatively
lengthy) data set are presented. The main limitation to im-
proving the results, presently, are the assumptions concern-
ing the track graph. For problems with many targets inter-
acting frequently it is not realistic to expect that the number
of targets in each node can be counted explicitly. Relaxing
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(a) football track graph (b) resolved track graph

Figure 12. (a) This is a small part of the football clip track graph. The node colors correspond to team A (light blue oval), team B (white),
referees (dark grey) and multi-target nodes (black). (b) The corresponding resolved track graph. The square nodes display how the split
nodes have been resolved. Ground truth player numbers can be seen for the team A players.

this assumption, with more sophisticated modeling, would
increase the size of the parts of real-world track graphs we
could examine. Of course, as in most tracking algorithms,
there is room for improvement in the modeling of the ap-
pearance of the targets.

In a complementary approach, the identities of single
player tracks can be linked by un-supervised clustering us-
ing the similarity matrices shown in figure 10. Clustering
can be performed without reference to the track graph, thus
by-passing the computational bottlenecks and inconsisten-
cies in the graph. Reliable results have been obtained when
long tracks are included in the clustering process [1]. A
fruitful avenue of future research would be to investigate
how to optimally combine clustering and the path finding
algorithm presented here to obtain a more complete label-
ing of the player identities.

References
[1] Author. Tracking and Labelling of Interacting Multiple Tar-

gets. ECCV06 submission ID 1027. Supplied as additional
material eccv06.pdf. 2, 5, 6, 8

[2] R. Cowell, A. Dawid, S. Lauritzen, and D. Spiegelhalter.
Probabilistic Networks and Expert Syst. Springer, 1999. 4

[3] P. Figueroa, N. Leite, R. Barros, I. Cohen, and G. Medioni.
Tracking soccer players using the graph representation. In
ICPR, pages 787–790, 2004. 1

[4] M. Gelgon, P. Bouthemy, and J. Le Cadre. Recovery of
the trajectories of multiple moving objects in an image se-
quence with a pmht approach. J. Image & Vision Computing,
23(1):19–31, 2005. 1

[5] C. Huang and A. Darwiche. Inference in belief networks:
A procedural guide. International Journal of Approximate
Reasoning, 15(3):225–263, 1996. 4

[6] S. Iwase and H. Saito. Parallel tracking of all soccer players
by integrating detected positions in multiple view images. In
ICPR, pages 751–754, 2004. 1

[7] Z. Khan, T. Balch, and F. Dellaert. An mcmc-based particle
filter for tracking multiple interacting targets. In European
Conference on Computer Vision, 2004. 1

[8] K. Murphy. The bayes net toolbox for matlab. In Computing
Science and Statistics, volume 33, 2001. 4

[9] C. Needham and R. Boyle. Tracking multiple sports players
through occlusion, congestion and scale. In BMVC, 2001. 1

[10] K. Okuma, A. Taleghani, N. De Freitas, J. J. Little, and D. G.
Lowe. A boosted particle filter: Multitarget detection and
tracking. In ECCV, 2004. 1

[11] J. Vermaak, A. Doucet, and P. Perez. Maintaining multi-
modality through mixture tracking. In International Confer-
ence on Computer Vision, 2003. 1

[12] M. Xu, J. Orwell, and G. Jones. Tracking football players
with multiple cameras. In IEEE International Conference on
Image Processing, 2004. 1



 
 
 
 

Talks 



Proceedings of the IEEE ICRA 2009 
Workshop on People Detection and Tracking 
Kobe, Japan, May 2009 
 

Results from a Real-time Stereo-based Pedestrian Detection System on
a Moving Vehicle

Max Bajracharya, Baback Moghaddam, Andrew Howard, Shane Brennan, Larry H. Matthies

Abstract— This paper describes performance results from a
real-time system for detecting, localizing, and tracking pedes-
trians from a moving vehicle. The end-to-end system runs at
5Hz on 1024x768 imagery using standard hardware, and has
been integrated and tested on multiple ground vehicles and
environments. We show performance on a diverse set of ground-
truthed datasets in outdoor environments with varying degrees
of pedestrian density and clutter. The system can reliably detect
upright pedestrians to a range of 40m in lightly cluttered
urban environments. In highly cluttered urban environments,
the detection rates are on par with state-of-the-art non-real-
time systems [1].

I. INTRODUCTION

The ability for autonomous vehicles to detect and predict
the motion of pedestrians or personnel in their vicinity is crit-
ical to ensure that the vehicles operate safely around people.
Vehicles must be able to detect people in urban and cross-
country environments, including flat, uneven and multi-level
terrain, with widely varying degrees of clutter, occlusion, and
illumination (and ultimately for operating day or night, in
all weather, and in the presence of atmospheric obscurants).
To support high-speed driving, detection must be reliable to
a range of 100m. The ability to detect pedestrians from a
moving vehicle in a cluttered, dynamic urban environments
is also applicable to automatic driver-assistance systems or
smaller autonomous robots navigating in environments such
as a sidewalk or marketplace.

This paper describes results from a fully integrated real-
time system capable of reliably detecting, localizing, and
tracking upright (stationary, walking, or running) human
adults at a range out to 40m from a moving platform. Our
approach uses imagery and dense range data from stereo
cameras for the detection, tracking, and velocity estima-
tion of pedestrians. The end-to-end system runs at 5Hz on
1024x768 imagery on a standard 2.4GHz Intel Core 2 Quad
processor. The ability to process this high resolution imagery
enables the system to achieve better performance at long
range compared to other state-of-the-art implementations.
Because the system segments and classifies people based on
stereo range data, it is largely invariant to the variability of
pedestrians’ appearance (due to different types and styles
of clothing) and scale. The system also handles different
viewpoints (frontal vs. side views) and poses (including

The research described in this publication was carried out at the Jet
Propulsion Laboratory, California Institute of Technology, with funding from
the Army Research Lab (ARL) under the Robotics Collaborative Technology
Alliance (RCTA) through an agreement with NASA

All authors are with the Jet Propulsion Laboratory, California Institute of
Technology, Pasadena, CA 91109

articulations and walking) of pedestrians, and is robust to
objects being carried or worn by them. Furthermore, the
system makes no assumption of a ground-plane to detect or
track people, and similarly makes no assumption about the
predictability of a person’s motion other than a maximum
velocity.

Fig. 1. Examples of test scenarios and the output of our pedestrian detection
system (yellow boxes are detections with range and track ID text and a green
overlay of the segmented person; the cyan boxes are missed detections).

The performance of the system is demonstrated on a
variety of ground-truthed datasets in various outdoor en-
vironments, with different degrees of person density and
clutter. An example of these scenes is shown in Figure 1. The
majority of datasets used to evaluate the system consist of
scenarios simulating the operation of an unmanned ground
vehicle (UGV) traveling at moderate speed in semi-urban
terrain (paved roads with light clutter and people walking
along or into the road). In these scenarios, the system is
capable of initial detections of pedestrians up to 60m, and
reliable detection and tracking of pedestrians up to 40m,
which correspond respectively to 30 pixel and 45 pixel tall
pedestrians for our cameras. We also present performance
results of our system on recently published datasets of
crowded street scenes. Although not specifically designed for



highly cluttered urban environments, we show that results of
our real-time system are comparable to the state-of-the-art
systems that are designed to operate in these environments.

II. RELATED WORK

There has been extensive research on pedestrian detection
from manned and unmanned ground vehicles using scanning
laser rangefinders (LIDAR) and monocular and stereo vision
in visible, near infrared, and thermal infrared wavelengths.
Most such work assumes the scene contains a dominant
ground plane that supports all of the pedestrians in upright
postures. Maximum detection ranges tend to be 30m or less.
Rates of missed detections and false alarms are not good
enough to be satisfactory in deployed systems. Most prior
work on pedestrian detection has been done for applications
to smart automobiles, robotic vehicles, or surveillance. This
literature is very large, so we only cover recent highlights
and main trends here.

Research on pedestrian detection for smart automobiles
has employed monocular vision [2], [3], [4] stereo vision [5],
[6], [7], [8], [9] and LIDAR [10]. Vision-based methods have
used visible [2], [3], near infrared [4], and thermal imagery
[8]. Most work in this area has been strongly motivated by
the requirement to be very low cost in eventual production.
The approaches generally follow the architecture of detecting
regions of interst (ROIs), classifying these regions, and
tracking them.

Work on pedestrian detection for robotic vehicles in out-
door applications [11], [12], [13], [14], [15] includes methods
that do range sensing with 2D LIDAR, 3D LIDAR, stereo
vision, and/or structure from motion and do image sensing
with visible and/or thermal infrared cameras. At a high level,
algorithm architectures are analogous to the systems for the
automotive domain, involving ROI detection, classification,
and tracking, though the order and details of these steps
differ. As a group, there is more emphasis in this domain
on classification based on the 3D shape of the objects as
perceived by LIDAR or stereo vision than there is in the
automotive domain. The feature extraction and classification
algorithms tend to be simpler than those used in either the
automotive or video surveillance domains. Several of these
approaches have been tested as part of third party field
experiments, with results discussed by Bodt [16].

Finally, work on pedestrian detection in the surveillance
arena largely divides into work with image sequences from
stationary cameras, where background subtraction and/or
image differencing is used to detect moving objects [17],
[18], and work that applies trained pattern classifiers to
individual images [19], [20], [21], [22], [23]. The former
group is less relevant here, because background subtraction
and temporal image differencing are more difficult to use
from moving cameras. The latter group uses a variety of
feature extraction and classification methods to achieve better
detection and false alarm rates than single-frame results
reported in the automotive pedestrian detection literature;
however, the results are not directly comparable because
computational requirements are generally higher, the testing

protocol often uses image databases where positive examples
are already centered in image chips or does exhaustive search
over position and scale of ROIs in test imagery, and because
only individual frames are considered, the systems do not
include any tracking.

III. SYSTEM DESCRIPTION

Our system is fully described in earlier work [14], but
we briefly summarize our approach here. We focus on two
differences from our prior system: a slightly reduced feature
set, and an improved tracker. Our system consists of the
following steps:

• Stereo vision takes synchronized images from a pair of
cameras and computes a dense range image.

• Region-of-interest (ROI) detection projects stereo data
into a polar-perspective map and then segments the map
to produce clusters of pixels corresponding to upright
objects.

• Classification computes geometric features of the 3D
point cloud of each ROI and classifies the object,
resulting in a probability of being human.

• Tracking associates ROIs in sequential frames, ac-
counting for vehicle motion, and estimates the velocity
of the detected objects.

The system architecture allows the possibility of using
appearance and motion features to improve the classification
of people, but we currently do not make use of these features.

A. Stereo Vision

The first step in our system is to compute dense range data
from stereo images. We use a multi-processor version of the
real-time algorithm described by Goldberg [24] previously
used on the NASA Mars Exploration Rovers and in the
DARPA PerceptOR program. On a 2.4GHz Intel Core 2
Quad processor, the algorithm can process 1024x768 im-
agery at 10 frames/sec.

B. Region-of-Interest Detection

Detecting region-of-interest (ROI) areas from the stereo
data serves as a focus-of-attention mechanism to reduce the
runtime of subsequent classifiers and segments foreground
pixels from background pixels in a region. This allows a
shape-based classifier to be run on the 3D points that make
up a specific object, rather than sliding a window over
the image and explicitly performing foreground/background
segmentation in each window.

The stereo range data is transformed into a gravity-leveled
frame, accounting for the roll and pitch of the vehicle, and
then projected into a two-dimensional polar-perspective grid
map (PPM). The map is then segmented based on map
cell statistics. Unlike a traditional Cartesian map, which is
divided into cells of fixed size in Cartesian (x,y) space, the
PPM is divided into cells with a fixed angular resolution but
variable range resolution in polar (r, θ) space in order to
preserve the coherency of the stereo range data. The PPM
accumulates the number of range points projected into each
cell. The map is then smoothed with an averaging filter with



an adaptive bandwidth in polar space corresponding to a fixed
bandwidth in Cartesian space. For computational efficiency
the filter is implemented using an integral image of the map.
After smoothing, the map gradient is used to find all of the
peaks in the map, which are then grown to the inflection
points in the gradients, resulting in a segmentation of the
map. Because the minimum expected size of the objects
being detecting is known, segmented blobs whose peaks fall
within half of this size are then merged together. Figure 2
provides an example of a filtered PPM with ROI detections.

(a)

(b)

(c)
Fig. 2. An example of the stereo-based segmentation for region-of-interest
detection. (a) shows the left image of a stereo pair with the resulting depth
map (inset); (b) shows the polar-perspective map of point counts smoothed
with an averaging filter with a close up of the map with segmented regions
overlaid; and (c) shows the segmented regions in different colors, with
examples of the foreground/background separation.

C. Classification

Geometric features of each segmented 3D point cloud are
used to classify them as human or not human based on shape.
After segmentation, a scene may contain hundreds of regions.
To reduce the number of regions that must be classified,

we first prefilter the regions with a fixed threshold on the
width, height, and depth variance of each segmented region.
This threshold is simply selected as the 3σ values obtained
from the training data. After prefiltering, the features used
for classification are computed for each region’s point cloud.

We then compute geometry-based features for the re-
maining regions, including the fixed-frame shape moments
(variances of point clouds in a fixed frame), rotationally
invariant shape moments (the eigenvalues of the point cloud’s
scatter matrix), and “soft-counts” of various width, height,
depth, and volume constraints. The logarithmic and empirical
logit transforms of these moments and counts are used to
improve the normality of the feature distribution.

To compute the features, we start by centering the point
cloud about the x-axis by its mean value and setting the
minimum depth z and height y to zero. The first feature is
defined by the logarithm of the 2nd order moment of the
height:

f1 = − log(σ2
y) (1)

The “soft-count” features are defined by the number of
points that fall inside certain preset coordinate bounds (or
volumes). Such count-based features ignore “true shape” and
focus instead on the object’s size or extent. Unlike moment-
based features, count-based features are more tolerant of out-
lier noise and some artifacts of stereo processing. Naturally
there are strong correlations between these two different sets
of features. However, this correlation or redundancy can be
quite helpful for modeling purposes. For the total number of
points n in a blob point cloud, we define nx = #(|x| < 1) as
the number (subset) of 3D points whose x value is less than
1m (in absolute value), ny0 = #(y < 2) and ny1 = #(y >
1) as the number of points whose height value is less than 2m
and greater than 1m, and nz0 = #(z < 4) and nz1 = #(z <
3.5) as the number of points with a depth value less than 4m
and 3.5m respectively. We also define nv to be the number
of 3D points that satisfy all three width, height, and depth
constraints simultaneously (i.e., the number of points that fall
within the prescribed rectangular volume of size 1m x 2m
x 4m). Although these constraints were selected empirically,
the process could easily be automated. In order to normalize
the data as well as account for uncertainty due to the sample
size (n), we use a logit transform with an empirical prior
count c:

f2 = log
nx + cx

n − nx + cx
f3 = log

ny0 + cy0

n − ny0 + cy0

(2)

f4 = log
nz0 + cz0

n − nz0 + cz0

f5 = log
nv + cv

n − nv + cv
(3)

f6 = log
ny1 + cy1

n − ny1 + cy1

f7 = log
nz1 + cz1

n − nz1 + cz1

(4)

The rotationally-invariant features are the logarithms of the
eigenvalues of the point cloud’s covariance (inertia) matrix,
where (λx, λy, λz) correspond to the major, intermediate, and
minor axes, respectively:

f8 = − log(λx) f9 = − log(λy) f10 = − log(λz) (5)



We note that f8 would be redundant with f1 if all the blobs
were oriented correctly (upright and “facing” downrange).
However, this is often not the case, due to artifacts in stereo
processing, and especially at long ranges where blob point-
clouds are often tilted and/or slanted.

Analysis of the shape features indicated that a linear
classifier (with a linear decision boundary) was too simple to
always work effectively. However, a more complex decision
boundary can be achieved while still using a linear classifier
(which is desirable for its computational efficiency and
robustness) by expanding the feature set to use higher-order
terms. Specifically, a quadratic decision boundary is modeled
using the augmented feature set:

x = [ 1 {fi} {fifj}i<j {f2
i } ]T (6)

Using this feature vector, a Bayesian generalized linear
model (GLM) classifier (for logistic regression) is then
trained using standard iteratively reweighted least squares
(IRLS) to obtain a Gaussian approximation to the posterior
mode. Simple MAP estimates of predictive probability (of
being human) are obtained using this Gaussian mode-based
approximation.

D. Tracking

Tracking ROIs in the scene is used to both reduce incorrect
detections and estimate the velocity of the detected objects.
By associating ROIs across multiple frames, the single frame
classifications can be aggregated to eliminate false positives.
Similarly, using the positions of a tracked object from stereo
and the motion of the vehicle, estimated by visual odometry
[25] or provided by an inertial navigation system (INS), the
velocity of the object can be computed and extrapolated to
provide a predicted motion to a path planner. The tracking
algorithm is designed to be extremely computationally effi-
cient and makes very few assumptions about the motions of
objects.

Tracking is implemented as the association of ROIs in
sequential frames. The ROIs extracted in a new frame are
matched to existing nearby tracks by computing a cost based
on each ROI’s segmented foreground appearance and then
solving a one-to-one assignment problem. For computational
efficiency and simplicity, the cost between an ROI and a track
is computed by comparing the new ROI to the last ROI in
the track. Only ROIs within a fixed distance are considered;
the distance is computed by using an assumed maximum
velocity of 2m/s in any direction for each object. The
cost between ROIs is then computed as the Bhattacharyya
distance of a color (RGB) histogram between each ROI. For
computational efficiency, we solve the assignment problem
with co-occurring minima. If an ROI does not match an
existing track, a new track is started. Tracks that are not
matched for a fixed number of frames are removed. To
eliminate the incorrect detections that lead to false positives
while still maintaining detections on true positives where the
classification score dropped for a small number of frames,
we temporally filter the scores with the median of three
consecutive scores and require three consecutive frames

of detection before making a classification decision. The
velocity of tracks is estimated by fitting a linear motion
model to the track. We estimate the position and velocity
uncertainty by combining the expected stereo error with the
model fit.

IV. EXPERIMENTAL RESULTS

The end-to-end system has been tested on datasets with
hand-labeled ground-truth and integrated onboard a vehicle
for live testing. The primary datasets were collected from the
vehicle on which the system was integrated in semi-urban,
lightly cluttered scenarios. The results on these datasets show
that our system can achieve initial detections at a range
of 60m, with detections reliable enough for autonomous
navigation out to 40m. To demonstrate that the system’s
performance is competitive with state-of-the-art systems in
highly cluttered, urban scenarios, we also make use of
datasets published by Ess [1], [26]. We show that we can
achieve performance similar to Ess on these datasets while
running at real-time rates.

A. Semi-Urban Datasets

The primary datasets used to evaluate the system use
input imagery from a 3 CCD color stereo camera pair with
1024x768 pixels, a 50 cm baseline, a field of view approxi-
mately 60 degrees wide, and with frame rates between 3.5Hz
and 10Hz. The cameras were either mounted on the roof of
an SUV at a height of approximately 2m above the ground,
and pointed down by approximately 5 degrees, or on the pan-
tilt head of an unmanned vehicle at a height of approximate
2m above the ground, and pointed down by 20 degrees. The
scenarios include the vehicle driving down a road at speeds
varying from 15 to 30 kph, with stationary mannequins and
people standing, walking, and running along the side of and
across the road in varying directions. The scene also contains
stationary and moving cars, trucks, and trailers, along with
stationary crates, cones, barrels, sticks, and other similar
objects. In many cases, the pedestrians experience a period
of partial to full occlusion by these objects or each other.
Several variations of the scenario also include one or two
people walking in front of the vehicle, weaving between each
other and occasionally going out of the field of view.

The imagery was manually ground-truthed by annotating
a bounding box around each person in the left image of
each frame, to a range of approximately 100m. In total, our
corpus includes approximately 6,000 annotated frames with
approximately 10,000 annotated people, although we restrict
our analysis to specific datasets which are representative
of operational scenarios. Although people are annotated
regardless of their posture or degree of occlusion, we only
consider people who are in an upright posture with less
than 50% occlusion for our analysis. We use the measure
of the area of the intersection over the area of the union
of the annotated and detected bounding boxes to declare a
correct detection. However, for these datasets, we found that
relaxing the common evaluation criteria of 50% intersection-
over-union to 25% produced more meaningful results. This



is because we are interested in detection at relatively long
range where the segmentation error is dominated by the
foreground fattening effect of stereo matching. Because the
scenes are relatively uncluttered, using a looser matching
criteria still remains representative of actual detections. In
order to present results that are meaningful when developing
a complete, autonomous system capable of safe navigation,
we present our results as the probability of detection (Pd),
defined as the number of detections divided by the true
number of people in the scene, versus the false alarms per
frame (FAPF), defined as the number of incorrect detections
divided by the number of frames in the dataset. To illustrate
the performance as a function of range, we restrict the
detections and annotations to a maximum range.

To demonstrate the effectiveness of our feature set and
classifier, we first present results on a cross-validation test
over many of our datasets. Figure 3 (a) shows the perfor-
mance of the system as an average of 1000 trials on a dataset
combined from many different scenarios, totaling 4,396
frames with 3,409 annotated people. From these sequences,
21,824 ROIs were extracted and each curve was generated
by randomly selecting 80% of these ROIs for training and
using the remaining 20% for testing. The resulting number
of effective frames in each test sequence is thus 879, and
the average number of humans is shown in the plot for
the respective range restriction. For this test, no temporal
filtering was used to adjust the classification scores. Figure
3 (b) shows a sample of the images of the sequences used.
The detections shown are indicative of the performance of
the system (but are, in fact, based on a system trained without
that sequence). Across our datasets, the system can achieve
a 95% Pd at 0.1 FAPF for people less than 30m and 85%
Pd at 0.1 FAPF for people less than 40m. For people out
to 50m and 100m, the system achieves 95% and 90% Pd
respectively at 1 FAPF.

Because the cross-validation results sample across all
of the datasets being tested on, they do not necessarily
provide compelling evidence that the system is effective in
new, unseen scenarios. To demonstrate that our system is
robust in new environments, we show the performance on
individual sequences that have never been used for training.
Although less statistically significant, they are perhaps more
indicative of the performance to be expected of the fielded
system. Figure 4 (a) and (b) show the results of the system
without temporal filtering on two sequences held out from
the training data. The same system was run on both datasets
with no modification. As the plots show, the sequence shown
in Figure 4 (a) is more difficult than (b), containing more
clutter and occlusion. The system achieves well above 95%
Pd at 0.1 FAPF for pedestrians less than 30m and 80% Pd for
less than 40m. For a fielded system, we generally run at an
operating point closer to 0.02 FAPF, which results in 90%
Pd for <30m and 65% Pd for <40m, and maintain some
degree of persistence of detected objects, propagating them
with their predicted velocity for path planning.

The main source of false alarms of our system in these
environments is due to the over segmentation of vehicles.

(a)

(b)
Fig. 3. (a) The performance resulting from 1000 trials of 80%/20% split
cross-validation tests on 4,396 frames drawn from various scenarios. (b)
Examples of images and detections from the various scenarios, with an
example false alarm on the truck in the bottom image. The yellow boxes
are detections, with a green overlay of the segmented person.

An example of a false alarm on the front of a pickup
truck is shown in the lower image of Figure 3 (b). The
individual distracter objects, such as barrels, tripods, and
sign posts are only occasionally misclassified because they
are normally segmented correctly. The main source of missed
detections is due to variability of the stereo range data at long
range, partial occlusion, and occasionally due to imprecise
localization of the person due to under or over segmentation.
Our system has some robustness to partial occlusion, but
tends to break down after greater than 50% occlusion. The
sequence shown in Figure 5 shows several examples of per-
formance on occluding and overlapping people. The people
in the near field are detected when they are unoccluded, or
only slightly occluded. They are not detected when partially
occluded either vertically (due to crossing the other person)



(a)

(b)
Fig. 4. The performance for two testing runs including people walking
along and in the street, with moving cars and stationary distractor objects.

or horizontally (due to the posts). Notice, however, that the
people are all tracked throughout the sequence (although with
one incorrect association). The people in the far field are
similarly not detected when they are partially occluded by the
vehicles (or too far away), but are detected when they emerge
into the open. The failure to detect partially occluded people
is understandable because we only train a single classifier
with data that does not contain many occluded people.

In addition to testing on ground-truthed datasets, the end-
to-end system has been integrated into several systems for
live testing. An earlier version of the system was fielded as
part of the RCTA program “Safe Operations” test, as reported
in [16]. The system described here has been integrated
onboard the test vehicle for an upcoming test, for which
results will be published in the future. The system has also
been used to demonstrate autonomous navigation in a lightly
cluttered dynamic environment on a small vehicle (with
cameras at approximately 1m high and with a 12cm baseline)
traveling at approximately 1m/s.

Fig. 5. A sequence of frames showing detections (yellow boxes, with green
overlay the segmented person) and misses (cyan boxes) for people under
occlusion. The number above the boxes indicates the range, and the number
below indicates the track ID.

B. Urban Datasets

To illustrate that our system is competitive with other state-
of-the-art stereo-based pedestrian detection systems, we also
evaluated our system on datasets published by Ess [1], [26].
These datasets consist of 640x480 resolution color Bayer
tiled imagery, taken at 15Hz, with a 40cm baseline camera
pair pointed straight out at a height of approximately 1m. The
scenarios are significantly more complex than the semi-urban
data, with many people in a busy shopping district in Zürich,
Switzerland, with significant occlusion, clutter, and motion.
The annotations include all people whose torso is partially
visible, and include children and partially upright postures,
but not people sitting. To make a direct comparison to the
results published by Ess, we use their detection criteria (50%
intersection-over-union) and restrict the annotations used in
the same way they do (with height greater than 80 pixels for
sequence 2 of the 2008 data, and 60 pixels for all other data).
We completely omit sequence 1 of the 2008 data because we
were unable to generate acceptable stereo depth maps based



on the camera models provided. The depth data density on
all other sequences is acceptable, but not as dense as it could
be, and results in reduced performance as discussed later. For
direct comparison, we also train on exactly the same data as
well (sequence 0 of the 2007 data).

The performance of our end-to-end system with the Ess
test sequences using exactly the same evaluation criteria are
shown in Figure 6 (a). Although the performance does not
appear very good (between 0.4 and 0.7 recall at 1 false
positive per frame, and with maximum achievable recalls
between 0.5 and 0.75), it is very similar to the results
reported by Ess. In fact, the results are slightly better at
1 FAPF on all sequences except sequence 2 of the 2008
data (which is due to less stereo coverage). Examples of
the scenes, along with stereo and the predicted velocity of
certain pedestrians, are shown in Figures 7 and 8. Notice
that people are detected when they are in various poses or
stages of walking and while carrying bags or briefcases.
The main cause of the missed detections is simply due
to a lack of stereo depth data density on people who are
either too close or occluded. To illustrate this point, we also
show the performance for the sequences where annotated
people must have at least 10% stereo coverage (of the pixels
defined by the annotated bounding box) in Figure 6 (b).
Because our system relies on stereo data for both detection
and classification, it can never find these people, nor would
it be able to localize them to plan around them in a fully
autonomous mode.

Our system misses detections and produces false positives
in some understandable situations. For instance, it misses
most children (left image of Figure 7), which were not
included in any training data, and detects mannequins in
shop windows or reflections of people in windows (right
image of Figure 7). However, the majority of false detections
is due to patchy stereo on flat surfaces such as buildings
or cars, which results in the objects being over-segmented
into a human sized objects (as seen on the car in the
left image of Figure 8). Many times, this results in false
positives high up on buildings (as seen in the center image of
Figure 8), that could be removed by only considering people
who might enter the street or be a danger. In other cases,
explicitly detecting other objects such as cars would remove
the false detections. Despite not designing for many of these
situations, our system is capable of achieving competitive
performance while running in real-time (10Hz on 640x480
imagery).

V. CONCLUSION

The results of our real-time, stereo-based pedestrian detec-
tion system show it to be effective at detecting people out to a
range of 40m in semi-urban environments. It achieves results
comparable with alternative approaches with other sensors,
but offers the potential for long-term scalability to higher
spatial resolution, smaller size, and lower cost than other
sensors. It also performs similarly to state-of-the-art results
from recent literature, while running at real-time rates.

(a)

(b)
Fig. 6. (a) The performance for sequences from [26] and [1] presented
with the same evaluation criteria as their work. (b) the performance for the
same sequences when all annotation that have less than 10% stereo coverage
are eliminated, indicating that most of the misses in (a) are due to lack of
stereo depth data on the people.

However, our system currently has some key limitations.
Because the initial segmentation uses a projection into a 2D
map, it cannot segment people or objects in close contact. To
address this problem, we are investigating direct disparity-
space and image-space segmentation techniques to provide
regions of interest. Similarly, because we use a relatively
small geometry-based feature set for classification, it is
inherently limited. Any object with a similar shape to a
person may be misclassified. To address this problem, we
are investigating using appearance and motion features to
improve classification. We are also using these extensions to
handle the cases of pedestrians under partial occlusion and
in non-upright postures.
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Motion Planning for People Tracking in Uncertain and Dynamic
Environments

Tirthankar Bandyopadhyay, Nan Rong, Marcelo Ang, David Hsu, Wee Sun Lee

Abstract—Target tracking is an important capability for au-
tonomous robots. The goal of this work is to construct motion
strategies for a robot so that it can handle visual and mobility
obstruction due to obstacles and maneuver effectively to track a
mobile target in a dynamic, uncertain environment. There are two
broad approaches to address dynamic changes and uncertainties
in the environment: to react fast or to plan ahead. The choice
often depends on the amount of prior information available
on the environment and the target behavior. This paper gives
an overview of our work on target tracking using these two
approaches.

First, we present a greedy algorithm. It uses purely local
geometric information from the robot’s sensor to compute the
robot’s motion at each time step, and yet carefully balances the
robot’s ability to track the target in both the current and the
future time. The algorithm uses only information from the robot’s
sensor and requires no prior information on the environment or
the target behavior. This has been shown to work well on a real
robot with a 2-D laser sensor in a crowded school cafetaria.

Second, we use partially observable Markov decision process
(POMDP) to build a model of target behavior. As a result, the
robot is capable of more sophisticated tracking behavior. For
example, it may intentionally allow the target to get out of sight
in order to minimize its own movement and save energy, but
does not compromise long-term tracking performance. This is
ongoing work and we show simulation results demonstrating the
effectiveness of the approach.

I. INTRODUCTION

Target tracking has many applications. In home care set-
tings, a tracking robot can follow elderly people around and
alert caregivers of emergencies. In security and surveillance
systems, tracking strategies enable mobile sensors to monitor
moving targets in cluttered environments. In this paper, we
focus on developing motion strategies for a robot equipped
with visual sensors so that it can effectively track and follow
a moving target, despite obstruction by obstacles. Target
identification, an important component of target tracking is
assumed.

Just as in classic motion planning [13], we must consider
motion constraints resulting from both obstacles in the envi-
ronment and the robot’s mechanical limitations. In particular,
the robot must not collide with obstacles. Target following has
the additional visibility constraints due to sensor limitations,
e.g., obstacles blocking the view of the robot’s camera. Both
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motion constraints and visibility constraints play a significant
role for target following in cluttered and dynamic environ-
ments.

The robot can address dynamic changes and uncertainties
in the environment either by reacting fast to each changes
or by modeling these uncertainties and planning ahead. The
choice depends on the availability of prior information to
the robot. When the environment or the target behavior is
unknown, the robot has to plan its motion based on just the
local information available and try to maximize the duration
for which it can keep the target in view. On the other hand,
when the environment is known and the target behavior can be
modeled, the robot can incorporate this information to generate
sophisticated motion strategies that maximizes the overall time
that the target is in view.

This paper gives an overview of our work in following
the target using these two approaches. In the rest of this
section, we motivate and describe the approaches in light of
two concrete examples (Figure 1).

(a) (b)
Fig. 1. Different scenarios: (a) Crowded canteen environment : Highly
dynamic and unknown environment, suitable for local planning (b)
Home care application : Uncertainty in target’s position handled by
POMDP tracker can generate sophisticated behaviors.

Let us take a specific scenario of an automated personal
shopping assistant following an elderly person in a shopping
mall, or keeping an eye on young kids while their parents shop.
The shopping mall is a complex environment. People walking
around add to the visual occlusions and motion obstructions,
thereby creating a highly cluttered and dynamic environment
(Figure 1a). While the layout of the environment might be
available in some cases, exact maps for localizing the robot are
hardly provided. On top of that, the target can be completely
unpredictable in moving from one shop to another. In such
situations where little is known about the target behavior or
the environment, a local greedy strategy is more effective than
complete planning.

Key to our algorithm is the definition of a risk function,
which tries to capture the targets ability in escaping from the



robot sensors visibility region in both short and long terms.
To select actions effectively, the robot must balance between
the short-term goal of preventing the immediate loss of the
target and the long-term goal of keeping it visible for the
maximum duration possible. Interestingly, a good compromise
can be achieved, using only local information available to
the robots sensors. By analyzing the local geometry, our
algorithm computes a global risk function as a weighted
sum of components, each associated with a single visibility
constraint. It then chooses an action to minimize the risk
locally in a greedy fashion.

As the algorithm uses only local geometric information
available to the robots visual sensors, it does not require a
global map and thus bypasses the difficulty of localization with
respect to a global map. Furthermore, uncertainty in sensing
and motion control does not accumulate. This improves the re-
liability of tracking. We have tested the algorithm in a crowded
school cafeteria at lunch time. The crowd of students moving
towards food stalls and then towards their seats create a
truly dynamic and cluttered environment. Our implementation
shows that the tracker is robust to temporary occlusions and
in uneven terrain. The algorithm scales well with high clutter
and obstructions and shows good performance for reasonable
target behavior.

On the other hand, if enough information is available on the
environment and the target behavior, the prior information can
be used by the tracker to come up with ‘smarter’ strategies to
improve the tracking performance. We formulate the tracking
problem into a POMDP framework. POMDP trackers integrate
global information on the target behavior and the environment
for optimal decision making. Let us take a specific scenario
from the homecare application. Imagine that an elderly person
moves around at home and has a call button to call a robot over
for help (Figure 1b). The call status stays on for some time and
then goes off. If the robot arrives while the call status is on, it
gets a reward; otherwise, it gets no reward. Clearly, the robot
should stay close to the person in order to improve the chance
of receiving rewards, but at the same time, the robot needs to
minimize movement in order to reduce power consumption.
Moreover, there might be regions where the robot might not
be allowed to follow, e.g. bathroom etc. So the naive strategy
of following right behind the person does not work well. The
map of the environment is available to the robot but there are
uncertainties in the location of the target and the robot itself
w.r.t this map.

The problem of target tracking comprises of target search-
ing and target following. By modeling target tracking as a
partially observable Markov decision process (POMDP) [20],
searching and following can be unified. The main idea is
to represent the target position as a probability distribution,
whether the target is visible to the robot sensors or not.
So the target position is always “known” to the robot with
some degree of uncertainty. The robot then chooses its actions
according to a probabilistic model of target behaviors and a
reward function that encourages the robot to keep the target
visible.

The POMDP framework offers several other advantages.
It provides a principled way to deal with uncertainties in
robot control and sensing. It also easily incorporates additional
requirements, e.g., minimizing the robot’s power consumption.

We formulate the tracking problem as a POMDP and
use a sampling based algorithm SARSOP [10] to generate
interesting tracking behaviors, e.g., anticipatory moves that ex-
ploit target dynamics, information-gathering moves that reduce
target position uncertainty, and energy-conserving actions that
allow the target to get out of sight, but do not compromise
tracking performance.

II. PRIOR WORK

Target tracking has received tremendous amount to atten-
tion. One important part of target tracking is to detect and
identify the target(s) from noisy, error prone and uncertain
sensor data. Our mention of a few passing references below,
is by no means representative of the work by the community.
For single targets, kalman filter [4] and particle filters [11]
have been used. For multiple targets, Joint Probability Data
Association Filters (JPDAF) was proposed [8] which was
implemented for people tracking among others by [19]. Multi-
Hypothesis Tracking (MHT) was proposed by Reid [18]. An
interesting and quite recent work on leg tracking has been
described in [1].

Motion strategies for target tracking depend on the amount
of information available. If both the environment and the
target trajectory are completely known, optimal target fol-
lowing strategies can be computed through dynamic program-
ming [14], or by piecing together certain canonical curves [6],
If only the environment is known, one can preprocess the
environment by decomposing it into cells separated by critical
curves. The decomposition helps to identify the best robot
action as well as to decide the feasibility of tracking [15]. If
the environment and the target trajectory are both unknown
in advance, one approach is to move the robot so as to
minimize an objective function that tries to capture the short-
and long-term risk of losing the target [3], [9], [16]. With
few exceptions [7], Most of these approaches do not handle
uncertainties in robot control and sensing. Other probabilistic
approaches to target tracking include, e.g., [21].

Our POMDP tracking problem is related to the Tag problem
described in [17]. However, the problems considered here
involve a much larger number of states and more complex
target behaviors. The SARSOP algorithm is also more efficient
than the PBVI algorithm used in [17] and can handle more
realistic target tracking tasks.

Another potential difficulty with the POMDP approach
is the acquisition of a good probabilistic model of target
behavior, but machine learning techniques can help [5].

III. LOCAL GREEDY TRACKER

For an unknown environment and an unknown target behav-
ior, the robot must execute an online reactive strategy that takes
into account only local information. In this work, to identify
and track a person, we use visibility based sensors, based on
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Fig. 2. Formulation of the target tracking problem into geometrical
parameters extracted from local information

the standard straight line-of-sight visibility model (Figure 2b).
In the free space F , the visibility set V(x) is given by,

V(x) = {q ∈ F | xq ⊂ F and d(x, q) ≤ Dmax and
θmin ≤ ang(x, q) ≤ θmax}

where d(x, q) denotes the distance between x and q, while
ang(x, q) is the orientation of q w.r.t. x. Information about
the local environment is encoded into the boundary (∂V), of
the visibility polygon (V).

Both the robot and the target’s motion, are formulated with
a simple discrete-time constant velocity model. As the target
behavior is unknown, its velocity (v′) is modeled by a gaussian
around its current heading : v′(t + ∆t) = N (v′(t), σ). The
variance σ gives a measure of confidence in estimating the
target velocity. Although we use a Gaussian distribution to
model the uncertainty in the target behavior, the approach
remains valid for any other velocity prediction method, even
non-parametric ones.

A. Local Greedy Approach Overview

The objective of the robot is to keep the target inside the
robot’s visibility, V , for as long as possible. The target can
escape V through its boundaries that lie in free space. We term
these boundaries as escape edges (Figure 2b). Since the robot
has no control over the enviornment or the target’s motion,
it can only prevent the target’s escape by manipulating the
escape edges, {Gi} away from the target. The ability of the
robot to manipulate Gi effectively is important in maintaining
the target in view. Let us denote the manipulation ability of
the robot for a single escape edge, Gi, by the symbol, ∆Gi.
∆Gi is a function of the robot position, x, and its actions, v:
∆Gi(x, v). The risk of losing the target, on the other hand,
depends on : (a) the target position (x′), (b) the relative target
velocity (v′) w.r.t. to {Gi}, and finally (c) the robot’s ability
to manipulate the edges, ∆Gi. We can then formulate a risk
function (Φ) and choose the robot action, v!, to minimize Φ:

Risk = Φ(x′, v′, {Gi}, {∆Gi(x, v)})
v! = arg min Φ(x′, v′, {Gi}, {∆Gi(x, v)}) (1)

While Φ is the risk of losing the target through any escape
edge in the entire V , we can assign a risk ϕi, of losing the

target to each escape edge, Gi. We approximate the total risk
Φ, by the expected risk for all the gaps.

Φ ≈ E[ϕi] =
∑

i

piϕi(x′, v′,Gi,∆Gi(x, v)), v! ≈
∑

i

piv!
i

(2)
where pi is the probability of the target’s escape through Gi.
pi is computed based on the target’s current velocity, v′. The
details can be found in [3].

However, in choosing v!, the robot has to satisfy many
constraints on the desired robot positions, e.g. obstacle avoid-
ance considerations or on the robot’s actions like kinematic,
dynamic constraints. We define a feasible region, L (x), that
satisfies all the constraints (Ci(x)) in the position domain :
L(x) =

⋂
i Ci(x). The local greedy optimization then chooses

an action (v!), that minimizes Φ while satisfying L (x) in the
time step ∆t,

v! = arg min Φ(x′, v′, {Gi}, {∆Gi(x, v)}), s.t v!∆t ∈ L(x)
(3)

B. Risk Formulation : ϕ
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Fig. 3. (a) Relative position determines risk, (b) Local geometric
parameters, (c) Obstacle Dilation

For successful tracking, the robot must balance the short-
term goal of preventing the immediate loss of the target
through these escape edges and the long-term goal of max-
imizing the duration of tracking in the future. Let us look at
a simple 2-D example shown in Figure 3a.

For the robot positioned at R1, the obstacle (the dark-
colored triangle) creates an occlusion edge g with one endpoint
at P . The robot has the short-term goal of preventing the
target T ’s escape through g at the current instant. It achieves
this by swinging g away from the target, using velocity vn.
The robot’s longer-term goal is to move towards P using
velocity vr, because it can eliminate the occlusion edge g
completely when it reaches P . Since the robot’s maximum
speed is bounded by V , there is a trade off in choosing the
velocity components vr and vn. Clearly, this trade off depends
on the relative positions and velocities of the target and the
robot w.r.t P . For example, the robot at position R2 can afford
a higher vr, as the shortest distance from the target to g is
greater than that of the robot and there is no immediate risk
of losing the target. Whereas at R1, the target is closer to g
than the robot, and the short-term goal of preventing the loss
of target becomes much more important.



We formulate a risk function that incorporates this trade
off between the current and future risk in terms of local
geometrical parameters ( Figure 3b).

In the previous work [3], a local greedy algorithm based on
relative vantage was proposed. Relative vantage refers to the
ability of the robot to eliminate Gi before the target can escape
through it. We introduce a region around Gi, called vantage
zone as, D = {q : q ∈ V; dist(q,Gi) ≤ dist(x,Gi)}

The objective of the robot is to keep the targets away from
D and accordingly, we can take the measure of time taken
(tr.v) to move the target outside D, as the risk value. From
Figure 3b,

ϕg = tr.v ≈
dist(t,D)

rel.vel(t,D)
≈ r − e

veff
, v!

i =
ϕg

veff

(
r′

r
n̂ + r̂

)

where veff = vr + vn(r′/r) − v′e is the effective velocity in
the direction along the shortest path from the target to Gi.

Similar considerations can be applied to the field of view
(FoV) limits and the range limits. Derivation of these special
cases are omitted due to space limitation. The reader is pointed
to [2] for details.

C. Obstacle Avoidance

Although, purely low-level reactive obstacle avoidance tech-
niques, can handle dynamic and unknown environment, they
may sometimes move the robot contrary to the required track-
ing direction. On the other hand, planning in the configuration
space may be too computationally expensive in a cluttered and
dynamic environment. We propose a local obstacle avoidance
method with a small look-ahead. The robot’s velocity is used
to enlarge the obstacle edges. These extended obstacles then
constrain the planned robot motion.

First, we approximate the robot’s size by the radius (sr)
of its bounding circle. Then, we compute the finite braking
distance, sb, using the maximum decceleration and the robot’s
current velocity. This braking distance, sb and the robot’s
dimension, sr, defines a collision region C (x), around the
obstacle edge, B, Figure 3c,

C(x) = {q ∈ V : d(q,B) ≤ (sr + sb)} (4)

The robot can actively change the shape of C by changing its
speed and heading. For safe navigation, the robot must avoid
C. If we denote the reachable region of the robot in ∆t, as
R, the feasible region becomes L = R − C. As an example,
assuming omni-directional motion ability of the robot with no
dynamics in Figure 3c, R is a disk of radius, V ∆t, and the
darker shaded region shown is L. Appropriate motion models,
non-holonomic constraints, motion dynamics etc change the
shape of R, but the basic approach remains the same.

We substitute the details of the escape edge risk and the
obstacle avoidance constraints in expression

v! =
∑

i

piv!
i s.t v!∆t ∈ L(x) (5)

D. Experimental Results

The tracking algorithm is implemented on a Pioneer P3-
DX differential drive robot. A SICK-lms200 range sensor is
mounted on the robot. The laser returns 361 readings on a field
of view of 180deg at the resolution of 0.5deg. The maximum
range of the sensor is 8m. The control algorithm runs on a
Pentium M Processor @1.5GHz laptop running Player server
v-2.0.5 on linux. The algorithm runs at 10Hz. Implementation
details are described in [2].

In the following we show a comparison of our algorithm
with visual servo algorithm. Subsequently we showcase two
of our experimental runs that was performed in the school
cafeteria. The videos of these and more experiments performed
on indoor, canteen and outdoor tracking are available on-
line at http://guppy.mpe.nus.edu.sg/∼tirtha/research/Hardware/
hardImpl.html. More detailed analysis and comparison to
existing algorithms is available in [2].

1) Comparison with Visual Servo (Figure 4 & Figure 5)
: In Figure 5, a box is pushed between the target and the
robot to occlude the target. The responses of a simple visual
servo algorithm is compared to the vantage tracker. Since,
the vantage tracker actively tries to avoid possible future
occlusions, it is able to adapt to the changing environment
(Figure 5b-1). A point to note is that the vantage tracker
does not model the motion of the environment but just re-
plans its motion at a high frequency, making the tracker
independent of the dynamic nature of the environment. Later,
when the box stops and the target starts to move (Figure 5c),
the tracker is able to successfully follow the target (Figure 5d).
In comparison, the simple visual servo tracker does not model
the dynamic environment and loses the target from its view
(Figure 4).

(a) (b) (c)
Fig. 4. Visual Servo : Since the robot does not take into account the
environment information (the moving box), it moves straight ahead
towards the target (b) and loses the target behind the occluding box
(c).

2) Tracking in a Crowd (Figure 6) : This experiment was
done during lunch hour to capture the dynamic environment of
the canteen at peak rush time. The robot follows the target in
grey t-shirt (1). As the target moves into the canteen area the
crowd keeps increasing (2,3,4). Moreover in (3,4,5) the robot
has to maneuver through a narrow pathway while avoiding
incoming people and keeping the original target in view which
makes following the target more difficult.

3) Visual Occlusions (Figure 7): A challenging aspect of
following the target in a crowd is when someone walks in
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Fig. 6. Target following lunch hour rush crowd at school cafeteria
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Fig. 7. Fast online local greedy algorithm is robust to temporary occlusions

(a) (b-1) (b-2)

(c) (d)
Fig. 5. Vantage tracker : (b-2) shows the robot’s local perception of
the environment. The target is marked by T , the blue lines are the
occlusion edges, red line is the most critical occlusion and the green
segment starting from R denotes the robot’s motion decision. The
robot sees the target too close to the occlusion and swings out.

between the robot and the target. In this set of snapshots,
the robot is following the target in green t-shirt when it
faces an temporary occlusion by a lady (in purple) walking
across unexpectedly (2,3,4). The robot slows down to avoid
collision (3,4) and returns to following the target when the
occlusion has passed. Due to the fast online nature of the
tracking algorithm, temporary occlusions in such a dynamic
environment is handled well by the robot.

IV. POMDP TRACKER

We start with a brief review of POMDPs. See [12] for a
more complete introduction. We then describe how to model
the target tracking problem as a POMDP.

A. Background on POMDPs

A POMDP models an agent taking a sequence of actions
under uncertainty to maximize its total reward. Formally it is

specified as a tuple (S,A,B, T , Z,R, γ), where S is a set of
states, A is a set of actions, and B is a set of observations.

The agent always lies in some state s ∈ S. In each time
step, it takes some action a ∈ A and moves from a start
state s to an end state s′. Due to the uncertainty in action,
the end state s′ is described as a conditional probability
function T (s, a, s′) = p(s′|s, a), which gives the probability
that the agent lies in s′, after taking action a in state s.
The agent then makes an observation on its current state.
Due to the uncertainty in observation, the observation result
o ∈ B is again described as a conditional probability function
Z(s, a, o) = p(o|s, a) for s ∈ S and a ∈ A.

In each step, the agent receives a real-valued reward R(s, a),
if it lies in state s and takes action a. The goal of the agent is
to maximize its expected total reward by choosing a suitable
sequence of actions. In this work, we consider infinite-horizon
POMDPs, in which the sequence of actions to be chosen has
infinite length. We specify a discount factor γ ∈ (0, 1) so that
the total reward is finite and the problem is well defined. In
this case, the expected total reward is E[

∑∞
t=0 γtR(st, at)],

where st and at denote the agent’s state and action at time t.
The solution to a POMDP is an optimal policy that maxi-

mizes the expected total reward. Normally, a policy is a map-
ping from the agent’s state to a prescribed action. However,
in a POMDP, the agent’s state is partially observable and not
known exactly. So we rely on the concept of belief state, or
belief, for short. A belief is a probability distribution over S.
A POMDP policy π:B → A maps a belief b ∈ B to the
prescribed action a ∈ A.

A policy π induces a value function V π(b) that specifies the
expected total reward of executing policy π starting from b. It
is known that V ∗, the value function associated the optimal
policy π∗, can be approximated arbitrarily closely by a convex
and piecewise-linear function V (b) = maxα∈Γ(α · b), where b
is a discrete vector representation of a belief and Γ is a finite
set of vectors called α-vectors. Each α-vector is associated
with an action, and the policy can be executed by selecting
the action corresponding to the best α-vector at the current
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Fig. 8. Simulation experiments for target tracking.

belief b. So the policy can be represented by a set Γ of α-
vectors. Policy computation, which, in this case, involves the
construction of Γ, is usually performed offline.

Given an policy π, the control of the agent’s actions is
performed online in real time. It consists of two steps executed
repeatedly. The first step is policy execution. If the agent’s
current belief is b, it then takes the action a = π(b), according
the given policy π. The second step is belief estimation. After
the agent takes an action a and receives an observation o, its
new belief state b′ is given by

b′(s′) = τ(b, a, o) = ηZ(s′, a, o)
∑

s∈S

T (s, a, s′)b(s),

where η is a normalizing constant. The process then repeats.

B. Target Tracking as a POMDP
Our problem setting is motivated by homecare applications.

Imagine that an elderly person moves around at home and
has a call button to call a robot over for help. The call status
stays on for some time and then goes off. If the robot arrives
while the call status is on, it gets a reward; otherwise, it gets
no reward. Clearly the robot should stay close the person in
order to improve the chance of receiving rewards, but at the
same time, the robot needs to minimize movement in order to
reduce power consumption. So the naive strategy of following
right behind the person does not work well.

When the environment information is known and the target
behavior is known, we propose a POMDP tracker. To for-
mulate the problem as a POMDP, we model the environment
as a regular grid. See Figure 8 for examples. The robot and
the target (in this case, the person with the call button) can
occupy any of the grid cells that are free of obstacles. The state
s of this POMDP is composed of the robot position xr, the
target position xt, and the call status c : s = (xr, xt, c). If the
environment contains n free cells, then there are n ·n ·2 = 2n2

distinct states, resulting in a belief space of 2n2 dimensions.
In one time step, the target can stay where it is or move to

a neighboring cell. The target motion is described by a given
probability function T t, conditioned on the target’s current
position: if the target is currently at xt, it will be at x′t in the
next time step with probability T t(xt, x′t) = p(x′t|xt).

The person may turn on the call button in each step with
probability p1. If the call status is on, the person may turn
it off with some probability p2 in each time step, indicating
that help is no longer needed. This model has two main
implications. First, as the call duration follows the geometric
distribution, the mean duration of a call is 1/p2, Second, most
calls are short. The robot must arrive quickly in order to
receive rewards, thus increasing the difficulty of tracking.

The robot motion resulting from an action is described
similarly by another probability function T r, conditioned on
both the robot’s current position and its action. The robot’s
actions consist of commands to stay where it is or to move
to a neighboring cell. If the robot is currently at xr and
takes action a it will be at x′r in the next time step with
probability T r(xr, a, x′r) = p(x′r|xr, a). Note that the robot
may not be able to execute the commands perfectly due to
control uncertainty. This can be modeled with a suitable T r.

We assume that the robot can see the target through its
sensors if they lie in the same or neighboring cells. Uncertainty
on the target position due to sensor noise can be modeled in
the observation probability function Z.

The robot receives a reward, if it reaches the cell that the
target occupies while the call button is on. In one step, if the
robot does not move, it incurs no costs (i.e., negative rewards).
Otherwise, it incurs a cost proportional to the distance traveled.
The robot’s goal is to maximize the expected total discounted
reward.

The POMDP formulation does not explicitly differentiate
whether the target is visible or not. To execute a policy, the
robot maintains a belief of the target position. When the target
is visible to the sensors and the sensor data are good, the belief
is sharpened. When the target is not visible or the sensor data
are poor, the belief becomes more diffuse. In the extreme case,
when the target remains invisible for a long time, the belief
may eventually converge to a uniform distribution. This way,
target searching and target following are unified in a natural
way. Clearly, if the robot knows the target position well, it can
choose better actions and receive higher rewards. Therefore,
an optimal policy favors sharp beliefs, while also taking into
account the cost of obtaining them.

C. Simulation Results
We used SARSOP [10] to compute tracking policies in

several simulated environments. See Figure 8 for examples.
The light blue areas in the figures indicate obstacles. The black
dashed curve indicates the target’s path. The target motion is
non-deterministic: it follows this path, but in each time step, it
may pause or proceed along the path with equal probabilities.
The green area around the robot indicates the robot sensor’
visibility region. The various shades of gray show the robot’s
belief of the target position. Lighter color indicates higher
probability. To focus on target tracking behaviors, we assume
in these experiments that there is no uncertainty in robot
control and sensing. The robot can execute motion commands
and observe its own position and call status perfectly. It can
also observe the target position perfectly, if the target is visible.



Fig. 9. Snapshots of a simulation run.

Uncertainties in control and sensing can be easily incorporated
into the POMDP if needed. If the robot reaches the current
target position while the call status is on, it receives a reward
of 100. The robot receives a reward of −1 for a horizontal or
vertical move, a reward of −

√
2 for a diagonal move, and a

reward of 0 if it stays stationary. The discount factor is set to
0.95.

In the first experiment, we have a home-like environment
(Figure 8a). The corresponding POMDP has 9, 248 states.
SARSOP computed a policy in about 48 minutes. We per-
formed several simulation runs to examine its performance
and observed interesting robot tracking behaviors:

• anticipatory moves that exploit target dynamics,
• information-gathering moves that reduce target position

uncertainty,
• approaching the target along a nearly optimal path when

the robot is called,
• minimizing movement by allowing the target to get

out of sight, but not compromising long-term tracking
performance.

It is important to bear in mind that these behaviors are not
manually specified, but automatically captured by the POMDP
through policy computation.

Snapshots of a single simulation run are shown in Figure 9.
Initially, the target lies within the robot sensor’s visibility

region, and the robot’s belief on target position consists of
a single peak (snapshot 1). As the target moves, the robot
does not follow along and intentionally let the target get out
of sight, in order to minimize movement and reduce energy
consumption. Now, although the target is not visible, the robot
still has the target reasonably well localized by maintaining a
belief on the target position: the target is well within the high-
probability region of the current belief (snapshot 2). Instead
of following the target, the robot tries to anticipate the future
position of the target by exploiting the target dynamics and
makes a move towards this position (snapshot 3). As there
is no call, the robot’s move purely serves the purpose of
gathering information on the target position. When the target
passes by, the belief on target position is sharpened (snapshot
4). If the target is not observed for a while, the uncertainty
may become large, but the robot is still able to maintain a
belief that reflects the current target position well: the target
is located within a high-probability region (snapshot 5). When
there is a call (snapshot 6), it uses the current belief to
find the region that contains the target with high probability.
It then moves towards the region along the shortest path
(snapshots 6–9). In general, the robot may need to search
this region, but here it luckily finds the target right away and
receives a high reward (snapshot 9). The robot then makes
another anticipatory move to reduce target position uncertainty



(snapshots 10–12). Interestingly, the robot position in snapshot
12 is exactly the same as that in snapshot 3, despite that
the target positions and beliefs are quite different. It is, of
course, not coincidence. This particular position guards both
of the two ways into the lower right corner of the environment.
By occupying this position, the robot can intercept the target
as it exits the entrances without following it. The tracking
behavior here reveals that the computed policy captures well
the interaction between the environment geometry and the
target dynamics. In this simulation run, there are 3 calls in
total, and all are answered in time. The target travels a total
distance of 141, while the robot about 20.

In the second experiment, the environment contains a special
cell corresponding to a bathroom lying on the target’s path
(Figure 8b). After entering the bathroom, the target stays
there with probability 0.95 and leaves with probability 0.05
in each step. The corresponding POMDP has 7, 200 states.
SARSOP computed a policy in about 16 minutes. Roughly, to
execute this tracking policy, the robot moves on the inner loop
(the thick white curve in Figure 8b) and follows the target
that moves along the outer loop (the dashed black curve in
Figure 8b). It approaches the target directly when called.

Videos of both experiments above as well as additional
experiments are available at http://motion.comp.nus.edu.sg/
projects/tracking/tracking.html. We are currently performing
more experiments to evaluate tracking performance quantita-
tively.

V. CONCLUSION

In this paper, we gave a brief overview of two approaches
that are adept at tackling the problem of target tracking in
different scenarios depending on the information available for
planning. When the environment and the target behavior is
unknown, an online greedy algorithm that acts based only on
local information is proposed. This has been shown to work
on hardware in the school cafetaria on a crowded lunch hour.
We also compare this work with visual servo in a controlled
setup to show the inherent improvement of the approach. On
the other hand, for known environment and target models,
the POMDP tracker provides more sophisticated behaviors,
where it could lose the target temporarily to minimize its
energy consumption while not compromising the tracking
effectiveness. Simplified assumption about the sensing and
motion models have been made. Early simulation results show
sophisticated robot behaviors.

In this work the target identification is assumed. The target
identification can be seen as a complimentary problem to the
motion planning aspect of target tracking. Improved techniques
for target disambiguation and development of target’s motion
models help in the task of target following. On the other hand,
motion planning for maintaining a good view of the target
aids the sensors to continously sense the target improving
the identification and modeling of the target reliably. Basic
constraints of the sensors like the field of view and range
limitations can be incorporated into the motion strategy such
that the robot always keeps the sensor facing the target.

Uncertainty in the target track can be included as an objective
function for the robot to minimize by planning a suitable
motion strategy.
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[7] P. Fabiani, H. González-Baños, J. Latombe, and D. Lin. Tracking a
partially predictable target with uncertainties and visibility constraints.
J. Robotics & Autonomous Systems, 38(1):31–48, 2002.

[8] T. E. Fortmann, Y. Bar-Shalom, and M. Scheffe. Sonar tracking of
multiple targets using joint probabilistic data association. IEEE Journal
of Oceanic Engineering, OE-8(3):173184, July 1983.
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Abstract— We address the problem of vision-based multi-
person tracking in busy inner-city locations using a stereo rig
mounted on a mobile platform. Specifically, we are interested in
the application of such a system for autonomous navigation and
path planning. In such a scenario, semantic information about
the moving scene objects becomes important. In order to esti-
mate this robustly, we combine classical geometric world map-
ping with multi-person detection and tracking. In this paper,
we refine an approach presented in earlier work, which jointly
estimates camera position, stereo depth, object detections, and
trajectories based only on visual information. We analyze the
influence of the trajectory generator, which forms part of any
tracking-by-detection system, and propose a set of measures
to improve its performance. The extensions are experimentally
evaluated on challenging, realistic video sequences recorded at
busy inner-city locations. The results show that the proposed
extensions significantly improve overall system performance,
making the resulting detecting and tracking capabilities an
interesting component of future navigation system for highly
dynamic scenes.

I. INTRODUCTION

Reliable autonomous navigation of robots and cars re-
quires appropriate models of their static and dynamic en-
vironment. While remarkable successes have been achieved
in relatively clean highway traffic situations [3] and other
largely pedestrian-free scenarios such as the DARPA Urban
Challenge [7], scenes with many independently moving
pedestrians, as in busy city centers, still pose significant
challenges. What makes the task so much harder is the large
number of independently moving actors that are frequently
occluding each other. To represent such environments and
make predictions for path planning, semantic information
about the individual moving objects becomes a vital com-
ponent.

Compared to range sensors such as LIDAR or SONAR,
digital cameras offer the advantage that they deliver not
only geometry, but also rich appearance information, which
is more amenable to semantic interpretation. Recent work
has shown that with modern computer vision tools, vision-
based modeling of the environment for robot navigation is
becoming possible [9], [27]. A key ingredient of these visual
modeling approaches is that they partially rely on semantic
object category detection—in the context of autonomous
driving especially detection and tracking of cars and pedes-
trians.

For dynamic path planning, pedestrians need not only be
detected, but should also be tracked over time in order to pre-

Fig. 1. Reliable tracking in busy urban scenarios requires careful design
of trajectory (candidate) generation, accounting for partial occlusions, a
multitude of scales, and measurement uncertainties.

dict their future locations. However the two tasks are closely
related: State-of-the-art approaches for people tracking in
complex environments are based on the tracking-by-detection
paradigm, in which the output of an (appearance based)
object detector is linked between frames to recover pedestrian
trajectories. In this work, we adopt such an approach for
robust multi-person tracking and investigate some important
design choices for improving its performance.

Our system is purely visual, using as input synchronized
video streams from a forward-looking camera pair. Based on
this data, the system continuously performs self-localization
by visual odometry and obstacle detection using stereo depth
and combines the resulting 3D measurements with tracking-
by-detection, in order to follow pedestrians in the scene
over time. Its results can be used directly as input for path
planning algorithms which support dynamic obstacles. Key
steps of our approach are the use of a state-of-the-art object
detector for identifying an obstacle’s category, as well as the
reliance on a robust multi-hypothesis tracking framework to
handle the complex data association problems that arise in
crowded scenes. This allows our system to apply category-
specific motion models for robust tracking and prediction.
Our focus on vision alone does not preclude the use of
other sensors such as LIDAR or GPS/INS—in any practical
robotic system those sensors have their well-deserved place,



and their integration can be expected to further improve
performance.

An important observation is that while each of the system
components is affected by relatively strong noise, feedback
between the components can remedy some of the resulting
errors. Our system therefore has numerous feedback paths:
we jointly estimate the ground surface and supporting ob-
ject detections and let both steps benefit from each other;
detections are transferred into world coordinates with the
help of visual odometry and are grouped into 3D candidate
trajectories by the tracker; selected tracks are then again fed
back to stabilize visual odometry and depth computation
through their predictions; finally, the results are combined
in a dynamic occupancy map such as the one shown in
Fig. 4(right), which allows free space computation for a later
navigation module.

The main contribution of this paper is to investigate design
options for the practical implementation of such a system and
to evaluate their effects on overall performance. After review-
ing related work (Sec. II) and the employed reconstruction
and tracking system (Sec. III), we propose modifications to
the trajectory generator (Sec. IV). The influence of these
changes and of different stereo matching methods for depth
computation are quantitatively evaluated in Sec. V.

II. RELATED WORK

A main challenge in traffic scene understanding is to
accurately detect moving objects in the scene. Such objects
can be extracted independent of their category by modeling
the shape of the road surface and treating everything that
does not fit that model as an object (e.g. in [18], [24], [31]).
However, such simple approaches break down in crowded sit-
uations where not enough of the ground may be visible. More
accurate detections can be obtained by applying category-
specific models, either directly on the camera images [6],
[16], [23], [28], on the 3D depth information [1], or both in
combination [10], [14], [25].

Tracking detected objects over time presents additional
challenges due to the complexity of data association in
crowded scenes. Targets are typically followed using classic
tracking approaches such as Extended Kalman Filters (EKF),
where data assignment is optimized using Multi-Hypothesis
Tracking (MHT) [5], [20] or Joint Probabilistic Data Asso-
ciation Filters (JPDAF) [12]. Several robust approaches have
been proposed based on those components either operating
on depth measurements [21], [22], [26] or as tracking-by-
detection approaches from purely visual input [13], [15],
[17], [28], [30]. The approach employed in this paper is
based on our own previous work [17]. It works online and
simultaneously optimizes detection and trajectory estimation
for multiple interacting objects and over long time windows
by operating in a hypothesis selection framework.

III. SYSTEM

Our vision system is designed for a mobile platform
equipped with a pair of forward-looking cameras. From
the synchronized videos, we estimate dense stereo depth,

Fig. 2. Mobile recording platforms used in our experiments. Note that in
this paper we only employ image information from a stereo camera pair
and do not make use of other sensors such as GPS or LIDAR.

ground plane parameters, the platform’s ego-motion, pedes-
trian tracks, and the locations of other (non-pedestrian)
obstacles. Fig. 3(a) gives an overview of the proposed vision
system. For each frame, the blocks are executed as follows.
First, a depth map is calculated and the new frame’s camera
pose is predicted. Then objects are detected together with the
supporting ground surface, taking advantage of appearance,
depth, and previous trajectories. The output of this stage,
along with predictions from the tracker, helps stabilize visual
odometry, which updates the pose estimate for the platform
and the detections, before running the tracker on these
updated detections. As a final step, we use the estimated
trajectories in order to predict future locations for dynamic
objects and fuse this information with a static occupancy
map. The whole system is held entirely causal, i.e. at any
point in time it only uses information from the past and
present.

For the basic tracking-by-detection components, we rely
on the framework described in [8], [9]. The main contribution
of this paper is to propose a set of detailed improvements that
considerably boosts tracking performance, both with respect
to accuracy and speed, as explained in Section IV. The
following subsections briefly review the overall system—see
the above references for a full description.

A. Object Detection and Ground Plane Estimation

Instead of directly using the output of a pedestrian detector
for the tracking stage, we introduce scene knowledge at an
early stage to reduce false positives: a simple scene model
is assumed where all objects of interest reside on a common
ground plane. Instead of using a fixed ground plane, we
allow a set of feasible planes to account for changes in
terrain or tilted cameras due to e.g. braking. As a wrong
estimate of this plane has far-reaching consequences for all
later stages, we try to avoid making hard decisions here and
instead model the coupling between object detections and the
scene geometry probabilistically using a Bayesian network
(see Fig. 3(b)). The network is constructed for each frame
and models the dependencies between object hypotheses oi,
object depth di, and the ground plane π using evidence from
the image I, the depth map D, a stereo self-occlusion map
O, and the ground plane evidence πD in the depth map.
Following standard notation, the plate indicates repetition of
the contained parts for the number of objects n.

An object’s probability depends on its geometric world
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Fig. 3. Flow diagram for our vision system. (see text for details).

position and size, on its correspondence with the depth map,
and on the object likelihood estimated by the object detector.
The likelihood of each candidate ground plane is modeled
by a robust estimator taking into account the uncertainty
of the inlier depth points. The ground plane prior and the
conditional probability tables are learned from training data.

In addition, we introduce temporal dependencies, indicated
by the dashed arrows in Fig. 3(b). For the ground plane,
we propagate the posterior from the previous frame, which
stabilizes the per-frame information from the depth map. For
the detections, we add a spatial prior for object locations that
are supported by previously tracked candidate trajectories.
As shown in Fig. 3(b), this dependency is not a first-
order Markov chain, but reaches many frames into the past,
as a consequence of the tracking framework explained in
Section III-B.

The advantage of the Bayesian network formulation is that
evidence is propagated in both directions: for a largely empty
scene the ground plane can be reliably estimated from depth
and significantly constrains object detection; in a crowded
situation less of the ground is visible, but a large number of
detected objects provide information about the ground plane.

B. Tracking and Prediction

Object detections from the previous step are placed into
a common world coordinate system using camera positions
estimated from visual odometry. The tracking system then
uses detected object locations (projected onto the ground
plane) as input for a multi-hypotheses tracker, similar to the
one described in [17]: the set of object detections from the
current and past frames is linked to an over-complete set
of trajectory candidates with a holonomic constant-velocity
model. Section IV deals with the careful design of the
linking step—in this step the search space for the final set of

pedestrian trajectories is generated, which obviously makes
it important for system performance.

The set of candidate trajectories is then pruned to a
minimal consistent explanation using model selection, while
simultaneously resolving conflicts between overlapping can-
didates. In a nutshell, the pruning employs quadratic pseudo-
boolean optimization to pick the subset of trajectories with
maximal joint probability, given the observed evidence. This
probability
• increases as the selected trajectories explain more de-

tections and as they better fit the observed 3D locations
and 2D appearance;

• decreases when trajectories would imply that two pedes-
trians occupy the same space at the same time;

• decreases with the number of required trajectories in
order to balance the complexity of the model against
its goodness-of-fit and to avoid over-fitting.

For the mathematical details, we refer to [17]. Important
features of the method are automatic track initialization
(usually, after ≈ 5 detections) and the ability to recover from
temporary track loss and occlusion.

The selected trajectories are then used to provide a spatial
prior for object detection in the next frame. This prediction
has to take place in the world coordinate system, so tracking
critically depends on an accurate ego-motion estimate.

C. Visual Odometry

To allow reasoning about object trajectories in world
coordinates, the camera position for each frame is estimated
using visual odometry. The employed approach builds upon
previous work by [8], [19]. Please refer to those publications
for details. Compared to standard visual odometry, our sys-
tem includes scene knowledge obtained from the tracker to
mask out image regions not showing the static background.
Furthermore it explicitly detects failures by comparing the
estimated position to a Kalman filter prediction. In the
event of failure, the visual odometry is re-initialized to yield
collision-free navigation (at the cost of possible global drift).

D. Static Obstacles

For static obstacles, we construct a stochastic occupancy
map with the method from [2]: incoming depth maps are
projected onto a polar grid on the ground and are fused
with the integrated and transformed map from previous
frames. Free space for driving is then computed with dy-
namic programming. In contrast to the original method, we
filter out pedestrians found during tracking for two reasons:
firstly, integrating non-static objects can result in smeared
occupancy maps. Secondly, we are interested not so much
in the current positions of the pedestrians as in their future
locations. These can be predicted more accurately with a
specific motion model inferred from the tracker.

IV. TRAJECTORY GENERATION

Given space-time detections and a motion model, the
obvious approach to generate putative trajectories is to
continue the candidate trajectories from the previous frame



with an EKF. This method, which we refer to as extension,
works quite robustly in cases without too much interaction
between trajectories. To find newly appearing pedestrians
and alternative explanations which contradict the previous
candidates, one can additionally start an independent EKF
backwards in time for each new detection, which we will
call parallel generation. This basic approach was also used
in our previous work [9], [17].

Here, we describe an ensemble of extensions to the hy-
pothesis generation stage that (i) robustify data assignment,
(ii) can actively handle occlusions from by both static as
dynamic scene parts, and (iii) reduce the set of candidates
and hence the runtime.

A. Clustering detections

When using detections from both cameras of a stereo pair,
the same world object often generates one detection in each
camera. Keeping two such detections separate increases the
number of generated candidate trajectories, which increases
the runtime, and can also affect the actual selection process.
Hence, we propose to carry out a conservative clustering
on detections from both cameras using world and appear-
ance distance. This effectively replaces two measurements—
originating from different views of the same object—by
a single measurement for the physical 3D object. In our
experiments, this reduces the number of candidates to ≈ 50–
60% and the tracking time to ≈ 70% of the original figures.

B. Greedy assignment

When generating/extending the candidate trajectories
independently of each other, they cannot compete for
measurements—the competition is left to the final selection
algorithm. In difficult crowded cases, candidates will there-
fore include wrong measurements of other nearby objects.
We have devised a simple strategy to remedy this behaviour:
the clustering described above ensures that there is only one
measurement per object. Hence, only the detection closest
to the EKF’s predicted location is used to update the state,
rather than using all nearby detections weighted by the
distance. In order to solve conflicts which arise when a
measurement is the closest one for two or more candidate
trajectories, the extension step is carried out simultaneously
for all existing candidates, greedily assigning each detection
to the trajectory candidate with the closest prediction. Can-
didates which do not manage to claim any detection during
this process are merely extended through extrapolation. In
the same way, only the best candidate at each time step is
also chosen during parallel generation.

The effect of the competitive hard assignment of detections
is twofold. Firstly, it avoids unwanted attraction between
candidates and better separates closely interacting pedestri-
ans. (When using soft assignment, the same measurement
can influence several nearby trajectory candidates, pulling
them closer together). Secondly, the set of candidates tends
to be more compact, because each measurement can only
support a single candidate in a crowded region, making weak
candidates more prone to attrition.

Fig. 4. From the image data (left) we infer occlusion regions (right) due to
both static obstacles (black, casting blue umbra) and the previous frame’s
object predictions (red umbra). This information is used to correctly treat
occluded candidate tracks.

C. Occlusion handling

Due to the camera placement on our vehicle, pedestrians
frequently occlude each other, but are also often occluded
by unmodeled scene objects. We therefore opt to explicitly
model occlusion, rather than treat it as yet another case of
missing detections. To this end, we generate an occlusion
map on the ground plane, again discretized to a polar grid
like the occupancy map in Section III-D. An example is
shown in Fig. 4. The map contains the regions occluded
by both pedestrians and static obstacles. To compute the
map, pedestrian locations are estimated by extrapolating the
previous tracker state to the current frame, whereas static
obstacles are read out of the occupancy map.

As long as a candidate trajectory remains in an occluded
region, it is kept alive and its state is extrapolated. Here
the uncertainty modeling of the EKF becomes important:
continued extrapolation without measurements leads to pro-
gressively larger location uncertainties and hence larger
search regions for supporting detections. This increases the
chances of finding the object once it becomes visible again.
The greedy assignment described above meanwhile makes
sure that such a candidate does not steal detections from less
uncertain competitors. As a result, we obtain longer people
tracks, which better support path planning [9].

V. RESULTS

In order to evaluate our vision system, we applied it to
two test sequences, showing strolls and drives through busy
pedestrian zones. The sequences were acquired with the
platforms seen in Fig. 2.1 The first test sequence (“Seq. A”),
recorded with platform (a) at considerably worse image con-
trast, contains 5’193 pedestrian annotations in 999 frames.
The second test sequence (“Seq. B”) consists of 800 frames
and was recorded from a car passing through a crowded city
center, where it had to stop a few times to let people pass.
We annotated pedestrians in every fourth frame, resulting in
960 annotations for this sequence.

For a quantitative evaluation, we measure bounding box
overlap in each frame and plot recall over false positives
per image for three stages of our system. The results of
this experiment are shown in Table I. We compare the raw

1Data and videos are available on http://www.vision.ee.ethz.
ch/˜aess/icra2009/.



detector output, the intermediate output of the Bayesian
network, and the final tracking output. As can be seen,
discarding detections that are not in accordance with the
scene by the Bayesian network almost always increases recall
at the same number of false positives. The tracking stage
additionally improves the results and in most cases achieves a
higher performance than the raw detector. It should be noted,
though, that a single-frame comparison is not entirely fair
here, since the tracker requires some detections to initialize
(losing recall) and reports tracking results through occlusions
(losing precision if the occluded persons are not annotated).
However, the tracking stage provides the necessary temporal
information that makes the entire motion prediction system
at all possible. The line “Tracker (orig)” denotes the tracking
performance of the system of [9] without the improvements
described here. As can be seen, our new method consistently
outperforms the original one. When only considering the
immediate range up to 15m distance (which is suitable for
a speed of 30 km/h in inner-city scenarios), performance is
considerably better, as indicated by the second part of Table I.

We also compare the effect of using different methods
for depth-map generation in Table II. This is of special
interest, since nowadays a plethora of stereo algorithms of
varying quality and runtime is available. Specifically, we
compare the originally used belief-propagation-based stereo
algorithm [11] (BP) with a fast GPU-based plane sweeping
technique [4] (GPU), and a high-quality global-optimization
approach [29]. Example depth maps are shown in Fig. 5. On
the one hand, computationally intensive algorithms indeed
yield an improvement in both scene analysis and tracking
performance, but come at the cost of considerably higher
runtime (20ms for GPU vs. 30s for the others). On the
other hand, we are using robust statistics on the estimated
depth values, hence top-of-the-line stereo matching does
not yield noticeable improvements in system performance,
despite producing visibly better depth maps.

Fig. 6 shows results for Seq. A. The bounding boxes are
color coded to show the tracked identities; darker boxes
indicate objects in occlusion (due to the limited palette,
some color labels repeat). Note that both adults and children
are identified and tracked correctly even though they differ
considerably in their appearance.

Fig. 7 demonstrates the system in an automotive applica-
tion. Compared to the previous sequences, the viewpoint is
quite different, and faster scene changes result in fewer data
points for creating trajectories. Still, stable tracking perfor-
mance can be obtained even for quite distant pedestrians.

VI. CONCLUSION

In this paper, we have presented a mobile vision system
which combines classical geometric localization and map-
ping with tracking-by-detection of relevant object categories
(in our case pedestrians). In this way, not only a geomet-
ric map of the world, but also tracks of dynamic objects
of interest are available for subsequent path planning and
decision making. Since object category detection inherently
delivers the semantic information which type of object is

Recall Seq. A Seq. B
FP 0.5 FP 1.0 FP 0.5 FP 1.0

Detector 0.57 0.65 0.61 0.67
Bayesian Net 0.65 0.67 0.63 0.66
Tracker (orig) [9] 0.60 0.74 0.52 0.60
Tracker (new) 0.64 0.73 0.55 0.65

Restricted to 15m
Detector 0.51 0.62 0.76 0.78
Bayesian Net 0.66 0.66 0.74 0.74
Tracker (orig) [9] 0.72 0.74 0.70 0.70
Tracker (new) 0.73 0.77 0.80 0.80

Table I. Detection rates for two test sequences from different platforms.
The Bayesian network consistently improves the detector. The tracker with
the improvements proposed here also outperforms the original implementa-
tion [9]. Performance in the near range approaches a level where it becomes
interesting for navigation.

No depth GPU BP Zach
FP 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0
BN - - 0.63 0.68 0.65 0.67 0.65 0.67
Tr. 0.19 0.29 0.60 0.70 0.64 0.73 0.64 0.73

Restricted to 15m
BN - - 0.66 0.67 0.66 0.66 0.67 0.67
Tr. 0.32 0.47 0.66 0.74 0.73 0.77 0.73 0.78

Table II. Detection rates for Seq. A with different stereo matching methods.
Better depth maps improve localization, and hence also tracking, in the near
field. Fast GPU methods come at the expense of slightly worse performance.
Since we use robust statistics on depth, elaborate stereo algorithms bring
little improvement.

tracked, customized motion models can be used for tracking
and prediction.

The method relies on closely coupling the modules (detec-
tion, tracking, visual odometry, depth estimation). To resolve
the complex interactions that occur between pedestrians
in urban scenarios, a multi-hypothesis tracking approach
is employed. The presented paper has focused on careful
design of the hypothesis generation step, which turns out to
be an important factor for improving system performance.
The resulting system can handle very challenging scenes
and delivers accurate predictions for many simultaneously
tracked objects.
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Visual Person Tracking Using a Cognitive Observation Model

Simone Frintrop1 Achim Königs2 Frank Hoeller2 Dirk Schulz2

Abstract— In this article we present a cognitive approach
to person tracking from a mobile platform. The core of the
technique is a biologically inspired observation model that
combines several feature channels in an object and background
dependent way, in order to optimally separate the object from
the background. This observation model can be learned quickly
from a single training image and is easily adaptable to different
objects. We show how this model can be integrated into a
visual object tracker based on the well known Condensation
algorithm. Several experiments carried out with a mobile
robot in an office environment illustrate the advantage of the
approach compared to the Camshift algorithm which relies on
fixed features for tracking.

I. INTRODUCTION

An important skill for mobile service robots is the ability
to detect and keep track of individual humans in their
surrounding. Especially robots that are designed to provide
services to individual persons need to be able to distinguish
their client from the surrounding environment. During the
last decade, several algorithms have been developed for
detecting and tracking people with mobile robots using laser
range data, vision, or both [1], [2], [3], [4], [5], [6]. Most
of these approaches have in common that they rely on a
single pre-specified feature domain to compute cues that
allow to discriminate the robot’s client from other objects
in the sensor data. For example, in vision-based approaches
color histograms are often employed, or shape information is
used. Laser-based approaches mainly rely on range-features
extracted from the laser rage scans. However, relying on a
single feature leads to the problem that depending on the
actual environment conditions, the chosen feature might not
be discriminative enough; well known problems for color-
histogram based approaches are changing lighting conditions
or a cluttered multi-colored background.

In this article we propose to employ a visual attention
system for choosing the cues which best distinguish a person
from the background depending on the situation the robot
currently faces [7]. Based on a cognitive perception model
[8], the attention system utilizes a larger set of different
simple features to discriminate particular objects from the
background. Depending on the environment and the appear-
ance of the object to detect, it automatically determines
the suitable cues by computing a weighting of the different
features available, such that the resulting mixture discrim-
inates the object from the background best. The attention
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Rheinische Friedrich-Wilhems-Universität, 53117 Bonn, Germany. Contact:
frintrop@iai.uni-bonn.de.

2All other authors are with the Research Institute for Communication, In-
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system being used is able to compute such weight vectors
from a single training image. A similarity measure based on
these weight vectors is then usually applied for finding the
object within images. Instead of searching for the object, we
employ the similarity measure within a CONDENSATION-
based person tracker [9]. For this purpose, the similarity
measure is converted to a likelihood function that is used
as the observation model within the particle filter. Using
this approach, the robot is able to quickly learn the current
appearance of the person it wants to track. This leads to
an improved tracking performance, compared to tracking
approaches based on single feature cues. In order to evaluate
the technique, we implemented an application, where the
robot follows a person on its way through our laboratory
environment. The experiments show that the approach is
able to track the person in varying lighting conditions and
backgrounds, and that it is considerably less prone to track
loss than, for example, the purely color-based Camshift
algorithm.

The remainder of the article is organized as follows. After
discussing related work in Section II we explain the cognitive
tracking system in Section III. In Section IV we briefly
explain how the approach is integrated into a prototypical
person following application and we present experimental
results. We finally conclude in Section V.

II. RELATED WORK

In mobile robotics, person tracking can be performed with
different sensors. Several groups have investigated person
tracking with laser range finders [1], [2], [3]. These ap-
proaches usually only keep track of the motion of people
and do not try to distinguish individuals. One approach
which distinguishes different motion states in laser data is
presented in [4]. Combinations of laser and vision data are
presented in [5] and [6]. Both detect the position of people
in the laser scan and distinguish between persons based on
vision data. Bennewitz et al. [5] base the vision part on
color histograms whereas Schulz [6] learns silhouettes of
individuals from training data. This however requires a time-
consuming learning phase for each new person.

In machine vision, people tracking is a well-studied prob-
lem. Two main approaches can be distinguished: model-
based and feature-based methods. In model-based tracking
approaches, a model of the object is learned in advance,
usually from a large set of training images which show
the object from different viewpoints and in different poses
[10]. Learning a model of a human is difficult because of
the dimensionality of the human body and the variability in
human motion. Current approaches include simplified human



body models, e.g. stick, ellipsoidal, cylindric or skeleton
models [11], [12], [13], or shape-from-silhouettes models
[14]. While these approaches have reached good performance
in laboratory settings with static cameras, they are usually not
applicable in real-world environments on a mobile system.
They usually do not operate in real-time and often rely on a
static, uniform background.

Feature-based tracking approaches on the other hand do
not learn a model but track an object based on simple features
such as color cues or edges. One approach for feature-
based tracking is the Mean Shift algorithm [15], [16] which
classifies objects according to a color distribution. Variations
of this method are presented in [17], [18]. While most
approaches are not especially designed for person tracking,
they might be applied in this area as well. One limitation
with the above methods is that they operate only on color
and are therefore dependent on colored objects.

Visual attention systems are especially suited to auto-
matically determine the features which are relevant for a
certain object. These systems are motivated by mechanisms
of the human visual system and based on psychological
theories on visual attention [8], [19]. During the last decade,
many computational attention systems have been built, e.g.,
[20], [7], and recently, some systems came up that are able
to operate in real-time [21], [22], [23]. Important for our
application is that the systems compute a feature vector that
describes the appearance of a salient region [24], [7].

Applications of visual attention systems range from object
recognition to robot localization. However, they have rarely
been applied to visual tracking. Some approaches track static
regions, such as visual landmarks, from a mobile platform
for robot localization [25]. This task is easier than tracking
a moving object since the environment of the target remains
stable. Another approach aims to track moving objects such
as fish in an aquarium [26]. In this case however, the camera
is static. The here presented VOCUS tracker is partly based
on [27]. We have also applied a simpler approach based on
visual attention (but without particle filters) to object tracking
[28] and to person tracking [29].

III. THE COGNITIVE TRACKING SYSTEM

The tracking system we present is based on a particle filter
approach with a cognitive observation model. It employs
the standard Condensation algorithm [9] which maintains
a set of weighted particles over time using a recursive
procedure based on the following three steps: First, the
system draws particles randomly from the particle set of
the previous time step, where each particle is drawn with
a probability proportional to the associated weight of the
particle. Second, the particles are transformed (predicted)
according to a motion model. In vision-based tracking this
step usually consists of a drift component in combination
with random noise. Third, all particles are assigned new
weights according to an observation model.

In the following, we first introduce the notation (sec. III-
A), second mention how the system is initialized (sec. III-B),
and third describe the motion model (sec. III-C). Finally, we

specify in detail the observation model as core of the system
(sec. III-D).

A. Notation
At each point in time t ∈ {1, .., T}, the particle filter

recursively computes an estimate of the probability density
of the person’s location within the image using a set of J
particles Φt = {φ1

t , ...φ
J
t } with

φj
t = (sj

t , π
j
t ,w

j
t ), j ∈ {1, ..., J}.

Here, sj
t = (x, y, vx, vy, w, h) is the state vector that specifies

the particle’s region with center (x, y), width w and height
h – in the following, the region is also denoted as Rj

t =
(x, y, w, h). The vx and vy components specify the current
velocity of the particle in the x and y directions. Each particle
additionally has a weight πj

t determining the relevance of the
particle with respect to the target, and a feature vector wj

t

that describes the appearance of the particle’s region.

B. Initialization
In order to start the tracking process, the initial target

region R∗ = (x∗, y∗, w∗, h∗) has to be specified in the
first frame. This can either be carried out manually or
automatically using a separate detection module. Based on
the initial target region R∗, a feature weight vector w∗ is
computed that describes the appearance of the person. The
initial particle set

Φ0 = {(sj
0, π

j
0,w

j
0) | j = 1, ..., J}. (1)

is generated by randomly distributing the initial target lo-
cation around the region’s center (x∗, y∗). The velocity
components vx and vy are initially set to 0 and the region di-
mensions of each particle are initialized with the dimensions
of R∗. The particle weights πj

0 are set to 1/J .

C. Motion model
Currently, the object’s motion is modeled by a simple first

order autoregressive process in which the state sj
t of a particle

depends only on the state of the particle in the previous
frame:

sj
t = M · sj

t−1 + Q.

Here, M is a state transition matrix of a constant velocity
model and Q is a random variable that denotes some white
Gaussian noise. This enables a flexible adaption of position
and size of the particle region as well as of its velocity. Thus
the system is able to quickly react to velocity changes of the
object.

D. Observation model
In visual tracking, the choice of the observation model

is the most crucial step since it decides which particles
will survive. It therefore has the strongest influence on the
estimated position of the target. Here, we use a cognitive
observation model which favors the most discriminative
features in the current setting based on concepts of human
visual perception. It determines the feature description for
the target and for each particle, enabling the comparison and
weighting of particles.



Fig. 1. Initialization: the attention system VOCUS learns the target
appearance by computing feature and conspicuity maps for the image and
determining a feature vector w∗ for the manually provided search region
R∗ (yellow rectangle).

1) Computation of the feature vector: The feature vector
is computed based on a cognitive perception model which
computes the saliency of a region based on concepts of
the human visual system (cf. Fig. 1). This computational
attention system is called VOCUS and was originally built
to simulate human eye movements [7]. It computes feature
contrasts for different scales and feature types and assigns a
saliency value to each image region. Additionally, a feature
vector is computed for each salient region that determines the
contribution of the different feature channels to the region.

In this paper, we use the system in a slightly different
manner than the usual case: we do not determine the most
salient regions in an image, but the feature saliency of prede-
fined regions, the particle regions. However, the computation
of the feature maps is the same.

The feature computations are performed on 3 differ-
ent scales using image pyramids. The feature intensity is
computed by center-surround mechanisms (similar to DoG
filters); on-off (bright on dark) and off-on (dark on bright)
contrasts are determined separately. After summing up the
scales, this yields 2 intensity maps. Similarly, 4 color
maps (green, blue, red, yellow) and 4 orientation maps
(0 ◦, 45 ◦, 90 ◦, 135 ◦) are computed. The color maps compute
color contrasts based on the Lab color space (CIELAB),
since this is known to approximate human perception well.
To achieve real-time performance, the intensity and color
maps are computed using integral images [30]. These provide
an efficient way to determine the average value of a rectan-
gular region of arbitrary size in constant time (4 operations
per region), after once creating the integral image in linear
time. For the orientation maps, Gabor filters highlight the
gradients with a certain orientation (details in [7]).

Before the features are fused, they are weighted according
to their uniqueness, i.e. a feature which occurs seldomly
in a scene is assigned a higher saliency than a frequently
occurring feature. This is a mechanism which enables hu-
mans to instantly detect outliers like a black sheep in a
white herd. The uniqueness W of map X is computed as

W(X) = X/
√

m, where m is the number of local maxima
that exceed a threshold. Here, ’/’ stands for the pixel-wise
division of an image with a scalar. The weighted maps are
summed up to 3 conspicuity maps for intensity, orientation,
and color. In the following, we denote the 10 feature and
3 conspicuity maps for image It as Fi(It), i ∈ {1, .., 13}.
In the original VOCUS system, the conspicuity maps are
weighted again and fused into a saliency map. However, this
map is not required in our approach.

For an arbitrary region in the image, a feature vector
can be computed which describes the appearance of the
region with respect to its surrounding. In the original system,
feature vectors are computed for the most salient regions in
a saliency map. Here, we compute a vector for each particle
region. The feature vector w = (w1, ..., w13) for a region R
is computed as follows. For each map Fi(I), the ratio of the
mean saliency in the target region R and in the background
I\R is determined as:

wi =
mean(R)

mean(I\R)
, i ∈ {1, .., 13}. (2)

This computation does not only consider which features
are the strongest in the target region, it also regards which
features separate the region best from the rest of the image.

Since this computation involves computing the average
value of a particle region of arbitrary size for a usually large
collection of particles and for 13 feature maps, the process
can be time consuming. To maintain real-time performance,
the computations are also performed with integral images.
This increased the average processing speed of VOCUS
considerably from 10 Hz to 40 Hz. The result of the compu-
tations in this section is a feature vector wj

t for each particle.
2) Weighting of the particles: The feature vector wj

t of
a particle φj

t is now used to determine the similarity of
the particle region Rj

t with the initial target region R∗. As
similarity measure we use the Tanimoto-coefficient

T (w∗,wj
t ) =

w∗ ·wj
t

||w∗||2 + ||wj
t ||2 −w∗ ·wj

t

.

The Tanimoto coefficient produces values in the interval
[0, 1], the higher the value the higher the similarity. If the
two vectors are identical, the coefficient is 1. Compared to
Euclidean distance, it turned out that the Tanimoto coefficient
is better suited to distinguish between true and false matches
[28]. Based on the Tanimoto coefficient the weight of a
particle is computed as

πj
t = c · eλ·T (w∗,wj

t ).

This function prioritizes particles which are very similar to
the target vector w∗ by assigning an especially high weight.
A value of λ = 14 has shown to be useful in our experiments.
The parameter c is a normalization factor which is chosen
so that

∑J
j=1 πj

t = 1.
3) Determining the target state: From the weighted parti-

cle set, the current target state, including target position and
size, can be estimated by



xt =
J∑

j=1

πj
t · sj

t .

IV. EXPERIMENTS AND RESULTS

The experiments were carried out using a RWI B21 robot
equipped with a simple USB web camera mounted on a pan-
tilt unit (see Fig. 2, left). The camera captures 15 frames/sec,
with a resolution of 320×240. The complete software runs on
a 2GHz dual core PC onboard the robot. For the experiments,
the tracking application was implemented within the software
framework RoSe developed at FKIE [31]. This framework
consists of roughly 30 modules which exchange information
over a UDP-based communication infrastructure. The RoSe
framework is specifically designed to allow for the easy
assembly of multi-robot applications, which extensively use
wireless ad-hoc communication. However, for the tracking
experiments, we only required two modules on a single robot:

1) A visual tracking module, which captures the images
and employs the tracking algorithm (VOCUS or Camshift)
for tracking a single person within the image. Based on the
pixel location of the person computed by the vision-based
tracker, the module computes a heading direction relative
to the robot, steers the pantilt unit in order to center the
person within the image and commands the robot to follow
the person. This is achieved by continuously instructing the
reactive collision avoidance component of the robot to drive
to goal locations behind the moving person.

2) The collision avoidance component of the robot. It
is specifically designed for the task of following moving
persons based on motion tracking information. It does so by
applying an expansive spaces tree algorithm, which carries
out a search for admissible paths in time and space, based on
information about static obstacles provided by a laser range
scanner, as well as motion information, i.e. position and
velocity vectors of moving obstacles and the person being
followed, provided by the external tracking component [32].

We performed two series of experiments with this system
within the hallways of the FKIE building – an outline of
the floorplan is shown in Figure 2, right. The first series of
experiments illustrates the benefit of the VOCUS tracker for
the actual people tracking task; the second series evaluates
the robustness of the image-based tracker using the VOCUS
system, compared to simpler feature-based techniques like
Camshift.

Both series were performed during normal working hours
with people walking around. The lighting conditions varied
strongly during the experiments: some areas show natural
daylight (see Fig. 2, right), others artificial light. In some
parts, the light was switched off resulting in rather poorly
illuminated areas. These conditions resulted in several im-
ages with very poor quality (cf. Fig. 5). Furthermore, after
quick camera movements the camera was out of focus for
some frames and capturing images was sometimes delayed
resulting in large changes between consecutive frames.

Fig. 2. Left: the RWI B21 robot Blücher used for the experiment. The
images were taken using the small pantilt mounted webcam on top of the
robot. Right: An outline of the environment used for the experiments. The
robot tracked the person through the indicated round trip tour (red arrows)
and encountered different lighting conditions on its path. The start and end
location is marked with a small red circle.

A. Autonomous Person Tracking

In the first series of experiments, the robot followed a
person autonomously through the hallways (red arrows in
Fig. 2, right). We performed 4 runs with 2 different persons
and 3 different kinds of clothing. Initialization of the target
was done with user interaction by marking the person in
the first frame. After that, the robot estimated the position
of the person in each frame and drove autonomously into
the direction of the estimated target state. The camera was
controlled to center the target in the frame.

To evaluate the tracking, we counted the number of
detections manually. A detection occurs if the center of the
target state was on the person1. The results are shown in
Tab. I. Images in which the target was not visible were not
considered for the detection rate but are shown in Tab. I. In
three of the runs, the detection rate was about 80%. In the
2nd run, the detection rate is considerably lower. The reason
was that the center of gravity of the particle cloud was in
many frames next to the target (cf. Fig. 5, right).

B. Comparison with Camshift

Most similar to the here presented VOCUS tracking are
color-based trackers such as trackers based on the MeanShift
algorithm [16]. One well-known modification is the Camshift
algorithm [17] that is able to adapt dynamically to the
target it is tracking2. It is a statistical method of finding the
peak of a probability distribution, usually obtained with a
color histogram. In the 2nd series of experiments, we used
Camshift as benchmarking system for our approach.

1This is an approximation which is actually too optimistic since the region
might include a part of the background and still have its center on the region.
It is reasonable here anyway since the center is the point the robot uses as
target direction.

2Camshift is publically available from the OpenCV library:
http://opencvlibrary.sourceforge.net/



# Frames detections [%] # frames without target
1 1918 81 1
2 1486 58 37
3 1202 87 8
4 559 80 79

Average 1291 77 31

TABLE I
VOCUS TRACKING IN ONLINE EXPERIMENTS

# Frames correct detections [%]
VOCUS Cam (HSV) Cam (RG) Cam (Lab)

1 1477 79 51 88 39
2 1158 96 53 62 54
3 1596 65 5 28 50
4 1392 54 13 1 10
5 1519 71 46 47 46

Average 73 33 45 40

TABLE II
COMPARISON OF VOCUS AND CAMSHIFT TRACKING. CAMSHIFT IS

INVESTIGATED FOR DIFFERENT COLOR SPACES (HSV, RG, LAB). THE

ROWS SHOW THE RESULTS FOR THE 5 PERSONS IN FIG. 3.

Although the Camshift algorithm has shown good results
in other applications, it is only of limited use for a flexible
online tracker. Usually, it is necessary to adapt the parameters
of the algorithm for each object to obtain good results.
While this may be acceptable for some applications like face
tracking in which each face has a similar hue value, it is
difficult for targets like persons which vary strongly in ap-
pearance due to different clothing. Since our VOCUS tracker
is applicable to different objects without adapting parameters,
we used the Camshift algorithm with the standard parameter
set of the OpenCV implementation for all test sequences to
make the approaches comparable. The Camshift usually uses
the HSV color space. Additionally to this implementation, we
used it with two other color spaces: RG chromaticity space
and Lab space.

To be able to compare the approaches on the same data,
several image sequences were acquired by teleoperating the
robot and processed offline. We tested 5 different runs, each
covering one circle in our environment (approx. 160 m per
run). Each run was performed with a different person as
target, with different clothing (cf. Fig. 3). The runs consisted
of 1000–1600 frames each. Tab. III shows the initial feature
vectors w∗ that were learned from the frames in Fig. 3. The
results are displayed in Tab. II. All approaches clearly have
difficulties with the challenging conditions, mainly resulting
from the strong changes in illumination. In most cases, the
VOCUS tracker performed best, with an average detection
rate of 73%. The Camshift approaches perform considerably
worse (33, 45 and 40%). All approaches had most difficulties
with person 4. This is partly due to the white shirt which is
similar to the color of the walls. For all approaches it turned
out that the clothing of the person made a strong difference
in performance: the larger the contrast and difference to the
background, the easier the tracking.

Feature 1) 2) 3) 4) 5)
intensity on-off 0.14 0.14 0.19 0.62 0.44
intensity off-on 2.48 4.06 4.36 1.95 4.30
orientation 0 ◦ 1.2 1.58 2.00 2.56 1.86
orientation 45 ◦ 1.66 2.35 1.25 1.75 1.69
orientation 90 ◦ 1.08 1.90 1.40 1.65 1.81
orientation 135 ◦ 1.27 1.59 1.21 1.52 2.07
color green 0.35 2.62 0.90 0.75 1.10
color blue 5.55 2.68 3.24 3.02 6.02
color red 1.53 31.40 3.41 1.67 6.88
color yellow 1.48 3.71 0.80 1.54 1.41
intensity 1.26 1.86 2.18 1.14 2.85
orientation 1.21 1.81 1.38 1.80 1.84
color 1.93 10.44 1.60 1.81 2.61

TABLE III
FEATURE VECTORS w∗ THAT ARE LEARNED FOR THE TARGET PERSONS

IN FIG. 3 (THE COLUMNS CORRESPOND TO THE IMAGES).

V. CONCLUSION

In this paper, we have presented a cognitive approach for
person tracking from a mobile platform. The appearance of
an object of interest is learned from an initially provided
target region and the resulting target feature vector is used
to search for the target in subsequent frames. Advantages
of the system are that it uses several feature channels in
parallel, that it considers not only the target appearance
but also the appearance of the background, and that it is
quickly adaptable to a new target without a time-consuming
learning phase. Furthermore, it is capable to work on a
mobile platform since it works in real-time, does not rely
on a static background, and copes with varying illumination
conditions.

We obtained promising first results in different settings.
However, the task of person tracking in natural conditions
is very challenging and we just scratched the surface of the
problem. Although our image sequences are more difficult
than most of the data used in research groups for similar
tasks, they show by far not the most difficult settings. Persons
with similar clothing to the background, bright sunlight, and
crowded environments in which the person is temporarily
occluded would make the problem worse. We will investigate
such settings in future work.

There are several ways the current approach could be im-
proved. Currently, we learn target appearance from a single
frame. While this works reasonably well in many cases,
it will fail if the environment changes strongly. Learning
target appearance online from several frames and adapting
the feature vector to new conditions is subject to future work.
We also plan to integrate additional features, e.g. motion
cues, into the tracking system.
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Multi-model Hypothesis Group Tracking and Group Size Estimation

Boris Lau Kai O. Arras Wolfram Burgard

Abstract— People in densely populated environments typi-
cally form groups that split and merge. In this paper we
track groups of people so as to reflect this formation pro-
cess and gain efficiency in situations where maintaining the
state of individual people would be intractable. We pose the
group tracking problem as a recursive multi-hypothesis model
selection problem in which we hypothesize over both, the
partitioning of tracks into groups (models) and the association
of observations to tracks (assignments). Model hypotheses that
include split, merge, and continuation events are first generated
in a data-driven manner and then validated by means of the
assignment probabilities conditioned on the respective model.
Observations are found by clustering points from a laser range
finder given a background model and associated to existing
group tracks using the minimum average Hausdorff distance.
We further propose a method to estimate the number of
people in groups based on the number of human-sized clusters.
Experiments with a stationary and a moving platform show
that, in populated environments, tracking groups is clearly more
efficient than tracking people separately. The results also show
a high accuracy in the estimation of group sizes. Our system
runs in real-time on a typical desktop computer.

I. INTRODUCTION

The ability of robots to keep track of people in their
surrounding is fundamental for a wide range of applications
including personal and service robots, intelligent cars, or
surveillance. People are social beings and as such they form
groups, interact with each other, merge to larger groups
or separate from groups. Tracking individual people during
these formation processes can be hard due to the high
chance of occlusion and the large extent of data association
ambiguity. This causes the space of possible associations
to become huge and the number of assignment histories to
quickly become intractable. Further, for many applications,
knowledge about groups can be sufficient as the task does
not require to know the state of every person. In such
situations, tracking groups that consist of multiple people is
more efficient and furthermore contains semantic information
about activities of the people.

This paper focuses on group tracking in populated envi-
ronments with the goal to track a large number of people
in real-time. The approach attempts to maintain the state of
groups of people over time, considering possible splits and
merges as illustrated in Fig. 1. For our experiments we use
a mobile robot equipped with a laser range finder, but our
method should be applicable to data from other sensors as
well.

All authors are with the University of Freiburg, Germany, Department of
Computer Science {lau,arras,burgard}@informatik.uni-freiburg.de.

This work was partly funded by the European Commusion under contract
number FP6-IST-045388

Fig. 1. Tracking groups of people with a mobile robot. Groups are shown
by their position (blue), velocity (black), the associated laser points (green)
and a contour for visualization. In the two frames, a group of four people
splits up into two groups with two people each.

In most related work on laser-based people tracking, tracks
correspond to individual people [1], [2], [3], [4], [5]. In
Taylor et al. [6] and Arras et al. [7], tracks represent the state
of legs which are fused to people tracks in a later stage. Khan
et al. [8] proposed an MCMC-based tracker that is able to
deal with non-unique assignments, i.e., measurements that
originate from multiple tracks, and multiple measurements
that originate from the same track. Actual tracking of groups
using laser range data was, to our knowledge, first addressed
by Mucientes et al. [9]. Most research in group tracking was
carried out in the vision community [10], [11], [12]. Gennari
et al. [11] and Bose et al. [12] both address the problem
of target fragmentation (splits) and grouping (merges). They
do not integrate data association decisions over time –
a key property of the Multi-Hypothesis Tracking (MHT)
approach, initially presented by Reid [13] and later extended
by Cox et al. [14]. The approach belongs to the most general
data association techniques as it produces joint compatible
assignments, integrates them over time, and is able to deal
with track creation, confirmation, occlusion, and deletion.

The works closest to this paper are Mucientes et al. [9]
and Joo et al. [15]. Both address the problem of group
tracking using an MHT approach. Mucientes et al. employ
two separate MHTs, one for the regular association problem
between observations and tracks and a second stage MHT
that hypothesizes over group merges. However, people tracks
are not replaced by group tracks, hence there is no gain
in efficiency. The main benefit of that approach is the
semantical extra information about formation of groups.

Joo et al. [15] present a visual group tracker using a
single MHT to create hypotheses of group splits and merges
and observation-to-track assignments. They develop an in-
teresting variant of Murty’s algorithm [16] that generates
the k-best non-unique assignments which enables them to
make multiple assignments between observations and tracks,
thereby describing target splits and merges. However, the
method only produces an approximation of the optimal k-



best solutions since the posterior hypothesis probabilities
depend on the number of splits, which, at the time when the
k-best assignments are being generated, is unknown. In our
approach, the split, merge and continuation events are given
by the model before computing the assignment probabilities,
and therefore, our k-best solutions are optimal.

In this paper we propose a tracking system for groups of
people using an extended Multi-Hypothesis Tracking (MHT)
approach to hypothesize over both, the group formation
process (models) and the association of observations to
tracks (assignments). Each model, defined to be a particular
partitioning of tracks into groups, creates a new tree branch
with its own assignment problem. As a further contribution
we propose a group representation that includes the shape of
the group and we show how this representation is updated
in each step of the tracking cycle. This extends previous
approaches where groups are assumed to have Gaussian
shapes only [11], [9]. We also present an estimation method
to determine the number of people in groups which extends
the approach presented by the same authors in [17]. Finally,
we use the psychologically motivated proxemics theory in-
troduced by Hall [18] for the definition of a group. The
theory relates social relation and body spacing during social
interaction.

It is structured as follows: the following section describes
the extraction of groups of people from laser range data.
Section III introduces the definition of groups. Section V
briefly describes the cycle of our Kalman filter-based tracker.
Section VI explains the data-driven generation of models and
how their probabilities are computed. Whereas Section VII
presents the multi-model MHT formulation and derives
expressions for the hypothesis probabilities, Section VIII
describes the experimental results.

II. GROUP DETECTION IN RANGE DATA

Detecting people in range data has been approached with
motion and shape features [1], [2], [3], [4], [5], [9] as
well as with a learned classifier using boosted features
[19]. However, these recognition systems were designed (or
trained) to extract single people. In the case of densely
populated environments, groups of people typically produce
large blobs in which individuals are hard to recognize. We
therefore pursue the approach of background subtraction
and clustering. Given a previously learned model (a map
of the environment for mobile platforms), the background
is subtracted from the scans and the remaining points are
passed to the clustering algorithm. This approach is also able
to detect standing people as opposed to [9] which relies on
motion features.

Concretely, a laser scanner generates measurements zi =
(φi, ρi)

T , i ∈ {1, . . . Nz}, with φi being the bearing and
ρi the range value. The measurements zi are transformed
into Cartesian coordinates and grouped using single linkage
clustering [20] with a distance threshold dP . The outcome
is a set of clusters Zi making up the current observation
Z(k) = {Zi | i = 1, . . . , NZ}. Each cluster Zi is a complete
set of measurements zi that fulfills the cluster condition,

i.e., two clusters are joined if the distance between their
closest points is smaller than dP . A similar concept, using
a connected components formulation, has been used by
Gennari and Hager [11]. The clusters then contain range
readings that can correspond to single legs, individual people,
or groups of people, depending on the cluster distance dP .

III. GROUP DEFINITION

This section defines the concept of a group and derives
probabilities of group-to-observation and group-to-group as-
signments.

What makes a collection of people a group is a highly
complex question in general which involves difficult-to-
measure social relations among subjects. A concept related
to this question is the proxemics theory introduced by Hall
[18] who found from a series of psychological experiments
that social relations among people are reliably correlated with
physical distance during interaction. This finding allows us to
infer group affiliations by means of body spacing information
available in the range data. The distance dP thereby becomes
a threshold with a meaning in the context of group formation.

A. Representation of Groups

Concretely, we represent a group as a tuple G = 〈x, C,P〉
with x as the track state, C the state covariance matrix and
P the set of contour points that belong to G. The track state
is composed of the position (x, y) and the velocities (ẋ, ẏ)
to form the state vector x = (x, y, ẋ, ẏ)T of the group.

The points xPi
∈ P are an approximation of the group’s

current shape or spatial extension. Shape information will be
used for data association under the assumption of instanta-
neous rigidity. That is, a group is assumed to be a rigid object
over the duration of a time step ∆t, and consequently, all
points in P move coherently with the estimated group state
x. The points xPi are represented relative to the state x.

B. Group-to-Observation Assignment Probability

For data association we need to calculate the probability
that an observed cluster Zi belongs to a predicted group
Gj = 〈xj(k+1|k), Cj(k+1|k), Pj 〉. A distance function
d(Zi, Gj) is sought that, unlike the Mahalanobis distance
used by Mucientes et al. [9], accounts for the shape of the
observation cluster Zi and the group’s contour Pj , rather
than just for their centroids. To this end, we use a variant of
the Hausdorff distance. As the regular Hausdorff distance is
the longest distance between points on two contours, it tends
to be sensitive to large variations in depth that can occur in
range data. This motivates the use of the minimum average
Hausdorff distance [21] that computes the minimum of the
averaged distances between contour points,

dHD(Zi, Gj) = min {d(Zi,Pj), d(Pj ,Zi)} (1)

where d(Zi,Pj) is the directed average Hausdorff distance.
Since we deal with uncertain entities, d(Zi,Pj) is calculated
using the squared Mahalanobis distance d2 = νT S−1 ν,

d(Zi,Pj) =
1
|Zi|

∑
zi∈Zi

min
xPj
∈Pj

{
d2(νij , Sij)

}
, (2)



with νij , Sij being the innovation and innovation covariance
between a point zi ∈ Zi and contour point xPj

of the
predicted set Pj transformed into the sensor frame,

νij = zi − (Hxj(k + 1|k) + xPj
) (3)

Sij = H Cj(k + 1|k)HT +Ri (4)

where H = ( 1 0 0 0
0 1 0 0 ) is the measurement Jacobian and Rj

the 2 × 2 observation covariance whose entries reflect the
noise in the measurement process of the range finder.

The probability that cluster Zi originates from Gj is finally

Ni := N (d2
HD(Zi, Gj), Sij) (5)

where N (µ,Σ) denotes the normal distribution.

C. Group-to-Group Assignment Probability

To determine the probability that two groups Gi and
Gj merge, we compute the distance between their closest
contour points in a Mahalanobis sense. In doing so, we have
to account for the clustering distance dP that states identity
of Gi, Gj as soon as their contours come closer than dP . Let
∆xPij

= xPi
−xPj

be the vector difference of two contour
points of Gi and Gj respectively, we then subtract dP from
∆xPij unless ∆xPij ≤dP for which ∆xPij =0. Concretely,
the modified difference becomes ∆x′Pij

= max(0, ∆xPij−
dP uPij ) where uPij = ∆xPij/|∆xPij |.

In order to obtain a similarity measure that accounts
for nearness of group contours and similar velocity, we
augment ∆x′Pij

by the difference in the velocity components,
∆x∗Pij

= (∆x′TPij
, ẋi − ẋj , ẏi − ẏj)T . Statistical compati-

bility of two groups Gi and Gj can now be determined with
the (four-dimensional) minimum Mahalanobis distance

d2
min(Gi, Gj) = min

xPi
∈Pi, xPj

∈Pj

{
d2(∆x∗Pij

, Ci+Cj)
}
.

The probability that two groups actually belong together, is
finally given by Nij := N

(
d2

min(Gi, Gj), Ci+Cj
)
.

IV. ESTIMATING THE NUMBER OF PEOPLE IN GROUPS

As described above, our group tracking approach con-
siders the joint state of groups rather than the states of
the individuals that form the groups. However, knowing
the number of people in a group is interesting information,
e.g., for interaction, data association or motion planning. We
therefore augment the state vector of group tracks by a fifth
state variable, ns, the group size. A group state is then the
vector x = (x, y, ẋ, ẏ, ns)T .

As an observation of the group size, we take the number
of human-sized clusters in the set of contour points P of a
group track G. Reapplying single-linkage clustering with a
cluster distance of dP = 0.3m yields groups of points that
are likely to correspond to human individuals.

For state prediction and in case of a track confirmation
event, we assume, analogous to the constant velocity motion
model, constant group size. Noise in the motion model
accounts for people joining or leaving the group without
being noticed. If two tracks are merged, the resulting size
estimate is the sum of the sizes of the joining groups. The
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Fig. 2. Flow diagram of the tracking system. See explanations in section V.

variances simply sum up, as we assume independent size
estimates across groups. If two tracks are split, we split the
group size in half and increase the variance to account for
uneven splits.

V. TRACKING CYCLE

This section describes the steps in the cycle of our Kalman
filter-based group tracker. An overview is given by the flow
diagram in Fig. 2. The structure differs from a regular tracker
in the additional steps model generation, track reprediction
and reclustering.

• State prediction: The state prediction of a group track
based on the previous posterior estimates x(k|k), C(k|k)
is given by x(k + 1|k) = A x(k|k) and C(k + 1|k) =
A C(k|k) AT +Q, where A is the state transition matrix
for a constant velocity motion model and Q the 4 × 4
process noise covariance matrix whose entries reflect the
acceleration capabilities of a typical human. The set of
contour points P is now relative to x(k + 1|k).

• Observation: As described in section II, this step involves
grouping the laser range data into clusters Z .

• Model Generation: Models are generated based on the
predicted group tracks and the clusters Z , see section VI.

• Reprediction: Based on the model hypotheses that pos-
tulate a split, merge or continuation event for each track,
groups are repredicted so as to reflect the respective model:

If a model hypothesis contains a split of a group, two
new groups are created by duplicating its predicted state.
The same applies for the set P .

If a model hypothesis contains a merge of two groups
Gi, Gj , the repredicted group state xij , Cij is computed
as the multivariate weighted average (omitting (k+ 1|k)),

C−1
ij = C−1

i + C−1
j

xij = Cij (C−1
i xi + C−1

j xj) . (6)

The set of contour points of the merged group is the union
of the two former point sets, Pij = Pi ∪ Pj .



• Reclustering: Reclustering an observed cluster Zi is
necessary when it has been produced by more than one
group track, that is, it is in the gate of more than one
track. If the model hypothesis postulates a merge for the
involved tracks, nothing needs to be done. Otherwise, Zi
needs to be reclustered, which is done using a nearest-
neighbor rule: those points zi ∈ Zi that share the same
nearest neighbor track are combined in a new cluster. This
step follows from the uniqueness assumption – common in
target tracking – which says that a target can only produce
a single observation.

• Data Association MHT: This step involves the generation,
probability calculation, and pruning of data association hy-
potheses that assign repredicted group tracks to reclustered
observations. See section VII.

• Update: A group track Gj that has been assigned to a
cluster Zi is updated with a standard linear Kalman filter
using the centroid position z̄Zi

of Zi. The contour points
in Pj are replaced by the points in Zi, transformed into
the reference frame of the posterior state x(k + 1|k + 1).
Thereby, Pj contains always the group’s most actual shape
approximation.

VI. MODEL GENERATION AND MODEL PROBABILITY

A model is defined to be a partitioning of tracks into
groups. It assumes a particular state of the group formation
process. New models, whose generation is described in this
section, hypothesize about the evolution of that state.

The space of possible model transitions is large since
each group track can split into an unknown number of new
tracks, or merge with an unknown number of other tracks.
We therefore bound the possible number of model transitions
by the assumption that merge and split are binary operators.
We further impose the gating condition for observations
and tracks using the minimum average Hausdorff distance,
thereby implementing a data-driven aspect into the model
generation step. Concretely, we assume:
• A track Gi can split at most into two tracks in one frame

provided two compatible observations with Gi.
• At most two group tracks Gi, Gj can merge into one

track at the same time but only if there is an observation
which is statistically compatible with Gi and Gj .

• A group track can only split into tracks that are both
matched in that very time step. Splits into occluded or
obsolete tracks are not allowed.

• A group track can not be involved in a split and a merge
action at the same time.

Gating and statistical compatibility are both determined on
a significance level α. The limitation to binary operators is
justified by the realistic assumption that we observe the world
much faster than the rate with which it evolves. Even if, for
instance, a group splits into three subgroups at once, the
tracker requires only two cycles to reflect this change.

A new model now defines for each group track if it is
continued, split or if it merges with another group track.
The probability of a model is calculated using constant

Fig. 3. The multi-model MHT. For each parent hypothesis, model
hypotheses (ellipses) branch out and create their own assignment problems.
In our application, models define which tracks of the parent hypothesis are
continued, split or merge. The tree shows frames 13 to 15 of figure 4. The
split of group 1 between frames 14 and 15 is the most probable hypothesis
following model branch 0. See the legend for details.

prior probabilities for continuations and splits, pC and pS
respectively, and the probability for a merge between two
tracks Gi and Gj as pG · Nij . The latter term consists
of a constant prior probability pG and the group-to-group
assignment probability Nij defined in section III-C. Let NC
and NS be the number of continued tracks and the number
of split tracks in model M respectively, then the probability
of M conditioned on the parent hypothesis Ωk−1 is

P (M |Ωk−1) = pNC

C · pNS

S

∏
Gi,Gj∈Ωk−1

( pG · Nij)δij (7)

with δij being 1 if Gi, Gj merge and 0 otherwise.

VII. MULTI-MODEL MHT

In this section we describe our extension of the original
MHT by Reid [13] to a multi-model tracking approach that
hypothesizes over both, data associations and models.

Let Ωki be the i-th hypothesis at time k and Ωk−1
p(i) its

parent. Let further ψi(k) denote a set of assignments which
associates predicted tracks in Ωk−1

p(i) to observations in Z(k).
As there are many possible assignment sets given Ωk−1

p(i) and
Z(k), there are many children that can branch off a parent
hypothesis, each with a different ψ(k). This makes up an
exponentially growing hypothesis tree.

The multi-model MHT introduces an intermediate tree
level for each time step, on which models spring off from
parent hypotheses (Fig. 3). In each model branch, the tracks
of the parent hypothesis are first repredicted to implement
that particular model and then assigned to the (reclus-
tered) observations. Possible assignments for observations
are matches with existing tracks, false alarms or new tracks.
Using the generalized formulation of Arras et al. [7] to deal
with more than two track interpretation labels, tracks are
interpreted as matched, obsolete or occluded.

A. Probability Calculations

The probability of a hypothesis in the multi-model MHT is
calculated as follows. According to the Markov assumption,
the probability of a child hypothesis Ωki given the obser-
vations from all time steps up to k, denoted by Zk, is the
joint probability of the assignment set ψi(k), the model M



and the parent hypothesis Ωk−1
p(i) , conditioned on the current

observation Z(k). Using Bayes rule, this can be expressed as
the product of the data likelihood with the joint probability
of assignment set, model and parent hypothesis,

P (Ωki |Zk) = P (ψ,M,Ωk−1
p(i) |Z(k)) (8)

= η · P (Z(k)|ψ,M,Ωk−1
p(i) ) · P (ψ,M,Ωk−1

p(i) ).

By using conditional probabilities, the third term on the
right hand side can be factorized into the probabilities of
the assignment set, the model and the parent hypothesis,

P (ψ,M,Ωk−1
p(i) ) = P (ψ|M,Ωk−1

p(i) ) · P (M |Ωk−1
p(i) ) · P (Ωk−1

p(i) ).

The last term is known from the previous iteration while the
second term was derived in section VI.

The first term is the probability of the assignment set ψ.
The set ψ contains the assignments of observed clusters
Zi and group tracks Gj either to each other or to one of
their possible labels listed above. Assuming independence
between observations and tracks, the probability of the
assignment set is the product of the individual assignment
probabilities. They are: pM for matched tracks, pF for false
alarms, pN for new tracks, pO for tracks found to be occluded
and pT for obsolete tracks scheduled for termination. If the
number of new tracks and false alarms follow a Poisson
distribution (as assumed by Reid [13]), the probabilities pF
and pN have a sound physical interpretation as pF = λFV
and pN = λNV where λF and λN are the average rates of
events per volume multiplied by the observation volume V
(the sensor’s field of view). The probability for an assignment
ψ, given a model M and a parent hypothesis Ωk−1 is then
computed by

P (ψ|M,Ωk−1) = pNM

M pNO

O pNT

T λNF

F λNN

N V NF +NN , (9)

where the Ns are the number of assignments in ψ to the
respective labels.

Thanks to the independence assumption, also the data
likelihood P (Z(k)|ψ,M,Ωk−1

p(i) ) is computed by the product
of the individual likelihoods of each observation cluster Zi in
Z(k). If ψ assigns an observation Zi to an existing track, we
assume the likelihood of Zi to follow a normal distribution,
given by Eq. 5. Observations that are interpreted as false
alarms and new tracks are assumed to be uniformly dis-
tributed over the observation volume V , yielding a likelihood
of 1/V . The data likelihood then becomes

P (Z(k)|ψ,M,Ωk−1) =
(

1
V

)NN +NF

NZ∏
i=1

N δi
i , (10)

where δi is 1 if Zi has been assigned to an existing track,
and 0 otherwise.

Substitution of Eqs. (7), (9), and (10) into Eq. (8) leads,
like in the original MHT approach, to a compact expression,
independent on the observation volume V .

Finally, normalization is performed yielding a true prob-
ability distribution over the child hypotheses of the current
time step. This distribution is used to determine the current
best hypothesis and to guide the pruning strategies.

TABLE I
SUMMARY OF THE DATA USED IN THE TWO EXPERIMENTS.

Experiment 1 Experiment 2
Number of frames 578 991
Avg. / max people 6.25 / 13 8.99 / 20
Avg. / max groups 2.60 / 4 4.16 / 8
Number of splits / merges 5 / 10 48 / 44
Number of new tracks / deletions 19 / 15 34 / 39

B. Pruning

Pruning is essential in implementations of the MHT
algorithm, as otherwise the number of hypotheses grows
boundless. The following strategies are employed:
K-best branching: instead of creating all children of a

parent hypothesis, the algorithm proposed by Murty [16]
generates only the K most probably hypotheses in poly-
nomial time. We use the multi-parent variant of Murty’s
algorithm, mentioned in [22], that generates the global K
best hypotheses for all parents.

Ratio pruning: a lower limit on the ratio of the current
and the best hypothesis is defined. Unlikely hypotheses with
respect to the best one, being below this threshold, are
deleted. Ratio pruning overrides K-best branching in the
sense that if the lower limit is reached earlier, less than K
hypotheses are generated.
N -scan back: the N-scan-back algorithm considers an

ancestor hypothesis at time k−N and looks ahead in time
onto all children at the current time k (the leaf nodes). It
keeps only the subtree at k−N with the highest sum of leaf
node probabilites, all other branches at k−N are discarded.

VIII. EXPERIMENTS

To analyze the performance of our system, we collected
two data sets in a large entrance hall of a university building.
We used a Pioneer II robot equipped with a SICK laser
scanner mounted at 30 cm above floor, scanning at 10 fps. In
two unscripted experiments (experiment 1 with a stationary
robot, experiment 2 with a moving robot), up to 20 people
are in the sensor’s field of view. They form a large variety of
groups during social interaction, move around, stand together
and jointly enter and leave the hall (see Tab. I).

To obtain ground truth information, we labeled each single
range reading. Beams that belong to a person receive a
person-specific label, other beams are labeled as non-person.
These labels are kept consistent over the entire duration of
the data sets. People that socially interact with each other
(derived by observation) are said to belong into a group with
a group-specific label. Summed over all frames, the ground
truth contains 5629 labeled groups and 12524 labeled people.

The ground truth data is used for performance evaluation
and to learn the parameter probabilities of our tracker. The
values, determined by counting, are pM = 0.79, pO = 0.19,
pT = 0.02, pF = 0.06, pN = 0.02 for the data association
probabilities, and pC = 0.63, pS = 0.16, pG = 0.21
for the group formation probabilities. When evaluating the
performance of the tracker, we separated the data into a
training set and a validation set to avoid overfitting.



Fig. 4. Tracking results from experiment 2. In frame 5, two groups are
present. In frame 15, the tracker has correctly split group 1 into 1-0 and 1-1
(see Fig. 3). Between frames 15 and 29, group 1-0 has split up into groups
1-0-0 and 1-0-1, and split up again. New groups, labeled 2 and 3, enter the
field of view in frames 21 and 42 respectively.

Six frames of the current best hypothesis from experiment
2 are shown in Fig. 4, the corresponding hypothesis tree is
shown in Fig. 3. The sequence exemplifies movement and
formation of several groups.

A. Clustering Error

Given the ground truth information on a per-beam basis we
can compute the clustering error of the tracker. This is done
by counting how often a track’s set of points P contains too
many or wrong points (undersegmentation) and how often P
is missing points (oversegmentation) compared to the ground
truth. Two examples for oversegmentation errors can be seen
in Fig. 4, where group 0 and group 1-0 are temporarily
oversegmented. However, from the history of group splits
and merges stored in the group labels, the correct group
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Fig. 5. Left: clustering error of the group tracker compared to a memory-
less single linkage clustering (without tracking). The smallest error is
achieved for a cluster distance of 1.3 m which is very close to the border of
personal and social space according to the proxemics theory, marked at 1.2
m by the vertical line. Right: average cycle time for the group tracker versus
a tracker for individual people plotted against the ground truth number of
people.

relations can be determined in such cases.
For experiment 1, the resulting percentages of incorrectly

clustered tracks for the cases undersegmentation, overseg-
mentation and the sum of both are shown in Fig. 5 (left),
plotted against the clustering distance dP . The figure also
shows the error of a single-linkage clustering of the range
data as described in section II. This implements a memory-
less group clustering approach against which we compare
the clustering performance of our group tracker.

The minimum clustering error of 3.1% is achieved by the
tracker at dP = 1.3m. The minimum error for the memory-
less clustering is 7.0%, more than twice as high. In the
more complex experiment 2, the minimum clustering error
of the tracker rises to 9.6% while the error of the memory-
less clustering reaches 20.2%. The result shows that the
group tracking problem is a recursive clustering problem that
requires integration of information over time. This occurs
when two groups approach each other and pass from opposite
directions. The memory-less approach would merge them
immediately while the tracking approach, accounting for the
velocity information, correctly keeps the groups apart.

In the light of the proxemics theory the result of a minimal
clustering error at 1.3 m is noteworthy. The theory predicts
that when people interact with friends, they maintain a range
of distances between 45 to 120 cm called personal space.
When engaged in interaction with strangers, this distance is
larger. As our data contains students who tend to know each
other well, the result appears consistent with Hall’s findings.

B. Tracking Efficiency

When tracking groups of people rather than individuals,
the assignment problems in the data association stage are
of course smaller. On the other hand, the introduction of
an additional tree level on which different models hypoth-
esize over different group formation processes comes with
additional computational costs. We therefore compare our
system with a person-only tracker which is implemented by
inhibiting all split and merge operations and reducing the
cluster distance dP to the very value that yields the lowest
error for clustering single people given the ground truth. For



experiment 2, the resulting average cycle times versus the
ground truth number of people is shown in Fig. 5 (right).
The plots are averaged over different k from the range of 2
to 200 at a scan-back depth of N = 30.

With an increasing number of people, the cycle time for
the people tracker grows much faster than the cycle time of
the group tracker. Interestingly, even for small numbers of
people the group tracker is faster than the people tracker.
This is due to occasional oversegmentation of people into
individual legs tracks. Also, as mutual occlusion of people
in densely populated environments occurs often, the people
tracker has a lot more occluded tracks to maintain than the
group tracker, as occlusion of entire groups is rare. Also,
the additional complexity of multiple models in the group
tracker virtually disappears when the tracks are isolated due
to the data-driven model generation.

This result clearly shows that the claim of higher efficiency
holds for this group tracking approach. With an average cycle
time of around 100 ms for up to 10 people on a Pentium IV
at 3.2 GHz, the algorithm runs in real-time even with a non-
optimized implementation.

C. Group Size Estimation

To evaluate the accuracy of our group size estimation
approach, we define the error as the absolute difference
between the estimated number of people in a group and the
true value according to the labeled ground truth.

In experiment 1, we find that the average error is
0.23 people with a standard deviation of 0.30. In the more
complex experiment 2, the average error is 0.33 people with
a standard deviation of 0.49. If the estimated group sizes
are rounded to integers, the tracker determined the correct
value in 88.9% of all cases in experiment 1 and in 84.3%
for experiment 2.

If only deviations of more than one person are considered
an error, the system was correct in 99.5% of all cases in
experiment 1 and 97.5% in experiment 2.

IX. CONCLUSION

In this paper, we presented a multi-model hypothesis
tracking approach to track groups of people. We extended the
original MHT approach to incorporate model hypotheses that
describe track interaction events that go beyond what data
association can express. In our application, models encode
the formation of groups during split, merge, and continuation
events. We further introduced a representation of groups that
includes their shape, and employed the minimum average
Hausdorff distance to account for the shape information
when calculating association probabilities.

The proposed tracker has been implemented and tested
using a mobile robot equipped with a laser range finder. It
is able to robustly track groups of people as they undergo
complex formation processes. Given ground truth data with
over 12,000 labeled occurrences of people and groups, the
experiments showed that the tracker could reproduce such
processes with a low clustering error and very accurate
estimates of the number of people in groups.

Further experiments carried out from a stationary and a
moving platform in populated environments with up to 20
people demonstrated that tracking groups of people is clearly
more efficient than tracking individual people. They also
showed that our system performs significantly better than
a memory-less single-frame clustering which underlines the
recursive character of this model selection problem.
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Spatially Grounded Multi-Hypothesis Tracking of People

Matthias Luber Gian Diego Tipaldi Kai O. Arras

Abstract—People tracking is an important yet chal-
lenging task for mobile robots operating in populated
environments and interacting with humans. What
makes this problem difficult is that human behavior is
complex and hard to predict. However, motion of peo-
ple, the rate at which people appear and where they
appear are not random but strongly place-dependent
and follow patterns that are engendered by the envi-
ronment. In this paper we make use of such informa-
tion for the purpose of people tracking. Concretely,
we learn a probabilistic representation, called spatial
affordance map, to spatially ground activity events
acquired by observing people in the environment. This
representation is a non-homogeneous spatial Poisson
process for which we derive expressions for life-long
Bayesian learning. We show how the spatial affor-
dance map can be used to compute refined probability
distributions over hypotheses in a multi-hypothesis
tracker and to make better, place-dependent predic-
tions of human motion. In experiments with real data
from a laser range finder, we demonstrate how both
extensions lead to more accurate tracking behavior.
The system runs in real-time on a typical desktop
computer.

I. Introduction

As robots enter more domains in which they interact
and cooperate closely with humans, people tracking is
becoming a key technology for several areas in robotics
such as human-robot interaction, intelligent cars or hu-
man activity understanding.

In this paper we pursue the approach to learn and
represent human spatial behavior for improved people
tracking. Human activity is strongly place-dependent. By
learning a spatial model that represents activity events
in a global reference frame and on large time scales,
the robot acquires place-dependent priors on human
behavior. As we will demonstrate, such priors can be used
to better hypothesize about the state of the world (that
is, the state of people in the world), and to make place-
dependent predictions of human motion that better re-
flect how people are using space. Concretely, we propose
a non-homogeneous spatial Poisson process to represent
the spatially varying distribution over relevant human
activity events for people tracking. The representation,
called spatial affordance map, holds space-dependent
Poisson rates for the occurrence of track events such as
creation, confirmation or false alarm. The map is then
incorporated into a multi-hypothesis tracking framework
using data from a laser range finder.

All authors are with the Social Robotics Lab, Depart-
ment of Computer Science, University of Freiburg, Germany
{luber,tipaldi,arras}@informatik.uni-freiburg.de.

In most related work on laser-based people tracking
[1], [2], [3], [4], [5], [6], [7], a person is represented as a
single state that encodes torso position and velocities.
People are extracted from range data as single blobs or
found by merging nearby point clusters that correspond
to legs. The problem of people tracking has also been
addressed as a leg tracking problem [8], [9], [10] where
people are represented by the states of two legs, either
in a single augmented state [9] or as a high-level track to
which two low-level leg tracks are associated [8], [10].

Different tracking and data association approaches
have been used for laser-based people tracking. The
nearest neighbor filter and variations thereof are typically
employed in earlier works [1], [2], [3]. A sample-based
joint probabilistic data association filter (JPDAF) has
been presented in Schulz et al. [4] and adopted by Topp
et al. [5]. The Multi-hypothesis tracking (MHT) approach
according to Reid [11] and Cox et al. [12] has been used in
[8], [7], [10]. What makes the MHT an attractive choice
is that it belongs to the most general data association
techniques. The method generates joint compatible as-
signments, integrates them over time, and is able to deal
with track creation, confirmation, occlusion, and deletion
events in a probabilistically consistent way. Other multi-
target data association techniques such as the global
nearest neighbor filter, the track splitting filter or the
JPDAF are suboptimal in nature as they simplify the
problem in one or the other way [13], [14]. For this
reasons, the MHT has become a widely accepted tool
in the target tracking community [14].

The MHT framework assumes that new track and
false alarm events are uniformly distributed in the sensor
field of view with fixed Poisson rates. This assumption
is justified in settings for which the approach has been
originally developed (using, e.g., radar or underwater
sonar). However, in the context of people tracking with
vision or laser these models are overly simplified. Par-
ticularly since people do not use environments randomly
but move, appear and disappear at specific locations that
correspond, for instance, to doors, entrances, or convex
corners. Further, false alarms are more likely to arise in
areas with cluttered backgrounds rather than in open
spaces. In this paper, we extend the MHT approach by
incorporating learned distributions over track interpreta-
tion events that serve as domain knowledge to the system
to better hypothesize about the state of the world.

For motion prediction of people, most researchers em-
ploy the Brownian motion model and the constant ve-
locity motion model. The former makes no assumptions



about the target dynamics, the latter assumes linear
target motion. Better motion models for people tracking
have been proposed by Bruce and Gordon [15] and Liao
et al. [16].

In [15], the robot learns goal locations in an envi-
ronment from people trajectories obtained by a laser-
based tracker. Goals are found as end points of clustered
trajectories. Human motion is then predicted along paths
that a planner generates from the location of people
being tracked to the goal locations. The performance of
the tracker was improved in comparison to a Brownian
motion model. Liao et al. [16] extract a Voronoi graph
from a map of the environment and represent the state
of people being on edges of that graph. This allows them
to predict motion of people along the edges that follow
the topological shape of the environment.

With maneuvering targets, a single model can be
insufficient to represent the target’s motion. Multiple
model based approaches in which different models run
in parallel and describe different aspects of the target
behavior are a widely accepted technique to deal with
maneuvering targets, in particular the Interacting Multi-
ple Model (IMM) algorithm [17]. Different target motion
models are also studied by Kwok and Fox [18]. The
approach is based on a Rao-Blackwellized particle filter
to model the potential interactions between a target
and its environment. The authors define a discrete set
of different target motion models from which the filter
draws samples. Then, conditioned on the model, the
target is tracked using Kalman filters.

Our approach extends prior work in two aspects, learn-
ing and place-dependent motion prediction. Opposed to
[16], [18] and IMM related methods, we do not rely on
predefined motion models but apply learning for this
task in order to acquire place-dependent models. In
[16], the positions of people is projected onto a Voronoi
graph which is a topologically correct but metrically poor
model for human motion. While sufficient for the purpose
of their work, there is no insight why people should
move on a Voronoi set, particularly in open spaces whose
topology is less well defined. Our approach, by contrast,
tracks the actual position of people and predicts their
motion according to metric, place-dependent models.
Opposed to [15] where motion prediction is done along
paths that a planner plans to a set of goal locations, our
learning approach predicts motion along the trajectories
that people are actually following.

The paper is structured as follows: the next section
gives an overview of the people tracker that will later be
extended. Section III introduces the theory of the spatial
affordance map and expressions for learning its parame-
ters. Section IV describes how the spatial affordance map
can be used to compute refined probability distributions
over hypotheses, while section V contains the theory for
the place-dependent motion model. Section VI presents
the experimental results followed by the conclusions in
section VII.

Fig. 1. An example scene from experiment 2 (frame 185) where
three people are being tracked.

II. Multi-Hypothesis Tracking of People

For people tracking, we pursue a Multi-Hypothesis
Tracking (MHT) approach described in Arras et al. [10]
based on the original MHT by Reid [11] and Cox and
Hingorani [12]. As we will use the tracker to learn the
spatial affordance map described hereafter, we give a
short outline. Sections IV and V, where the approach
will be extended, contains the technical details.

Summarizing, the MHT algorithm hypothesizes about
the state of the world by considering all statistically
feasible assignments between measurements and tracks
and all possible interpretations of measurements as false
alarms or new track and tracks as matched, occluded or
obsolete. A hypothesis Ωt

i is one possible set of assign-
ments and interpretations at time t.

For learning the spatial affordance map, the hypothesis
with maximal probability Ωt

best at time t is chosen to
produce the track events that subsequently serve as
observations for the map. In case of a sensor mounted on
a mobile platform, we assume the existence of a metric
map of the environment and the ability of the robot
to self-localize. Observations are then transformed from
local, robot-centric coordinates into the world reference
frame of the map.

III. Spatial Affordance Map

The spatial affordance map is a non-homogeneous
spatial Poisson process. This section describes the theory
and how learning is implemented in this application of a
Poisson process.

A Poisson distribution is a discrete distribution to
compute the probability of a certain number of events
given an expected average number of events over time or
space. The parameter of the distribution is the positive
real number λ, the rate at which events occur per time
or volume units. As we are interesting in modeling events
that occur randomly in time, the Poisson distribution is
a natural choice.

Based on the assumption that events in time occur
independently of one another, a Poisson process can
deal with distributions of time intervals between events.
Concretely, let N(t) be a discrete random variable to
represent the number of events occurring up to time t



with rate λ. Then we have that N(t) follows a Poisson
distribution with parameter λt

P (N(t) = k) =
e−λt(λt)k

k!
k = 0, 1, . . . (1)

In general, the rate parameter may change over time. In
this case, the generalized rate function is given as λ(t)
and the expected number of events between time a and
b is

λa,b =
∫ b

a

λ(t) dt. (2)

A homogeneous Poisson process is a special case of a
non-homogeneous process with constant rate λ(t) = λ.

The spatial Poisson process introduces a spatial depen-
dency on the rate function given as λ(~x, t) with ~x ∈ X
where X is a vector space such as R2 or R3. For any
subset S ⊂ X of finite extent (e.g. a spatial region),
the number of events occurring inside this region can
be modeled as a Poisson process with associated rate
function λS(t) such that

λS(t) =
∫

S

λ(~x, t) d~x. (3)

In the case that this generalized rate function is a
separable function of time and space, we have:

λ(~x, t) = f(~x)λ(t) (4)

for some function f(~x) for which we can demand∫
X

f(~x) d~x = 1 (5)

without loss of generality. This particular decomposition
allows us to decouple the occurrence of events between
time and space. Given Eq. 5, λ(t) defines the occurrence
rate of events, while f(~x) can be interpreted as a proba-
bility distribution on where the event occurs in space.

Learning the spatio-temporal distribution of events in
an environment is equivalent to learn the generalized rate
function λ(~x, t). However, learning the full continuous
function is a highly expensive process. For this reason,
we approximate the non-homogeneous spatial Poisson
process with a piecewise homogeneous one. The approxi-
mation is performed by discretizing the environment into
a bidimensional grid, where each cell represents a local
homogeneous Poisson process with a fixed rate over time,

Pij(k) =
e−λij (λij)k

k!
k = 0, 1, . . . (6)

where λij is assumed to be constant over time. Finally,
the spatial affordance map is the generalized rate func-
tion λ(~x, t) using a grid approximation,

λ(~x, t) '
∑

(i,j)∈X

λij1ij(~x) (7)

with 1ij(~x) being the indicator function defined as

1ij(x) =
{

1 if x ∈ cellij ,
0 if x /∈ cellij .

(8)

The type of approximation is not imperative and goes
without loss of generality. Other space tessellation tech-
niques such as graphs, quadtrees or arbitrary regions of
homogeneous Poisson rates can equally be used. Subdi-
vision of space into regions of fixed Poisson rates has
the property that the preferable decomposition in Eq. 4
holds.

Each type of human activity event can be used to
learn its own probability distribution in the map. We
can therefore think of the map as a representation with
multiple layers, one for every type of event. For the
purpose of this paper, the map has three layers, one
for new tracks, for matched tracks and for false alarms.
The first layer represents the distribution and rates of
people appearing in the environment. The second layer
can be considered a space usage probability and contains
a walkable area map of the environment. The false alarm
layer represents the place-dependent reliability of the
detector.

A. Learning
In this section we show how to learn the parameter

of a single cell in our grid from a sequence K1..n of
n observations ki ∈ {0, 1}. We use Bayesian inference
for parameter learning, since the Bayesian approach can
provide information on cells via a prior distribution. We
model the parameter λ using a Gamma distribution,
as it is the conjugate prior of the Poisson distribution.
Let λ be distributed according to the Gamma density,
λ ∼ Gamma(α, β), parametrized by the two parameters
α and β,

Gamma(λ;α, β) =
βα

Γ(α)
λα−1e−β λ for λ > 0. (9)

Then, learning the rate parameter λ consists in estimat-
ing the parameters of a Gamma distribution. At discrete
time index i, the posterior probability of λi according to
Bayes’ rule is computed as

P (λi|K1..i) ∼ P (ki|λi−1)P (λi−1) (10)

with P (λi−1) = Gamma(αi−1, βi−1) being the prior and
P (ki|λi−1) = P (ki) from Eq. 6 the likelihood. Then by
substitution, it can be shown that the update rules for
the parameters are

αi = αi−1 + ki βi = βi−1 + 1. (11)

The posterior mean of the rate parameter in a single cell
is finally obtained as the expected value of the Gamma,

λ̂Bayesian = E[λ] =
α

β
=

#positive events + 1
#observations + 1

. (12)

For i = 0 the quasi uniform Gamma prior for α = 1, β =
1 is taken. The advantages of the Bayesian estimator are
that it provides a variance estimate which is a measure
of confidence of the mean and that it allows to properly
initialize never observed cells.

Given the learned rates we can estimate the space
distribution of the various events. This distribution is



obtained from the rate function of our spatial affordance
map λ(~x, t). While this estimation is hard in the general
setting of a non-homogeneous spatial Poisson process,
it becomes easy to compute if the separability property
of Eq. 4 holds1. In this case, the pdf, f(~x), is obtained
by

f(~x) =
λ(~x, t)
λ(t)

(13)

where λ(~x, t) is the spatial affordance map. The nomi-
nator, λ(t), can be obtained from the map by substitut-
ing the expression for f(~x) into the constraint defined
in Eq. 5. Hence,

λ(t) =
∫

X

λ(~x, t) d~x. (14)

In our grid, those quantities are computed as

f(~x) =

∑
(i,j)∈X λij1ij(~x)∑

(i,j)∈X λij
. (15)

In case of several layers in the map, each layer contains
the distribution f(~x) of the respective type of events.
Note that learning in the spatial affordance map is
simply realized by counting in a grid. This makes life-long
learning particularly straightforward as new information
can be added at any time by one or multiple robots.

Figure 2 shows two layers of the spatial affordance map
of our laboratory, learned during a first experiment. The
picture on the left shows the space usage distribution of
the environment. The modes in this distribution corre-
spond to often used places and have the meaning of goal
locations in that room (two desks and a sofa). On the
right, the distribution of new tracks is depicted whose
peaks denote locations where people appear (doors). The
reason for the peaks at other locations than the doors is
that when subjects use an object (sit on a chair, lie on the
sofa), they cause a track loss. When they reenter space,
they are detected again as new tracks.

IV. MHT With Spatial Information

The Multi-Hypothesis Tracking approach has its roots
in the target tracking community and was designed
for sensors such as radar or underwater sonar. When
employed with data from a mobile platform with cameras
or laser range finders, it is questionable if the same sta-
tistical assumptions hold. The MHT assumes a Poisson
distribution for the occurrences of new tracks and false
alarms over time and a uniform probability of these
events over space within the sensor field of view V . While
this is a valid assumption for a radar aimed upwards into
the sky, this is unrealistic for people being tracked by
a mobile robot. The arrival of people is well modeled
by a Poisson distribution but is clearly non-uniform
over space. People typically appear and disappear at
specific locations that correspond, for instance, to doors,
entrances, or convex corners.

1Note that for a non-separable rate function, the Poisson process
can model places whose importance changes over time.

Fig. 2. Spatial affordance map of the laboratory in experiment 1.
The probability distribution of matched track events is shown on
the left, the distribution of new track events is shown on the
right. The marked locations in each distribution (extracted with
a peak finder and visualized by contours of equal probability) have
different meanings. While on the left they correspond to places that
are often used by people (two desks and a sofa), the maxima of the
new track distribution (right) denote locations where people appear
(two doors and a sofa).

It is exactly this information that the spatial affor-
dance map holds. We can therefore seamlessly extend
the MHT approach with the learned Poisson rates for the
arrival events of people and learned location statistics for
new tracks and false alarms.

At time t, each possible set of assignments and inter-
pretations forms a hypothesis Ωt

i. Let Z(t) = {zi(t)}mt
i=1

be the set of mt measurements which in our case is the
set of detected people in the laser data. For detection, we
use a learned classifier based on a collection of boosted
features [19]. Let further ψi(t) denote a set of assignments
which associates predicted tracks to measurements in
Z(t) and let Zt be the set of all measurements up to time
t. Starting from a hypothesis of the previous time step,
called a parent hypothesis Ωt−1

p(i), and a new set Z(t), there
are many possible assignment sets ψ(t), each giving birth
to a child hypothesis that branches off the parent. This
makes up an exponentially growing hypothesis tree. For
a real-time implementation, the growing tree needs to be
pruned. To guide the pruning, each hypothesis receives
a probability, recursively calculated as the product of a
normalizer η, a measurement likelihood, an assignment
set probability and the parent hypothesis probability
[11],

p(Ωt
l | Zt) = η · p(Z(t) | ψi(t),Ωt−1

p(i)) (16)

p(ψi(t) | Ωt−1
p(i), Z

t−1) · p(Ωt−1
p(i) | Z

t−1).

While the last term is known from the previous iteration,
the two expressions that will be affected by our extension
are the measurement likelihood and the assignment set
probability.

For the measurement likelihood, we assume that a
measurement zi(t) associated to a track xj has a Gaus-
sian pdf centered on the measurement prediction ẑj(t)
with innovation covariance matrix Sij(t), N (zi(t)) :=
N (zi(t) ; ẑj(t), Sij(t)). The regular MHT now assumes
that the pdf of a measurement belonging to a new track
or false alarm is uniform in V , the sensor field of view,



with probability V −1. Thus

p(Z(t) | ψi(t),Ωt−1
p(i)) = V −(NF +NN ) ·

mt∏
i=1

N (zi(t))δi (17)

with NF and NN being the number of measurements
labeled as false alarms and new tracks respectively. δi is
an indicator variable being 1 if measurement i has been
associated to a track, and 0 otherwise.

Given the spatial affordance map, the term changes as
follows. The probability of new tracks V −1 can now be
replaced by

pN (~x) =
λN (~x, t)
λN (t)

=
λN (~x, t)∫

V
λN (~x, t) d~x

(18)

where λN (~x, t) is the learned Poisson rate of new tracks
in the map and ~x the position of measurement z′i(t)
transformed into global coordinates. The same derivation
applies for false alarms. Given our grid, Eq. 18 becomes

pN (~x) =
λN (z′i(t), t)∑
(i,j)∈V λij,N

. (19)

The probability of false alarms pF (~x) is calculated in the
same way using the learned Poisson rate of false alarms
λF (~x, t) in the map.

The original expression for the assignment set proba-
bility can be shown to be [10]

p(ψi(t) | Ωt−1
p(i), Z

t−1) = η′ · pNM

M · pNO

O · pND

D (20)

λNN

N · λNF

F · V (NF +NN )

where NM , NO, and ND are the number of matched,
occluded and deleted tracks, respectively. The parame-
ters pM , pO, and pD denote the probability of matching,
occlusion and deletion that are subject to pM +pO+pD =
1. The regular MHT now assumes that the number
of new tracks NN and false alarms NF both follow a
fixed rate Poisson distribution with expected number of
occurrences λNV and λFV in the observation volume V .

Given the spatial affordance map, they can be replaced
by rates from the learned spatial Poisson process with
rate functions λN (t) and λF (t) respectively.

Substituting the modified terms back into Eq. 16
makes, like in the original approach, that many terms
cancel out leading to an easy-to-implement expression
for a hypothesis probability

p(Ωt
l | Zt) = η′′ · pNM

M · pNO

O · pND

D ·
mt∏
i=1

[N (zi(t))δi (21)

λN (z′i(t), t)
κi · λF (z′i(t), t)

φi ] · p(Ωt−1
p(i) | Z

t−1)

with δi and κi being indicator variables whether a track
is matched to a measurement or new, respectively, and
φi indicating if a measurement is declared to be a false
alarm.

The insight of this extension of the MHT is that we
replace fixed parameters by learned distributions. This
kind of domain knowledge helps the tracker to better

interpret measurements and tracks, leading to refined
probability distributions over hypotheses at the same
run-time costs.

V. Place-Dependent Motion Models

Tracking algorithms rely on the predict-update cycle,
where a motion model predicts the future target posi-
tion which is then validated by an observation in the
update phase. Without validation, caused, for instance,
by the target being hidden during an occlusion event, the
state evolves blindly following only the prediction model.
Good motion models are especially important for people
tracking as people typically undergo lengthy occlusion
events during interaction with each other or with the
environment.

As motion of people is hard to predict, having a precise
model is difficult. People can abruptly stop, turn back,
left or right, make a step sideways or accelerate suddenly.
However, motion of people is not random. In particular, it
follows patterns that are strongly place-dependent. They,
for instance, turn around convex corners, avoid static
obstacles, stop in front of doors and do not go through
walls. Clearly, the Brownian and the constant velocity
motion model are unable to capture the complexity of
these movements and even higher-order models would be
a very approximate choice.

For this reason, we extend the constant velocity mo-
tion assumption with a place-dependent model derived
from the learned space usage distribution in the spatial
affordance map. Let xt = ( xt yt ẋt ẏt )T be the
state of a track at time t and Σt its covariance estimate.
The motion model p(xt|xt−1) is then defined as

p(xt|xt−1) = N (xt;F xt−1, F Σt−1 F
T +Q) (22)

with F being the state transition matrix. The entries in
Q represent the acceleration capability of a human. We
extend this model by considering how the distribution of
the state at a generic time t is influenced by the previous
state and the map. This distribution is approximated by
the following factorization

p(xt|xt−1,m) ' p(xt|xt−1) · p(xt|m) (23)

where m is the spatial affordance map and p(xt|m) =
f(x) denotes the space usage probability of the portion
of the environment occupied by xt, as defined by Eq. 15.

A closed form estimation of this distribution does not
exist since the map contains a general density, poorly
described by a parametric distribution. We therefore
follow a sampling approach and use a particle filter
to address this estimation problem. The particle filter
is a sequential Monte Carlo technique based on the
importance sampling principle. In practice, it represents
a target distribution in form of a set of weighted samples

p(xt|xt−1,m) '
∑

i

w(i)δ
x
(i)
t

(xt). (24)



Fig. 3. Trajectory of a person in experiment 2 taking a left turn
during an occlusion event. Predictions from a constant velocity
motion model (dashed ellipse) and the new model (solid ellipse) are
shown. The background grid (in blue) shows the learned space usage
distribution of the spatial affordance map. The small black dots are
the weighted samples of the place-dependent motion model. The
model is able to predict the target “around the corner” yielding
much better motion predictions in this type of situations.

where δ
x
(i)
t

(xt) is the impulse function centered in x
(i)
t .

Sampling directly from that distribution is not possible
so the algorithm first computes samples from a so called
proposal distribution, π. The algorithm, then, computes
the importance weight related to the i-th sample that
takes into account the mismatch among the target dis-
tribution τ and the proposal distribution w = τ

π . The
weights are then normalized such that

∑
w = 1.

In our case, we take the constant velocity model to
derive the proposal π. The importance weights are then
represented by the space usage probability

w(i) =
p(xt|xt−1,m)

p(x(i)
t |t−1)

= p(x(i)
t |m). (25)

The new motion model has now the form of a weighted
sample set. Since we are using Kalman filters for tracking,
the first two moments of this distribution is estimated by

µ̂ =
∑

i

w(i)x
(i)
t (26)

Σ̂ =
∑

i

w(i)(µ̂− x
(i)
t )(µ̂− x

(i)
t )T . (27)

The target is then predicted using µ̂ as the state pre-
diction with associated covariance Σ̂. Obviously, the last
step is not needed when using particle filters for tracking.

An example situation that exemplifies how this motion
model works is shown in Figure 3. A person that takes
a left turn in a hallway is tracked over a lengthy occlu-
sion event. The constant velocity motion model (dashed
ellipse) predicts the target into a wall and outside the
walkable area of the environment. The place-dependent
model (solid ellipse) is able to follow the left turn with
a state covariance in the shape of the hallway. In other
words, the model predicts the target“around the corner”.
The tracker with the constant velocity motion loses track
as the reappearing person is outside the validation gate
(shown as 95% ellipses).

VI. Experiments

For the experiments we collected two data sets, one in
a laboratory (experiment 1, Figure 4) and one in an office
building (experiment 2, Figure 6). As sensors we used a
fixed Sick laser scanner with an angular resolution of 0.5
degree.

The spatial affordance maps were trained based on the
tracker described in [10], the grid cells were chosen to be
30 cm in size. The parameters of the tracker have been
learned from a training data set with 28 tracks over 889
frames. All data associations including occlusions have
been hand-labeled. This led to a matching probability
pM = 0.515, an occlusion probability pO = 0.472, a
deletion probability pD = 0.013, a fixed Poisson rate for
new tracks λN = 0.033 and a fixed Poisson rate for false
alarms as λF = 0.0011. The rates have been estimated
using the Bayesian approach in Eq. 12.

The implementation of our system runs in real-time on
a 2.8 GHz quad-core CPU. The cycle time of a typical
setting with NHyp = 50, 500 samples for the particle
filter, and up to eight parallel tracks is around 12 Hz
when sensor data are immediately available.

A. MHT with Spatial Information

The original MHT is compared to the approach using
the spatial affordance map on the data set from the lab-
oratory over 4588 frames and with a total number of 130
people entering and leaving the sensor field of view. The
ground truth has been determined by manual inspection.
For the comparison we count the total number of tracks
that are created by the current best hypotheses of the
two tracking methods. This value is indication of the
tracking accuracy, especially of the ability to deal with
track occlusion. We use a pruning strategy which limits
the maximum number of hypotheses at every step to
NHyp (the multi-parent variant of the pruning algorithm
proposed by Murty [20]). In order to show the evolution
of the error as a function of NHyp, the computational
effort, NHyp is varied from 1 to 50. The results are shown
in Figure 5.

The result shows a significant improvement of the ex-
tended MHT over the regular approach. The explanation
is given by an example. As can be seen in Figure 2 right,
few new track events have been observed in the center of
the room. If at such a place a track occlusion occurs (e.g.
from another person), hypotheses that interpret this as
an obsolete track followed by a new track receive a much
smaller probability through the spatial affordance map
than hypotheses that assume this to be an occlusion. The
fact that the green graph in Figure 5 is below the ground
truth indicates that the modified approach favors track
occlusions slightly too much over deletion/creation pairs.
The result however demonstrates clearly that the spatial
affordance map enables a tracker to better hypothesize
about the state of tracks, leading to a more accurate
tracking behavior.



Fig. 4. Four (of 28) example tracks from experiment 1.

Fig. 5. The total number of tracks as a function of NHyp, the
number of generated hypotheses. The tracking experiment had 4588
frames with a total of 130 people. The red line shows the MHT
approach, the dotted green line the extended approach. The graph
shows that replacing the fixed Poisson rates by the ones in the
spatial affordance map improves the tracking accuracy significantly.

B. Place-Dependent Motion Model

In the second experiment, the constant velocity motion
model is compared to our place-dependent motion model.
A training set over 7443 frames with 50 person tracks
in a office-like environment was recorded to learn the
spatial affordance map (see Figure 6 and Figure 3). A test
set with 1611 frames and eight people tracks was used
to compare the two models. The data set was labeled
by hand to determine both, the ground truth positions
of people and the true data associations. In order to
make the task more difficult, we defined areas in which
target observations are ignored as if the person had been
occluded by an object or another person. These areas
were placed at hallway corners and U-turns where people
typically maneuver. As the occlusion is simulated, the
ground truth position of the targets is still available. As
a measure of accuracy, the posterior position estimates of
both approaches to the ground truth is calculated. The
resulting estimation error in x is shown in Figure 7 (the
error in y is similar).

The diagram shows much smaller estimation errors
and 2σ bounds for the place-dependent motion model
during target maneuvers. An important result is that the
predicted covariances do not grow boundless during the
occlusion events (peaks in the error plots). As illustrated
in Figure 3, the shape of the covariance predictions
follows the walkable area map at the very place of the

Fig. 6. Six (of 50) example tracks from experiment 2.

Fig. 7. Comparison between constant velocity motion model
(top) and place-dependent motion model (bottom). Peaks corre-
spond to occluded target maneuvers (turns around corners and U-
turns). Fig. 3 shows the left turn of a person at step 217 of this
experiment. While both approaches are largely consistent from a
estimation point of view, the place-dependent model results in an
overall smaller estimation error and smaller uncertainties. For eight
manually inspected tracks, the constant velocity motion model lost
a track three times while the new model had no track loss.

target. Smaller covariances lead to lower levels of data
association ambiguity, and thus, to decreased computa-
tional costs and more accurate probability distribution
over pruned hypothesis trees.

For eight manually inspected tracks, the constant ve-
locity motion model lost a track three times while the
new model had no track loss. By tuning the entries of the
process noise covariance Q, the constant velocity motion
model can be made to avoid such losses, but this is clearly
the wrong way to go as it brings along an even higher
level of data association ambiguity.



VII. Conclusions

In this paper we presented an extended multi-
hypothesis approach to laser-based people tracking that
incorporates information on how people use space.

We proposed a non-homogeneous spatial Poisson pro-
cess, called spatial affordance map, to represent the
spatially varying distributions over track interpretation
events of a MHT tracker and derive expressions for
Bayesian learning of the map.

The spatial affordance map enabled us to relax and
overcome the simplistic fixed Poisson rate assumption
for new tracks and false alarms in the MHT approach.
Using a learned spatio-temporal Poisson rate function,
the system was able to compute refined probability distri-
butions over hypotheses, resulting in a significantly more
accurate tracking behavior in terms of steady track iden-
tities. The map further allowed us to derive a new, place-
dependent model to predict target motion. The model
showed superior performance in predicting maneuvering
targets especially during lengthy occlusion events when
compared to a constant velocity motion model.

In the future, we plan to extend the representation to
a non-stationary Poisson process.
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Multi-Layer People Detection using 2D Range Data

Oscar Martinez Mozos Ryo Kurazume Tsutomu Hasegawa

Abstract—This paper addresses the problem of detecting
people using multiple layers of 2D range scans. Detecting
persons is an important capacity for intelligent systems that
have to interact with people. Our approach uses a supervised
learning algorithm to train one classifier for each layer, which
concentrates in a different body part. The classifiers are then
combined in a probabilistic way to create a final robust
detector. Experimental results with real data demonstrate the
effectiveness of our approach to detect persons in cluttered
environments, and its ability to deal with occlusions.

I. INTRODUCTION

Detecting people is a key capacity for intelligent systems

that have to interact in populated environments such as

service robots [3], [23], [18], autonomous vehicles [17], [10],

or ambient intelligence and surveillance systems [6], [16]. A

robust detection of persons in the environment will improve

the ability of these systems to communicate with people and

to take decisions accordingly.

In this paper we address the problem of detecting people

using 2D laser range finders. These kind of proximity sensors

are often used in robotic applications since they provide a

wide field of view and a high data rate. In addition, their

measurements are invariant to illumination changes. Previous

works have used 2D laser range finders to detect people in

the environment. Typically the lasers are located at a height

which permits the detection of legs [5], [8], [14], [4], [15],

[18], [3], [2], [17]. Although good classifications rates have

been obtained using machine learning techniques [2], [17],

there is still the need to improve the robustness of the final

detectors. One of the main problems is the little information

that range scans provide about legs. An example is shown in

the bottom right of Figure 1. Here, the legs of a person are

represented by short segments composed of few points. In

cluttered environments like homes or offices, these segments

can be easily misclassified due to the different objects in

the environment, such as tables, chairs or other furniture.

Finally, occlusions often occur and make the detection of

people quite difficult, or even impossible when the legs are

hidden.

The key idea of this work is to improve the robustness

of people detection systems by taking into account different

body parts. Our approach uses 2D laser range scans situated

at different heights. Each laser is responsible for detecting a
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Fig. 1. The left image shows the configuration for the complete multi-layer
system with 2D range scans situated at different layers. A classifier is learned
for the body part found in each layer. These classifiers are then combined to
create a final person detector. The right image depicts examples of segments
representing body parts at three different layers: legs, upper body, and head
(bird’s eye view for each layer).

different body part like the legs, the upper body or the head.

The output of the different detectors is then combined in

a probabilistic framework to obtain a robust final classifier.

The complete system is shown in the left image of Figure 1.

Our method is based on the classification of segments that

represent each body part (right image of Figure 1). For

each layer, a classifier is trained using a supervised learning

approach based on boosting [2]. The training data for each

classifier is composed of the segments that represent the

body part of the corresponding layer. In the classification

step, each new segment accumulates evidence for its final

classification using a probabilistic voting approach [9]. In our

method, the voting for a specific segment takes into account

the classification of all segments in the scene.

Experimental results shown in this paper illustrate that

the resulting classification system can detect persons in

cluttered environment with high recognition rates. Moreover,

we present results illustrating that the multi-layer classifier

improves the detection over single-layer ones. Finally, we

show the robustness of the classifier under occlusions.

II. RELATED WORK

In the past, several researchers focused on the problem of

detecting/tracking people in range scans. One of the most

popular approaches in this context is to extract legs by

detecting moving blobs that appear as local minimum in

the range image [5], [8], [4], [14], [15], [18], [4], [22].

Some of these works additionally extract some geometrical

or moving features. However, these features are selected

by hand. In comparison, our work learns automatically a

classifier selecting the best features for the detection. In the



work by Arras et al. [2], boosting is used to learn a classifier

to detect legs segments. In this work we additionally learn

classifiers for other body parts, and we introduce a method

to combine the classifications.

The multi-part detection of people has been studied mainly

in vision. Leibe et al. [9] use a voting approach to detect

people in images with a previous learned codebook. The

works from Ioffe and Forsyth [7] and Ronfard et al. [13]

incrementally assemble body parts detected in a picture.

Also Mikolajczyk et al. [11] use a probabilistic assembly

of different body part detectors. Wu and Nevatia [21] apply

a Bayesian combination of body parts detected using edgelet

features. Finally, Zivkovic and Kröse [24] combine different

body parts detected using Haar-like features in omnidirec-

tional images.

Other works combine different sensors to detect people.

Spinello et al. [17] use laser and vision sensors to detect

people from a car. Also Zivkovic and Kröse [24] combine

panoramic images with laser scans. In contrast to these works

we use only laser range finders.

AdaBoost has been successfully used as a Boosting algo-

rithm in different applications for object recognition. Viola

and Jones [20] boost simple features based on grey level

differences to create a fast face classifier using images.

Treptow et al. [19] use the AdaBoost algorithm to track a

ball without color information in the context of RoboCup.

Further, Mozos et al. [12] apply AdaBoost to create a classi-

fier able to recognize places in 2D maps. Our application of

boosting is similar to [2], although we extended it to other

body parts.

III. SINGLE LAYER CLASSIFICATION

This section describes the individual classifiers used in

each layer. Each classifier is trained to detect a different body

part of a person like the legs, the upper body or the head.

A. Boosting

To create the individual classifier Cn for layer n we follow

the approach introduced in [2]. This method uses the super-

vised AdaBoost algorithm to create a final strong classifier

by combining several weak classifiers. The requirement to

each weak classifier is that its accuracy is better than a

random guessing. In a series of rounds t = 1, . . . , T , the

AdaBoost algorithm selects the weak classifiers that have a

small classification error in the weighted training examples.

Each weak classifier hj is based on a single-valued feature

fj and has the form

hj(e) =

{

+1 if pjfj(e) < pjθj

−1 otherwise,
(1)

where θj is a threshold, and pj is either +1 or −1 and thus

represents the direction of the inequality. In each round t of

the algorithm, the values for θj and pj are learned so that

the misclassification in the training data is minimized. The

final strong classifier is a weighted combination of the best

T weak classifiers. The output of the final binary classifier

Cn has two values {+1,−1} representing the positive and

negative classification respectively. More details about this

approach are given in [2].

B. Geometrical Features

In this section we describe the segmentation method and

the features used in our system. Our system is equipped

with several range sensors that deliver observations. The

observation z from one laser sensor is composed of a set

of beams z = {b1, ..., bL}. Each beam bj corresponds to a

tuple (φj , ρj), where φj is the angle of the beam relative to

the sensor and ρj is the length of the beam. Following the

approach in [2], each observation z is split into an ordered

partition of segments S = {s1, s2, ..., sM} using a jumping

distance condition. The elements of each segment s =
{x1,x2, ...,xn} are represented by Cartesian coordinates

x = (x, y), where x = ρ cos(φ) and y = ρ sin(φ), and
(φ, ρ) are the polar coordinates of the corresponding beam.

The set of training examples for the AdaBoost algorithm

is then composed of the segments together with their label,

and their pre-calculated single-valued features

X =
{

(si, yi, fi) | li ∈ {+1,−1}, fi ∈ ℜd
}

,

where yi = +1 indicates that the segment si is a posi-

tive example and yi = −1 indicates that the segment si

is a negative example. The set of positives examples is

composed of segments that correspond to body parts of

persons. The negatives examples are represented by segments

that correspond to other objects in the environment. The

dimension d of the feature vector fi depends on the number

of single features extracted from each segment. In our case

we calculate eleven features selected from the list given

in [2]: number of points, standard deviation, mean average

deviation from median, width, linearity, circularity, radius,

boundary length, boundary regularity, mean curvature, and

mean angular difference.

IV. MULTI-LAYER DETECTION

After training the individual classifiers for each body part,

our system is able to detect in each layer the segments

corresponding to a person. In this section we explain how to

combined the output of the different classifiers to obtain a

more robust final people detector.

A. Shape Model

Based on [9], we learn a shape model of persons that

specifies the geometrical relations among the different body

parts. Figure 2 shows an example of a shape model for

the segments corresponding to the three layers shown in

the right image of Figure 1. To calculate the geometrical

relations in our shape model, we first project the segments

pertaining to a person into the 2D horizontal plane (bird’s

eye view). We then calculate the maximum distance of a

segment corresponding to a concrete body part with respect

to the segments corresponding to the other body parts as

rel(Li,Lj) = max
∀x∈X

dist(s+
i , s+

j ) | s+
i ∈ Li, s

+
j ∈ Lj , (2)



Fig. 2. This figure illustrates two examples of geometrical relations. In
particular, the relations between an upper body segment with respect a head
segment, and with respect a leg segment. Segments were projected to the
2D horizontal plane. The distance between the segments has been increased
by hand for a better visualization.

where Li indicates the layer corresponding to body part i (for

example the head), and s+
i indicates a positive segment of

that body part. Finally, dist(, ) is a function which calculates

the Euclidean distance between the centers of two segments.

These relations are learned from a set of positive training

examples. The process for obtaining positive examples is

explained in Section V.

Finally, for each relation we create a test function δ :
S × S → {0, 1} which indicates whether two new segments

sj and sj satisfy it

δ(si, sj) =

{

1 if dist(si, sj) ≤ rel(Li,Lj)
0 otherwise

(3)

B. Probabilistic Voting

In the detection step, each range sensor delivers an obser-

vation zj which corresponds to the scan taken at layer Lj .

This layer may correspond to the legs, upper body, head, or

other body part (Figure 1). After segmenting the observations

(Section III-B), each segment accumulates evidence of being

a positive example of the body part corresponding to the

layer it was located at.

Let si be a segment in the scene, and let li be the

layer where si is located. Now let ci ∈ {+1,−1} be the

classification of segment si. Following a similar approach

to [9], we calculate the score for a positive classification

ci = +1 of segment si by marginalizing over all segments

found in the scene

V (c+
i ) =

∑

j

P (c+
i , sj) (4)

=
∑

j

P (c+
i | sj)P (sj). (5)

Here c+
i is equivalent to ci = +1. The first term in (5)

represents the probability of a positive classification for

segment si given all segments found in the scene. We further

marginalize over the classification of all segments

P (c+
i | sj) =

∑

cj

P (c+
i , cj | sj) (6)

=
∑

cj

P (c+
i | cj , sj)P (cj | sj). (7)

In our system, the are two possible values for a segment

classification cj ∈ {+1,−1}. These values indicate whether

the segment si corresponds to a person cj = +1 or not

cj = −1. Instantiating the variable cj in (7) we obtain

P (c+
i | sj) = (8)

P (c+
i | c+

j , sj)P (c+
j | sj) + P (c+

i | c−j , sj)P (c−j | sj).

Here c−j is equivalent to cj = −1. Substituting in (5), we get

the final expression for the score of a positive classification

V (c+
i ) as

∑

j( P (c+
i | c+

j , sj)P (c+
j | sj)

+P (c+
i | c−j , sj)P (c−j | sj) ) · P (sj).

(9)

It remains to explain how to calculate each term in (9).

The term P (c+
j | sj) indicates the probability of a positive

classification of segment sj . This value can be obtained

directly from the output of the classifier Clj at the layer lj
where sj was found

P (c+
j | sj) =

{

1 if Clj (sj) = +1
0 otherwise.

(10)

Thus, the probability for a negative classification is obtained

as

P (c−j | sj) = 1 − P (c+
j | sj). (11)

The term P (c+
i | c+

j , sj) indicates the probability of a

positive classification for segment si given there is another

segment sj in the scene which corresponds to a person, i.e.,

cj = +1. This value is obtained using the test function of

the shape model (Section IV-A)

P (c+
i | c+

j , sj) = δ(si, sj). (12)

Finally we need to obtain a value for expression P (c+
i |

c−j , sj), which indicates the probability for a positive clas-

sification of segment si given there is another segment in

the scene which corresponds to other object. We call this

expression the occlusion model, since it indicates the relation

of the people with other objects in the scene. In this work,

we apply the following model

P (c+
i | c−j , sj) =

{

θ if δ(si, sj) = 0
0 otherwise.

(13)

This expression indicates that whenever we find a segment

in the scene corresponding to an object other than a person,

this object can not fulfill the shape model of a person.

C. Person Detection

After accumulating evidences for all segments found in

all layers, we have a distribution of probabilistic votes

among the different hypotheses ci. To detect a person in the

environment, we look for the hypothesis c+
p which maximum

positive score

c+
p = argmax

c
+

i

V (c+
i ). (14)

The segment sp corresponding to c+
p is then selected as the

representative for the person in the scene. To detect several

persons one can look for different local maximum in the

hypotheses space. In our experiments we try to detect one

person only, and for this reason we apply (14) for selecting

the final hypothesis that represents the person.



Fig. 3. The left image shows the 3-layer system used in the experiments.
Each laser is located at a different height to detect a different body part:
head (160cm), upper body (140cm), legs (30cm). The right image depicts
the process for obtaining positive training data. A free space (5m× 1.5m)
is left in front of the lasers. A person walks inside this space and the
corresponding segments are automatically labeled as positive examples. The
segments falling outside the rectangle are automatically labeled as negative
examples

V. EXPERIMENTS

The approach presented above was implemented using a

three layer system as shown in Figure 1. At each layer,

we located a URG-04LX laser range finder with a field of

view of 240 degree. The resolution of the lasers was of 0.36

degree. Each laser is situated at a different height and detects

a different body part. The upper laser is located 160cm above

the floor. This laser is thought to detect heads. The middle

one is located 140cm above the floor. This laser detects upper

bodies. The final one is located 30cm above the floor, and

its task is to detect legs. The complete system is shown in

the left image of Figure 3. The experiments were carried out

in the Laboratory for Intelligent Robots and Vision Systems

at the University of Kyushu in Japan. The sensors were kept

stationary during the experiments.

We first explain how to obtain a training set for the learned

step. We then demonstrate how a multi-layer classifier can be

learned in an indoor environment to detect people. In addition

we show the robustness of this classifier under occlusions

and in very cluttered environments. Finally, we show the

improvements of the detection rates when using our multi-

layer detector in comparison to a single-layer system.

One important parameter of the AdaBoost algorithm is

the number of weak classifiers T used to form each final

strong classifier. We performed several experiments with

different values for T and we found that T = 200 weak

classifiers provide the best trade-off between the error rate

of the classifier and the computational cost of the algorithm.

Another parameter that has to be set for the occlusion model

is θ. In our experiments we found that a value of 0.05 gives

good results under occlusion situations. Finally, we selected

a jump distance of 15cm for segmenting the scans.

A. Training Data

The first step in the experiments was to train the classifiers

for each layer. As explained in Section III, we used the

supervised algorithm AdaBoost to create each classifier. The

input to the algorithm is composed of positive and negative

examples. The set of positive examples contains segments

Fig. 4. First scenario for the experiments. The top pictures were taken from
the position were the sensors were located. The blue rubbish in the right
image (marked with a white circle) are used for the occlusion experiments.
The bottom images show examples of scans taken at the different layers.
The left image corresponds to the lower layer (legs), the middle image to
the middle layer (upper body), and the right image to the top layer (head).
Blue points indicate segments classified as positive (body parts) . Black
points correspond to segments classified as negative (non body parts).

corresponding to the different body parts: legs, upper body,

and head. The set of negative examples is composed of

segments corresponding to other objects in the environment

such as tables, chairs, walls, etc. We used the same training

algorithm for the three layers, with the only difference being

the training data used as input.

To obtain the positive and negative examples we left a free

space of 5m×1.5m in front of the lasers. This space did not

contain furniture or other objects. We then started recording

laser scans while a person was walking randomly inside

the rectangle. The obtained scans were segmented following

the approach in Section III-B. The segments were then

automatically labeled as positive examples of a body part

if they were inside the rectangle, and as negative examples

if they fell outside the rectangle. This process is shown in

the right image in Figure 3. This is a straightforward method

to obtain training data without the need of hand-labeling.

B. Multi-Layer Classification

In the the following experiments we tested our multi-layer

approach in an indoor environment. We first obtained the

training data following the procedure explained above. The

data was obtained in a location of the laboratory shown in

the top images of Figure 4. The training data was composed

of 344 multi-layer observations containing 17286 segments.

Examples of training scans are shown in the bottom images

of Figure 4.

In a first experiment, the same person walked in front of

the lasers following different trajectories from the training

data. In this way we obtained a different test set. We then

applied our multi-layer detector to this test. An example

of observation with its corresponding detection is shown in

Figure 5. The results of the detections are shown in the Test

row of Table I. The detection rate of 92% indicates that we

can use our method to detect people with high accuracy in

indoor environments.

In a second experiment we tested the performance of our

method with partially occluded bodies. In this experiment,



TABLE I

MULTI-LAYER DETECTION RATES

True detection False detection Total observations

Test 92.0% (149) 8.0% (13) 162
Occlusion 85.8% (272) 14.2% (45) 317

Hard 75.2% (161) 24.8 % (53) 214

Fig. 5. The image shows an example of a detection for the experiment
called Test in Table I. Different colors indicate different classifications.
Blue segments are classified as body parts, the red segment is the one
with best evidence of been a person. Black segments are classified as other
objects. The segments corresponding to the person (ground truth) are marked
with a green ellipse. The lasers are located at (0, 0).

a person walked in front of the lasers and, at same point

in time, he took two rubbish bins and put them in front

of the lasers. The bins are shown in the top right image

of Figure 4. Following, the person walked around them,

and finally put the bins back in their initial position. In

this situation several occlusion problems appear. First, while

the person was walking around the bins his legs remained

occluded. Second, while the person was bending down to

take/leave the bins his upper body and his head disappeared.

We applied our detector to this sequence of observations

and obtained the results shown in the Occlusion row in table

Table I. The false positives often occurred when the person

was in contact with the bins, taking them, moving them or

leaving them. In these situations it was difficult to detect

all body parts. However, a detection rate of 85.8% indicates

that we still can use our approach to detect partially occluded

persons. An example observation taken while the person was

behind a bin is shown in Figure 6.

In a third experiment, we tested the performance of our

learned multi-layer detector in a new and very cluttered

environment. Figure 7 shows images of this third scenario.

In this experiment a person walked around and the obtained

observations where classified. Results of the detections are

shown in the Hard row of Table I. The detection rate

decreased to 75.2, however we think this is still a good result

for such an extremely challenging scenario. Figure 8 shows a

snapshot of this experiment. Videos for the three experiments

are available in [1].

Fig. 6. The image shows an example of a detection for the experiment
called Occlusion in Table I. The meaning of the colors are the same as
in Figure 5. The position of the bins are pointed with light grey arrows.
The person is behind one of the bins with his legs occluded. The lasers are
located at (0, 0).

Fig. 7. These images correspond to part of the Laboratory for Intelligent
Robots and Vision Systems which is used for experiments. As we can see
the location is very cluttered. This scenario is called Hard in Table I.

C. Comparison with Single-Layer Detection

In these experiments we analyze the improvement of our

multi-layer system in comparison to a single-layer detector.

To do this, we apply our probabilistic model (Section IV-

B) in the layer corresponding to the legs. We repeat the

detection in the three scenarios from the previous section:

Test, Occlusion, and Hard. Results are shown in Table II.

For the Test experiment the results are quite similar, since

there are no occlusions and the legs are correctly detected.

However, we can see the improvement of our method in the

experiment Occlusion, in which the multi-layer obtains a

detection rate of 85.8% in comparison to 73.2% obtained

with the single-layer. Finally, in the Hard scenario the

single-layer obtained a detection rate of 41.1%, while our

multi-layer approach got a rate of 75.2%. This is a very

important improvement.

D. Individual Classification Rates

In this last experiment we compare the classification rates

for the different layers. In this experiment we used the test

set from the Test experiment, and analyzed the performance

of each layer when classifying segments. Results are sum-

marized in Table III. We can appreciate that the classification

rate for the legs 94.3% is higher than the classification for

the other levels. One reason for this is that the person has two

legs, and thus we obtain double number of positive training

examples. In the upper levels (upper body and head) the



Fig. 8. The image shows an example of a detection for the experiment
called Hard in Table I. The meaning of the colors are the same as in
Figure 5. The lasers are located at (0, 0).

TABLE II

SINGLE-LAYER DETECTION RATES

True detection False detection Total observations

Test 92.6% (150) 7.4% (12) 162
Occlusion 73.2% (232) 26.8% (85) 317

Hard 41.1% (88) 58.9% (126) 214

classifications decrease to 84%-86%. The classification rates

for these body parts are a novelty in this paper.

TABLE III

CONFUSION MATRICES FOR SINGLE LAYERS

Classification
True Label Person Not Person

Legs Person 94.3% 5.7%
No Person 7.8% 92.2%

Upper body Person 84.4% 15.6%
No Person 11.2 % 88.8%

Head Person 86.2% 13.8% (26)
No Person 12.5% 87.5%

VI. CONCLUSION

This paper presented a novel approach for people detection

using multiple layers of 2D range scans. Each laser is

responsible for detecting a different body part of a person

like the legs, the upper body or the head. For each body

part, we learned a classifier using Boosting. The output

of the different classifiers was combined in a probabilistic

framework to obtain a more robust final classifier. In prac-

tical experiments carried out in different environments we

obtained encouraging detection rates even in very cluttered

ones. Finally, the comparison of our multi-layer method with

a single-layer procedure clearly demonstrated the improve-

ment obtained when detecting people using different body

parts simultaneously.
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Abstract—This paper deals with human presence detection by
using a receding horizon estimator based on computer vision
results. The visual position estimation problem is formulated into
a nonlinear constrained optimization problem in the image plane.
A global model combining the behavior of the human motion
and the camera model is used to estimate the evolution of the
visual features on a past finite horizon. The main interest of this
method is the capability to easily take into account constraints.
Experimentations in two different configurations highlight the
efficiency of the proposed approach, especially with an image
occlusion treated as a visual constraint.

Index Terms—Receding Horizon Estimation, Human detection,
Computer Vision

I. INTRODUCTION

The management of energy consumption (electricity,
heating...), the improvement of the autonomy of the elderly
or also the automation of lighting systems are all issues of
our society against the rising of energy prices, the ageing
of population and environmental concerns. Besides, both
industries and individuals wish to better manage their energy
consumption thanks to a maximum control of the house or
building equipments, like lighting or heating. This is why
Domotic science has been developed to offer solutions to
supervise and organize a global system that ensures comfort
and security. Among the applications stem from Domotic,
human presence detection holds an important place.

Several systems, from the state of the art, already offer
solution more or less reliable, depending on their use and the
monitored phenomenon. Passive InfraRed Detector (PIR) or
hyper-frequency sensor can be cited [1][2]. All these systems
are called "presence" detectors but in the majority of cases,
they are simply movement detectors. The goal of CAPTHOM
project is to really detect the presence of a human in an
indoor environment by using a multi-sensors system. The
final objective is to develop an application which will be able
to detect a situation of emergency. The first stage is then to
estimate correctly the position on the ground of the human
target.

Among the different kinds of sensors, vision seems to be
well-adapted to give information about the human presence
in a given environment [3]. As an image is a rich source

of information, an algorithm should be used to extract the
relevant data. In [4], the authors have developed an algorithm
which can detect the presence of a human in a scene and can
give information about its approximate position. The position
estimation of a moving object by using visual information in
real time has been largely investigated in the computer vision
literature [5][6][9]. However, because visual measurements
are usually affected by significant noise and disturbances,
for example due to lens distortion, the estimation of the
position and orientation could be a difficult task. To enhance
the estimation, the extended Kalman Filter (EKF) is usually
chosen because it offers many advantages, e.g., accuracy of
estimation, prediction capability, temporal filtering [7][8].
The limits of EKF are the conditions that have to be satisfied
in order to obtain good results. Adaptative EKF has been
proposed in [10] for visual applications. However, difficulties
like occlusion or obstacle avoidance, which can be considered
as visual constraints, can not be taken into account with EKF
based approaches.

The aim of this article is thus to propose a method
based on Receding Horizon Estimation (RHE) to realize the
estimation of the human target’s position in the image. The
position estimation problem is transformed into a nonlinear
optimization problem. A global model combining the camera
model and the human motion model is used to estimate the
visual features over a past finite horizon. The optimization
algorithm minimizes the error between the features measured
thanks to the computer vision algorithm and the features
estimated by the RHE. The estimation horizon moves one
step forward at each sampling instant and the procedure is
repeated. The main advantage of RHE is the capability to
easily handle constraints contrary to EKF. When an occlusion
appears, the computer vision algorithm gives a false position
of the target. The proposed method can bypass this problem
either by considering the occlusion as a visual constraint or
by considering the largest admissible movement of the human
as a state constraint. The comparison between the position
given by computer vision and the position estimated by the
visual receding horizon estimator is then used to detect an
emergency situation.



The paper is organized as follows. In section 2, the issue
of human presence detection is introduced. Difficulties due to
presence detection or due to the computer vision algorithms
are pointed out. In section 3, the principle of the receding
horizon estimation is briefly recalled. Then, the proposed ap-
proach, called Visual Receding Horizon Estimation (VRHE),
is detailed. Finally, section 4 presents experimental results in
two different configurations: a first one illustrating the method
without constraints and a second one showing the efficiency
of the method in case of occlusion.

II. THE ISSUE OF HUMAN PRESENCE DETECTION

The current devices, for example PIR or ultrasound sensors,
allow to detect the movement of a person in a room but not
really its presence. If the target stops and does not move, it
becomes invisible for the system and the latter answers that
there is nobody in the room. The goal is to always be able
to know if there is someone or not in the given environment.
However, human presence detection sets out some difficulties.

A. Problems due to presence detection

The first problem which can appear is the detection of
non-human targets. The system should be able to differentiate
a detection brought out by the movement of an animal and
the detection due to the presence of a human being. It exists
two ways to solve this differentiation problem. The first
approach is a technological one, simply by making a sensor
positioning that does not detect movement of small entities.
The second one is rather software. It consists of registering
excluded areas of the scene or by defining threshold values.

Another problem of presence detection is the presence of
several persons in the same room. Furthermore, a room can
have more than one exit. So, one has to be able to manage the
possibility that a person can enter in the room by one door
and leave by a different door. Finally, because the presence
of several people can happen, the system must differentiate
two or more human targets and must adapt its behavior.

With computer vision algorithm, we can find solutions to
deal with these problems. In [4], the authors have proposed
a real time human detection based on visual information.
Firstly, in order to reduce the search space of the classifier,
they perform a background substraction to detect change. The
program draws a box including the detected target. Then the
algorithm tries to find if the detected target is a human or
not. The classification between human and non-human being
is done with machine learning tools. Furthermore, each box
has its own identifying number. So we can also bypass the
problem of multi-presence in a same environment and track
each target independently.

In our application, we need to extract the coordinates of
the box in order to estimate the human position in the image.
However, even if the use of vision offers solutions faced with

human presence detection difficulties, it possesses its own
drawbacks.

B. Problems due to the computer vision algorithm

Although visual sensor gives a lot of information, many
difficulties appear during its use. We will not do an exhaustive
list of these difficulties but we will raise the main problems
encountered during the development of our application.

In order to detect a change in images, computer vision
programs store in memory a model which serves as
background. Each image is then compared with the
background model to detect a difference. This background is
regularly updated. However, if a lightning change happens
in the environment, the program will be disrupted by this
sudden noise and it will not return good results.

Limitations concerning the camera placement also exist.
To use a camera, we need to calibrate it in order to obtain
the transformation matrix which allows to calculate the
coordinates in the image reference of a point, knowing
its coordinates in the environment reference. Once the
computation of the matrix is done, the camera does not have
to move because the coefficients of the matrix are linked to
the camera position.

Another problem, that can have an impact on our position
estimation, is the occlusion. If the person walks behind an
obstacle, the person is partially masked and so the computer
vision algorithm could encounter some difficulties to decide
if this target is a human or not. In all environment, there are
several obstacles like table, chair or just a box that can disturb
the visual acquisition. A last problem, concerning the difficulty
of human recognition, could happen if the person falls. The
majority of computer vision algorithms use a database
composed of images with humans standing up. So, if a person
lays down or falls, it will not be recognized as a human being.

Our approach will try to propose a solution, faced with
these problems, by combining a receding horizon estimation
approach with visual information in order to estimate the
position of a human in the image.

III. VISUAL RECEDING HORIZON ESTIMATION

A. Receding Horizon Estimation

The estimation of the position and orientation of a moving
object has been largely investigated in the literature for
the past few years. The estimation of the pose of the
target is often required in position-based visual servoing
approaches. Kalman filtering, especially the Extended Kalman
Filter (EKF), offers a satisfactory rejection of disturbance
or noise and an accurate estimation. In [10], the authors
proposed an adaptative version of EKF for visual applications.
However, the EKF may encounter difficulties for practical
implementations, when state constraints have to be handled
and when the process is highly nonlinear [11]. In order to



overcome these problems, a receding horizon estimation
(RHE) can be used. The strategy of the RHE is to formulate
the constrained state estimation into an online nonlinear
optimization problem. The constraints can easily be added to
the optimization problem [12].

We propose to extend the receding horizon estimation to
visual estimation.

B. Visual Receding Horizon Estimation (VRHE)

The estimation problem of the human position is formulated
into a nonlinear optimization problem in the image plane
over a past receding horizon Ne. The difference between the
measured features in the image plane denoted yimag and the
estimated features denoted ymod defines the cost function J .
The estimated features are obtained by using a global model
combining the human motion model and the camera model.
The cost function is to be minimized with respect to the
human position p = (xh, yh) at time k − Ne. The position
estimation at the current time k is computed thanks to the
human motion model and p

k−Ne
.

At each sampling time, the past finite estimation horizon
moves one step forward and the procedure is then repeated to
ensure the robustness of the approach in regard to disturbances
and model mismatches.

The cost function can be written in discrete-time as:

J(p) =
k∑

j=k−Ne

[yimag(j)− ymod(j)]TQ [yimag(j)− ymod(j)]

(1)
Q is a symmetric definite positive matrix. The mathematical
formulation of the Visual RHE is then given by:

min
p

k−Ne

J(p) (2)

subject to the nonlinear global model describing the dynamics
: {

p(k + 1) = f(p(k),∆u(k))
ymod(k) = h(p(k)) (3)

The Figure 1 shows the scheme of the VRHE.
One of the main advantages of VRHE is the capability to
explicitly take into account constraints, contrary to EKF.
Numerous constrained optimization routines are available in
software libraries. A drawback of the RHE strategy is the
computational time required for the resolution of the nonlinear
constrained optimization problem. However this computational
burden is not a strong limitation for real time application due
to the increase of PC power.

C. Global overview of our method

The receding horizon estimation algorithm represents the
keystone of our approach as we can see in the Figure 2.

The first step consists in positioning and calibrating the
camera so as to compute the model of the camera. Moreover,
the transformation matrix is required for the change from
image to environment reference. In [13], the authors use a

Figure 1. Scheme of the VRHE

Figure 2. Overview of the VRHE

planar homography matrix to compute the position of a flame
front on the ground in the world reference from its position
in the image.

The computer vision algorithm gives the measure of the
coordinates (u and v) of the middle point of the box’s bottom
side. Thanks to the homography matrix, we calculate the
coordinates of feet on the ground (x and y) and also, for each
step, the distance with the previous step (∆x and ∆y). Once
we have enough measures, it means when we have reached
the size of the estimation horizon Ne, we can run the VRHE
procedure.

IV. EXPERIMENTAL RESULTS

The feasibility and the performance of the proposed visual
position estimation algorithm have been experimentally tested
using a single camera.

A. The camera and the computer vision algorithm

The camera has been calibrated by using a least square
method. The resolution of the camera is 640 x 480 pixels but
in the display result of the computer vision algorithm, the
image size is reduced to 320 x 240 pixels. The sample time
used is the minimum time allowed by the camera frame rate,
Te=0.07s. To conclude with camera’s characteristics, it was
placed at a height of 1.98m. The scene viewed by the camera
is illustrated in Figure 3.

To compute the homography matrix, we used a reference,
which can be seen in Figure 3, measuring 0.92 x 0.59 m. This



Figure 3. Camera’s view of the scene and image reference

matrix permits to compute the position on the ground from the
position in the image. We need a third matrix of transformation
because the environment reference used for the homography
and the environment reference used for the calibration is not
the same. We have computed the transition matrix between
these two references. In brief, the three different transition
matrices are :

Mintr =

328.17 0 170.88
0 −327.89 103.51
0 0 1


Mhom =

 0.0065 0.0035 −1.4892
−0.0003 0.0175 −3.7361
0.0003 0.0033 −0.4043



Mtrans =


1 0 0 −1.02
0 0 1 1.98
0 −1 0 5.11
0 0 0 1


where Mintr, Mhom and Mtrans are respectively the intrinsic
parameter matrix, the homography matrix and the transition
matrix between environment reference of homography and
environment reference of calibration. The Figure 4 shows
the two different environment references, one used for the
homography matrix and the other one used for calibration.

Figure 4. Environment references

Due to the knowledge of the three transition matrices, the

(a) (b)

(c) (d)
Figure 5. Representation of the different steps of the computer vision
algorithm

model camera can be written as :

ymod =
(
umod

vmod

)
=

(
αu

Xc

Zc
+ u0

αv
Yc

Zc
+ v0

)
(4)

and


Xc

Yc

Zc

1

 = Mtrans


xh

yh

zh

1

 (5)

We suppose that the person walks on a flat environment
(zh is constant).

The principle of the computer vision algorithm, used in
our application is depicted in the Figure 5. At the beginning,
the program needs to take some pictures of a clear scene in
order to have a fixed background (a). Then, each picture is
compared with the background.

In [4], the authors first detect changes by computing the
Mahalanobis’ distance between pixels of the current image
and the background model(b), composed of the mean of the
three RGB components and of the co-occurrence matrix.
This first step is done in order to reduce the search space
of the classifier. Then, the preceding detected objects are
observed by using a tracking of point of interest(c). The
final step consists in determining the nature of the tracked
object(d). Authors built a cascade of boosted classifiers based
on Haar-like filters and on a boosting method to discriminate
humans and non humans entities. We can then define the
measured features :

yimag =
(
umes

vmes

)
(6)

coordinates of the middle of the box’s bottom side.



Two different cases are considered. The first aims at illus-
trating the feasibility of our method with videos where there
is no occlusion of the human. The second aims at studying
the capability of the proposed method to deal with large path
variations due to occlusion. For each case, several videos have
been tested to vary movements in the observed scene. No
occlusion model is used. The occlusion is treated as a visual
constraint in the estimation procedure.

B. The model of the human movement

Human motion model is necessary to estimate the position
of a human. However, it is difficult to model and describe
precisely the movement of a man. Indeed, one can not predict
where the target will be at the next step because it does not
follow precise rules. The motion of a human can be described
by nonholonomic model [14]. To prove the feasibility of our
method, we have just chosen a simple model of the human
motion. By observing the human displacements on video, we
have observed that the movement can be modeled by a single
integrator.

With a first order discretization, the model of human motion
can be written as :{

xh(k + 1) = xh(k) + ∆x
yh(k + 1) = yh(k) + ∆y (7)

where ∆x = xh(k)− xh(k− 1),∆y = yh(k)− yh(k− 1) are
the displacements respectively in x and y.

The global model is then composed of the camera model
(4), the transition matrix (5) and the human motion model (7).

C. Simulations without any constraints

For all experimentations, the size of the estimation horizon
is fixed to 5 (Ne = 5), the matrix Q is the identity matrix. The
VRHE algorithm has been implemented in Matlab software
and the computer vision algorithm in Visual C++.

In this case study, scenarios have been realized in a room
without any occlusion possibilities. The aim was to verify the
feasibility of our method with a simple case. The human just
goes to the far end of the room, stays in position during a short
time and goes back. The Figures 6 and 7 illustrate respectively
the estimation of the position with VRHE according to u
and v in the image reference. For both figures, the dashed
line represents the estimation, result of VRHE, and the solid
line indicates the measures obtained by the computer vision
algorithm.

The first five points are at zero because the VRHE begins
to run as soon as the program has reached the estimation
horizon Ne and has sufficient information. As we can see,
the estimates are closed to the measures in both directions.

Same results have been obtained with several videos and
proved the feasibility of the proposed approach.

Figure 6. Time history of the measured trajectory and the estimated trajectory
according to u

Figure 7. Time history of the measured trajectory and the estimated trajectory
according to v

D. Simulations with occlusion

If the person walks behind an obstacle, a problem of
occlusion will appear and the size of the box determined by
the computer vision algorithm will suddenly change, leading
to deviant measures. The Figure 8 illustrates the problem of
occlusion and shows how the including box dimension changes
when the target is behind an obstacle. In (a), we can see a
representation of the scene viewed by the camera. Before the
person walks behind the obstacle, the box correctly includes
the person (b). When the person is partially masked by the
obstacle (c), we clearly see that the box is two times smaller
than the previous one. Once the person is no longer hidden
by the obstacle, the box recovers its original size (d). We can
remark that the human reflect on the window has also been
detected by the computer vision algorithm. It is one of the
practical difficulties.

The Figures 9 and 10 represent respectively the position
estimation according to u and v axis. We clearly see, in
the Figure 10, the two moments when the person has been
hidden by the obstacle. During these two events, the position
estimation according to v axis does not follow the measure.
A constraint on the admissible displacement of the human
has been taken into consideration. The displacement computed
from computer vision is aberrant. So, based on the past
movements, a constrained admissible displacement has been



(a) (b)

(c) (d)
Figure 8. Representation of the problem of occlusion

applied to the global model, especially to the human motion
model. Another strategy is to determine, by image processing,
obstacle dimensions and to treat it as a visual constraint in
RHE. However, this last approach needs more computational
time.

Figure 9. Time history of the measured trajectory and the estimated trajectory
according to u

Figure 10. Time history of the measured trajectory and the estimated
trajectory according to v

V. CONCLUSION

In this paper, a method for the visual estimation of the
position of a moving human has been proposed. The approach
is based on the extension of RHE principle to visual estima-
tion. The main advantage is its capability to take into account
constraints. The minimization of the cost function is performed
in the image plane. The visual estimates are obtained by the
knowledge of a global model combining the human motion
model and the camera one. The experimental results confirm
the feasibility and the efficiency of the proposed approach.
A first approach to avoid problem of deviant measures due
to occlusion has been presented. In future works, the residual
generation, error between the measures and the estimates, will
be used to generate an alert signal.
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Multiple People Detection from a Mobile Robot using Double Layered
Laser Range Finders

Alexander Carballo, Akihisa Ohya and Shin’ichi Yuta

Abstract— This work presents our method for people detec-
tion on the surroundings of a mobile robot by using two layers
of multiple LRFs, allowing to simultaneously detect two set
of different features for every person: chest and legs areas. A
person model is created according to the association of these
features and a volume representation allows to estimate the
current person position. We present experimental results of
multiple people detection in an indoor environment. The main
problem of our research the development of a mobile robot
acting as member of a group of people, simple but accurate
people detection and tracking is an important requirement.

I. I NTRODUCTION

Companion robots are becoming more part of daily life
and are designed to directly interact with people. One neces-
sary subsystem for such robots is detection, recognition and
tracking of people as well as obstacles in the environment.

Laser Range Finders (LRF), besides being used for obsta-
cle detection are also an important part of people tracking
systems. The Tour-Guide robots Rhino and Minerva by
Burgardet al[1] and Thrunet al[2] featured LRFs for people
detection and collision avoidance. LRF present important
advantages over other sensing devices like high accuracy,
wide view angles, high scanning rates, etc., and are becoming
more accessible and safer (meaning class 1 lasers) for usage
in human environments.

Most approaches based on LRFs ([3], [4], [5], [6], [7],
[8]) place the sensors in the same height (single row or scan
plane) to detect and track some feature of the human body.
Due to laser safety regulations, applications using non class-
1 lasers are mostly limited to a low position, mostly about
knee height or below. Thus legs are widely used as features
for human detection and tracking.

In Fod et al [3] a row of several LRFs on different
positions in a room were used for tracking moving objects,
future positions are estimated according to a motion model.
Montemerloet al [4] also uses LRF from a mobile robot
for people tracking and simultaneously robot localizationby
using conditional particle filters. Xavieret al [5] focused on
people detection using a fast method for line/arc detection
but from a fixed position. Zhaoet al [6] proposed a walking
model to improve position prediction by including informa-
tion about leg position, velocity and state. The later model
was then used by Leeet al [7] and by Zhaoet al [8] but this
time from a mobile robot.

Intelligent Robot Laboratory, Graduate School of Systems and
Information Engineering, University of Tsukuba, 1-1-1 Tennoudai,
Tsukuba City Ibaraki Pref., 305-8573, Japan, +81-29-853-6168.
{acs,ohya,yuta}@roboken.esys.tsukuba.ac.jp

A common problem is how to correctly identify people
features from laser measurements. Arraset al [9] using range
data and Zivkovicet al [10] using range data and images,
employ a learning method, particularlyAdaBoosting, to
determine which properties and in what amounts to consider
to improve detection. However, detection of multiple people
in cluttered environments is difficult especially considering
occlusion cases of people walking side by side.

Most tracking applications can deal with temporal occlu-
sions due to obstacles, such as the temporal disappearance
of the legs behind a dust bin. Multiple target tracking in
cluttered environments including crossings tracks is partof
most current works [11], [12], [13]. Mucienteset al [11]
extends the problem of single person tracking by considering
clusters of tracks (people) using Multiple Hypothesis Track-
ing (MHT). Arras et al [12] also uses MHT for tracking
without a leg swinging-motion model but introducing an
occlusion state, low level tracks (legs) are associated to
a high level track (people). Kondaxakiset al[13] present
also a multi-target approach using JPDA with a grid map
where occupancy counters of each cell decrease with time
to identify background objects.

One limitation still present in those systems is occlusion of
the tracked body feature for an extended time, for example if
the person stopped behind the dust bin. MHT based systems
will delete of the occluded track if it is missing for more
than some maximum time. The usage of additional features
can overcome this problem, provided that they are separated
over some distance (height) where occlusion stops. Instead
of a single layer system one can consider a multi-layered
arrangement of class-1 LRFs on a mobile platform. Multiple
features have the additional benefit of complementarity for
detection and tracking: a person can be described by the
union of a set of small swinging segments at low height
(legs), a bigger segment at medium height (waist) and a
larger segment at a high position (chest). This idea was
proposed in our previous work [14]. A multi-layered system
to extract multiple features is of course possible as long as
the person height is over some minimum value.

A multi-layered system has also being considered pre-
viously [15], [16]. Gidel et al[15] used a 4-layer laser
sensor for pedestrian detection, scanning planes are not
parallel so that slight tilting of the vehicle do not affect
detection. However, the vertical distance between features
on the target pedestrian depend on the distance from the
sensor. Hashimotoet al[16] use 3 LRFs around a wheelchair
for 360o scanning at 3 different heights, each sensor with its
own processing computer performing detection and tracking.



For every sensor, scan data is mapped into a occupancy grid
map, then target tracking and tracks association is performed.
Tracking in overlapping areas is done by cooperation of
respective computers and covariance intersection.

Our approach is then similar to Hashimoto’s[16]: we have
sensors are arranged in two parallel planes for 360o scanning,
separated at different heights from the ground depending on
the features to detect. However, we perform all computing
in a single computer, sensors in the same layer are fused to
combine their individual readings and then layers are also
fused for people detection.

The rest of the paper is organized as follows. In section
II present an overview of our current system. Section III
presents our approach for fusion of multiple sensor layers,
including feature extraction, people detection and position
estimation. Section IV presents experimental results for the
different fusion steps and for people detection. Finally,
conclusions and future work are left for section V.

II. SYSTEM OVERVIEW

Fig. 1 represents our layered approach, every layer has two
sensors facing opposite directions for 360o scanning (Fig.
1(a)), and two layers are used to extract features from upper
and lower parts of a person’s body (Fig. 1(b)).

(a) (b)

Fig. 1: Scanning from a double layered approach: (a) oppo-
site facing sensors (top view) and (b) two layers of sensors
(lateral view).

The processing pipeline of our system is best understood
referring to Fig. 2. Our people detection approach (before
tracking) involves four steps: fusion of sensors, segmenta-
tion, feature extraction and layer fusion. The outputs for
some of the steps are depicted as inlets in the figure: Fig. 2(a)
is the result of fusion of sensors (the top layer represented
in red and the lower in green), Fig. 2(b) corresponds to
geometrical feature extraction (features of people is shown),
and in Fig. 2(c) the detected people around the robot.

Our method involves two fusion steps: fusion of sensors
in a single layer and then fusion of layers. In the first step,
sensors facing opposite directions in the same layer are fused
to produce a 360o representation of robot’s surroundings.
There is overlapping of scan data from both sensors (darker
areas in Fig. 1(a)) so this fusion step must deal with
data duplication. Then, in the multiple layer fusion step,
raw data from every layer is processed to extract features

Scan dataScan data
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Fig. 2: System overview.

corresponding to people, then a people model is computed
and from it allowing people detection and person position
and direction estimation.

After fusion of sensors in every layer, geometrical features
are extracted: large elliptical shapes corresponding to chest
areas and smaller circular shapes for legs. Fusion of extracted
features allows creating a cylindrical volume and from it the
estimated person position is computed. A simple yet logical
assumption here is that an elliptical shape corresponding to
a chest is always associated to one or two circular shapes
corresponding to legs (if no occlusions due to clutter are
considered), and that the large elliptical shape (chest) is
always overthe set of small circles (legs). Fig. 3 illustrates
this concept, here we present a sequence of continuous scan
images from a person walking (as seen from above), both
upper layer (large arc-like shape, chest) and lower layer
(small arc-like shapes, legs) are visible.

Fig. 3: A sequence of walking steps using actual scan data
using sensors from both upper layer (darker points on large
curve) and lower layer (smaller curves).

Our main research goal aims to develop a companion
robot with the objective to study the relationship of an
autonomous mobile robot and a group of multiple people
in a complex environment like public areas, where the robot
is to move and behave as another member of the group, while



achieving navigation with obstacle avoidance. Some of the
basic functions of such companion robot are depicted in Fig.
4, while the robot acts as another group member it has to
detect, recognize and track the fellow human members (Fig.
4(a)) and also move in the environment like the rest of the
members do (Fig. 4(b)).

(a) (b)

Fig. 4: Companion Robot with a group of people: group
members recognition (a) and obstacle avoidance (b).

The robot used for our research is depicted in Fig. 5. The
robot (Fig. 5(a)) is based onYamabicorobotic platform [17].
Two layers of LRF sensors are used, the lower layer is about
40cm from the ground while the upper layer is about 120cm.
Every layer consists of 2 LRF sensors, one facing forwards
and another facing backwards for a 360o coverage (Fig. 1 and
5). The sensors used in our system are theURG-04LX laser
range scanners (Fig. 5(b), [18] provides a good description
of the sensor’s capabilities).

(a) (b)

Fig. 5: Our robot system for multiple people detection and
tracking (a), fourURG-04LX are used (b).

III. F USION OF DOUBLE LAYEREDLRF SENSORS

Sensors in the same layer are facing opposite directions,
individual scan data are combined into a 360o representation.
The next step is fusion of both sensor layers, here data will
be divided into clusters with a segmentation function and
then clusters will be classified according to their geometrical
properties. Finally only those segments that match people
features will be selected and joined into a 3D model from
where people position is obtained.

A. Segmentation

Data clustering can be considered as the problem of break-
point detection and finding breaking points in scan data can
be considered as the problem of finding a threshold function
T to measure separation of adjacent points. Every pair of
neighboring pointsp j and pk are separated by an angleα
which is proportional to the sensor’s angular resolution (true
for points of two adjacent scan steps) and by a distance
D(p j , pk). Points are circularly ordered according to the
scanning step of the sensor.

A cluster Ci , whereCi = {pi , pi+1, pi+2, · · · , pm}, is de-
fined according to a cluster membership functionM

M (p j , pk) = (θk−θ j) ≤ α ∧D(p j , pk) ≤ T (p j , pk) (1)

such that for every pair〈p j , pk〉 of adjacent points, the
Euclidean distanceD(p j , pk) between them is less than a
given threshold functionT (p j , pk) for p j , pk. A new point
pn is compared to the last known memberpm of a given
clusterCi asM (pm, pn).

Now, the threshold functionT is defined for a pair of
points, as in the work of Dietmayer [19], as:

T (pi , p j) = C0 +C1min(r i , r j) (2)

with C1 =
√

2(1−cos(α). Dietmayer’s work includes the
constantC0 to adjust the function to noise and overlapping.
In our caseC0 is reemplaced by the radiusR of the accuracy
area forpi as base point plus a fixed threshold value (10cm in
our case).R is defined according to theURG-04LX sensor
specifications [18], [20] as:

R(pi) =

{

10 if 20mm≤ r i ≤ 1000mm
0.01× r i otherwise

(3)

The proposed threshold functionT uses this accuracy infor-
mationR when checking for break points, if two neighboring
points have a large range value, it will be most probable that
they form part of the same cluster for their bigger accuracy
areas.

There is also a cluster filtering step that will drop segments
very small to be considered of significance.

B. Feature Extraction

The idea of feature extractionis to match the sensor
readings with one or more geometrical models representing
expected behaviour of the data. For example if a LRF sensor
data scanning a wall, then theexpected behaviourof a wall
scan data isa straight line. Also if the same sensor is
to scana person then the expected behaviour is a set of
points formingan arc. So in order to identify walls a first
requirement is to correctly associate the scan data with some
straight line model, for people the same: associate a set of
scan points to an arc shape (a circle or an ellipse).

Before applying any fitting method, it is important to
have some information about the shape of the cluster that
allows selecting the method. The information about clusters
is extracted as a set of indicators like number of points,
standard deviation, distances from previous and to next
clusters, cluster curvature, etc.



One of the indicators is the cluster’slinearity; our ap-
proach here is to classify the clusters intolong-and-thin
and those rathershort-and-thick. The rationale behind this is
that, straight line segments tend to be long and thin, round
obstacles, irregular objects, etc., do not have this appearance.

Linearity is achieved by computing the covariance matrix
Σ for the clusterCi and then its eigenvaluesλmax and λmin

that define the scale and its eigenvectorsv1 andv2 orientation
(major and minor axes) of the dispersion ofC . The ratio
ℓ = λmax/λmin defines the degree of longness/thinness of the
cluster. We set threshold values for ratioL and forλmax.

The ellipticality factor ε is computed as the standard
deviation σ of the residuals of a ellipse fitting processes
using the Fitzgibbon method [21]. The distance between a
cluster point and an ellipse is computed usingRamanujan’s
approximation.

Only clusters with good ellipticality value are selected and
segments passing the linearity criteria (that is lines) canbe
easily rejected since they do not belong to people.

We assign a weight valuew to every indicatori and
compute an scoring functionS for every segmentj in in
layer Ψ, whereΨ ∈ {top, low}, as:

S
j =

n

∑
i
w

Ψ
i H

Ψ
i (I j

i ) (4)

whereH
Ψ

i : R →{−1,1} is a binary classifier function for
the i-th indicator which compares whether the given indicator
is under some threshold value. Table I presents an example
of indicators and their classifiers, the actual list of indicators
is similar to that presented by Arraset al in [9]. Weight
valueswi and thresholds for every indicatori were defined
after experimental validation.

TABLE I: Example of indicators and their classifiers
Indicator Classifier Meaning

width w w≤WΨ
max a leg or a chest has a width no

bigger than the threshold
linearity ℓ ℓ ≤ ℓΨ

max leg and chest features are not linear
curvaturek̄ k̄≥ k̄Ψ

min leg and chest features are curved
ellipticality ε ε ≤ εΨ

max the fitting error of ellipse for chest
under the threshold

C. People Model and Position Detection

3D projection of two planes of scan data from the layered
sensors can be used to represent the position and direction of
a person. The set of geometrical features extracted from the
former step are mostly ellipses and circles. If they belong
to a person another important criteria should be meet: the
large elliptical segment should come from the upper layer
and the small circles from the lower layer. No large ellipses
are possible for a person in the leg area. The small circles can
not be over the large ellipse (the person height is restricted
according to the height of the upper layer).

To properly establish the previous requirements, it is
necessary to associate segments in the upper layer with those
in the lower layer, this is to find the corresponding legs for
a given chest. Lattet al. [22] present a study about how

human motion, step length, walking speed, etc. are selected
to optimize stability. Their study present data about different
speeds people prefer when walking. If the average values
of step length are used then it is possible to define the
limits of motion of the legs with respect to the projected
chest elliptical area. Figure 6 helps understanding this idea.
The average leg heighth is about 84cm, and the height of
the lower layer of sensorsl is fixed at 40cm. s is the step
length which depends on the speed, for example 73cm for
an average speed of 1.2m/s [22]. d is calculated as:

d = 2(H − l)tan(θ), whereθ = sin−1(
s

2h
). (5)

l

h

H

S

θ
d

Fig. 6: Simple representation of human step to compute the
distanced between leg segments while walking.

According to [22] the step lengths for three different
walking speeds are presented in Table II. In this table we
include the parameterd from Fig. 6 about the distance
between leg segments when walking at the different speeds.

TABLE II: Step length according to speed and distance
between leg segmentsd

Mode Speeda Step Lengthb Distance between
leg segmentsd c

normal 1.2±0.04m/s 73.0±3cm 34.40cm
very slow 0.5±0.05m/s 47.0±3cm 22.29cm
very fast 2.1±0.1m/s 86.0±6cm 39.64cm

a,b Values according to Lattet al. [22].
c estimated from Eq. 5.

With an estimation of the maximum value ford, the
separation of legs at the lower layer height, we can set a

search radius of
d
2
±ξ at the center of the chest elliptical area

projected into the lower layer to search for the corresponding
legs for the chest. We use average walking step length from
Latt et al. [22], at normal walking speed, to compute the
value ford.

IV. EXPERIMENTAL RESULTS

The robot used for our research was presented in Fig.
5, the computer operating the robot is a Intel Pentium
Core Duo based notebook running (Linux kernel 2.6.24) as



operating system and robot control board is powered by a
Hitachi SH-2 processor. The robot system uses4 URG-04LX
range scanners fromHokuyo Automatic Co., Ltd.[20], small
size (50x50x70mm), covers distances up to 5.6m, distance
resolution of 10mmand angular resolution of 0.36o, angular
range of 240o operating at 10Hz. Scan data from each
sensor consists of 682 points circularly ordered according
to scanning step.

Data from each sensor is read every 100ms by a driver
processes and registered in parallel into a shared memory
system (SSM[23]) based on IPC messaging and multiple
ring-buffers with automatic timestamping, one driver process
per sensor. SSM also allows to record raw sensor data into
log files and to play it back with the same rate as the sensor
(10Hz in this case).

Client processes read scan data from the ring-buffers
according to sensor’s pose (those in the top layer and those
on the low layer), pairs of LRF sensors are processed in
the fusion step, sensor layers are further fused and finally
people position is computed. The processing time for the
two layers (4 sensors), from single layer fusion to people
position detection, was below 40ms, fast enough given the
sensor’s scanning speed.

We performed an experiment for people detection and
position estimation from a mobile robot. In the experiment,
5 persons walked around the robot and additional person was
taking the experiment video. Log data from each sensor was
recorded, people position detection tests were performed off-
line by playing back this log data using our SSM system. Fig.
7 corresponds to the group of people surrounding the robot.

Fig. 7: An experiment for multiple people position estimation
using the proposed method.

Fig. 8 shows results of LRF data segmentation and feature
extraction: raw data from each layer (top layer in Fig. 8(a))is
divided into clusters (Fig. 8(b)) and each cluster’s indicators
analyzed to extract those segments with human-like features
and average sizes (Fig. 8(c)).

In this figure, arrows in Fig. 8(a) represent the location of
people in the environment, most of them were successfully
detected in the results of feature extraction (8(c)). However
one of them has a height below the standard so top-level
sensors were actually scanning his neck area, accordingly his
chess ellipse is smaller than the allowed values, thereforewas
rejected. Another interesting case is the segment marked as
“column” in Fig. 8(a), although its curvature and linearity

indicators classify it as person, the boundary length and
segment width were far bigger than the allowed values,
reducing its scoring and marking it for rejection.

column

(a)

(b)

(c)

Fig. 8: Results of LRF data segmentation and feature ex-
traction: raw data ((a)) is segmented ((b)) and then classified
((c)).

Fig. 9 shows the results of an experiment for people
detection and position estimation from a mobile robot. In the
experiment, 5 persons walked around the robot and additional
person was taking the experiment video (Fig. 9(a)). Log data
from each sensor was recorded, people position detection
tests were performed off-line by playing back this log data
using our SSM system.

A 3D tool was created to visualize inspect how the people
detection worked; in Fig. 9(b) chest ellipses and leg circular
ellipses are detected then we place a 3D wooden doll, as
a representation of a person, in the estimated position the
person should have. Results were verified by human operator
comparing the experiment video with results.

The members have varied body sizes, from broad and tall
to thin and short. Some of the members have a height a
little under the average, as result their chest ellipses were not
correctly detected in the people detection step. As presented
in Fig. 9(b), the person to the right of the robot (represented
with blue line segments) is missing although circles from
legs are present.

Additional snapshots of experimental results are presented



(a)

(b)

Fig. 9: Results of the people detection, (a) snapshot (b) 3D
models in estimated positions of people in the experiment.

in Fig. 10, the robot is represented in all cases as blue line
segments. Fig. 10(a) and 10(c) shows raw scan data from
both layers (red for the upper layer and green for the lower
one), and in Fig. 10(b) and 10(d) a 3D representation of
the human detection and position estimation. In the cases
of 3D representation, the raw scan data is plotted together
with wooden dolls enclosed in the estimated people positions
represented with elliptical shapes, a large one for the chest
area and smaller ones for the extracted leg areas.

In Fig. 10(c) there are two rather large arc-like segments
in the raw scan image and two large elliptical shapes in the
3D representation in Fig. 10(d), in both layers. That is the
column inside the indoor environment, as already explained
in Fig. 8(a). The people detection method discards this
elliptical object because its dimensions are larger than the
expected for people, those elliptical objects are represented
with red color in this figure. Also we do not expect large
elliptical objects from the lower layer so discarding this
column as a non human object was simple.

V. CONCLUSIONS ANDFUTURE WORKS

The problem of multiple people position detection by
fusion of multiple LRF sensors arranged in a double layer
structure was presented in this paper. Instead of using
different sensors of complementary capabilities, we used
the same type but at different heights (layers), this gives a
different perspective which also helps solving simple cases
of occlusion where one sensor is occluded and the other is
not.

The addition of an extra layer of LRFs to detect chest
elliptical areas improve the estimation of people positionas
the lower part of body (the legs) move faster and wider than

(a) (b)

(c) (d)

Fig. 10: Experimental results with raw scan data ((a) and
(c)) and the corresponding people detection and position
estimation ((b) and (d)).

the chest area. The combination of both areas creates a 3D
volume which helps locating the position of the person more
closely related to the center of this 3D volume and as a
measure of the possible direction the person is facing. Al-
though research exists in the area of detection and tracking,
the proposed approach is simple and fast enough to be used
for real time detection of people in robot’s surroundings.

As future work, multiple people tracking will be con-
sidered. Also the effectiveness of our method in cluttered
environments will be studied. Future steps of our research
include understanding people group motion and recognition
of group members.
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Abstract - We propose a two-tier data analysis approach for 

estimating distribution of pedestrian locations in an indoor space 
using multiple pedestrian detection and tracking. Multiple 
pedestrian detection uses laser measurement for sensing 
pedestrians in a heavily occluded environment which is usually the 
case with most indoor environments. . We adapt a particle filter 
based multiple pedestrian tracker to address the constraints of a 
limited number of sensors, heavy occlusion and real-time 
execution. Under these conditions any detection and tracking 
technique is likely to encounter a degree of error in cardinality and 
position of pedestrians. A completely new approach is employed 
which measures the error in tracker output due to occlusion and 
uses it to estimate a probability density function which represents 
the probable number of pedestrians located at a particular exhibit 
at a particular time. The end result of the system is a variable 
representing cardinality of pedestrians at a particular exhibit. This 
variable follows a distribution which is approximately normal 
where the variance of the probability distribution function is 
directly proportional to the error encountered by the tracker 
because of occlusion. The accuracy of our detection and tracking 
algorithm was tested both separately and in conjunction with the 
second-tier pedestrian distribution analysis and found marked 
improvement making our average pedestrian counting accuracy to 
at least 90% for all the pedestrian position data that we gathered 
with average pedestrian density at 0.34 pedestrians per sq. meter. 
Since the environment constraints for our system are 
unprecedented, we were unable to compare our result to any 
previous experiments. We recorded the number of people at each 
exhibit manually to establish the ground truth and compare our 
results.

I. INTRODUCTION

Indoor detection and tracking of pedestrians has a wide 
spectrum of applications ranging from architectural design of 
walkways to controlling pedestrian flow at public places like 
theatres, museums, airports, sports arenas, conventions centers
and parks. Our effort in this paper is to devise a system 
capable of tracking and counting pedestrians in real-time using 
minimal resources. The word “minimal” here refers to the 
fewest possible laser measurement sensors with constraints on 
their orientation and placement. In real life applications, (e.g. 
narrow walkways, mounting on vehicles etc) the set of feasible 
locations for deploying sensors can be severely constrained. In 
our experience the requirements for non-intrusiveness of 
sensors i.e. reliable electrical power and maximum sensor 
coverage, limit the number and placement of sensors. Among 

This work was partially supported by.US National Science Foundation under 
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the set of sensors that are available for tracking pedestrians, 
laser-range finders (LADAR) are presently among the most 
reliable and accurate; they reliably provide sub-centimeter 
accuracy at millisecond frequencies in range of environments. 
But even with the high fidelity that laser sensors provide, 
circumstances exist in which laser-based techniques fail to 
produce dependable pedestrian tracking results. While the 
techniques introduced in [1], [3], [4], [5], [6] and [7] are 
among the most successful in terms of tracking accuracy, they 
are significantly limited when dealing with occlusions [2] and 
many have a computational complexity that means they remain 
unsuitable for real-time applications. While our developed 
system is not as accurate as the online-learning tracker 
described in [4], it produces dependable results in heavily 
occluded environments while not compromising its real-time 
applications.

II. EXPERIMENT SETUP

Our test-bed for the detection and tracking algorithm
consists of a tunnel like pathway which has five exhibits along 
its path and two access doorways to an unobserved theatre 
exhibit close to the centre of the pathway as shown in Figure. 
1. Pedestrians can enter and exit the section of museum under 
discussion using any of the two accesses to the pathway. 
Pedestrians can also enter in and out from any of the doorway 
accesses to the unobserved exhibit. This pathway was chosen 
to be our test case as it allows various situations that can
introduce complications in indoor pedestrian detection and 
tracking to be tested. These situations include: (i) Pedestrians 
move in a narrow tunnel like space thus there exists a high 
probability of occlusion due to close proximity of people: (ii) 
The pathway contains sections that can help us observe 
completely distinct behaviour of pedestrians e.g. at the exhibits 
where we expect pedestrians to stop and gather, away from 
exhibits where we expect pedestrians to walk with a relatively 
longer stride and at entrances where pedestrians are usually in 
an exploratory mode and tend to change walking direction 
very quickly: (iii) The two only access doorways to the 
circular theatre are observed by our laser scanners thus we 
were able to keep track of people present within the theatre
without even directly observing them by simple count-keeping 
of people leaving and entering the theatre, (iv) Pedestrians 
visiting the exhibits were both adults and children which 
required us to tune detection to accept a relatively wide range 
of values for stride of a pedestrian, (v) Pedestrian groups, 



which were usually a group of students lead by a teacher were
a frequent occurrence at our test bed.

In order to meet our objective of tracking a fairly large 
number of people utilizing minimum possible resources, we
decided to place two SICK Laser Measurement Sensors (LMS)
200 at a distance of approximately 8 meters from each other to 
cover an area of roughly 70 sq. meters. Ranges of our laser 
sensors overlapped for almost 16 sq. meters of area out of the 
total thus giving us a relatively accurate count in the 
overlapped area. The total area was divided into 5 cells each 
representing an exhibit (as shown with red lines in Figure 1). 
These cells will be later used to gather count of pedestrians 
visiting each exhibit at any given time. The off-the-ground 
height of rotating mirror within laser sensor was set at 29.9cm 
for all observations during the project. This height plays a 
crucial role in detection and association of clusters to the 
pedestrians since lowering the sensor height gives us discrete 
clusters representing feet but at the same time decreases our 
chances of detection of feet since we raise our feet while 
walking. On the other hand increase in height tends to ignore 
discrete clusters from feet of children or people with short 
heights. The effective scanning frequency of laser sensors is
about 39Hz. The foreground points from the laser sensors were 
extracted easily by background learning and subtracting it 
from laser sensor readings.

III. THE SYSTEM

We present a system that is capable of detecting, tracking 
and the giving us the probability of pedestrian count at 
required locations. It comprises of two tiers explained in detail 
below
Tier 1: Detecting and Tracking Pedestrians

As will be shown, this involves a non-trivial adaptation 
and extension of the techniques developed in [1]. We describe 
the three parts below.

A. Clustering: Our algorithm starts by clustering incoming 
points from laser sensors using mean shift clustering 
algorithm. The system needs the size of cluster parameter at 
this point which is equivalent to the average area A of foot-
print of an adult foot i.e. 0.04 sq. meters [10].

B. Temporal Correlation Analysis: After classification of 
points into clusters we iterate through clusters and establish 
which clusters belong to which pedestrian based on the notion 
that each pedestrian can be associated with a maximum of two 
clusters in nth frame which lie closest to the pedestrian in (n-
1)st frame, we call this step as temporal correlation step. We 
divide this step into two phases (i) Phase one starts with 
identification of potential feet of pedestrians by calculating 
closest clusters and separating these as pairs. Only those 
clusters qualify as feet pair which lie within a parameter know 
as inter-feet distance I and have sizes in the vicinity of A sq. 
meters. 
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The remaining unpaired clusters are thought to be clusters 
which are formed due to the fact that we cross our feet while 
walking thus rendering a single cluster in the laser sensor 
readings. The area of such clusters can be at most twice the 
footprint area of an average human foot (ii) Second phase 
consists of determining whether each cluster pair belongs to a 
newly detected pedestrian or it should be considered an update 
for an already tracked pedestrian P on the scene. This is done 
using association distance D that is the maximum distance that 
a pedestrian can travel between readings collected by laser 
sensors. Therefore the value of D is dependent upon the 
maximum walking speed of pedestrians in the arena.
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Introducing above condition limits the distance travelled 
by pedestrians while being occluded and still being effectively 
tracked as a unique pedestrian. 

We observed that the periodic motion of pedestrian feet 
described in [1] remains undetectable most of the time in 
environments cluttered with occlusions. Algorithm in [1] 
defines merge as a stage during walk when clusters of both feet 
of a pedestrian come close together and their clusters merge 
while split is described as a case when the pedestrian continues 
to walk after a merge and clusters of both feet split part. While 
merge and split cases were occasionally encountered during 

Fig.1. Test arena
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our experiment, we found out that detection of pedestrians in 
this manner is both inaccurate and computationally 
burdensome. The reason of inaccuracy lies in following 
notions (a) Most of the time we observe pedestrians walking in 
close proximity to other pedestrians or in the shape of groups, 
this tends to produce merges and splits that involve feet of two 
different pedestrians (b) Due to frequent occlusion (see Figure
2) We are likely to miss splits and merges belonging to a 
pedestrian thus rendering our split/merge detection mechanism 
useless under this situation (c) Pedestrians may not always 
walk, they might just stand for a while. Our solution to these 
problems as evident by (1) and (2) is to ignore the merge and 
split cases completely thus reducing the time complexity of 
temporal correlation step to (n2logn + (nm).log(nm))/3 where n
is the number of clusters and m is the number of pedestrians
on the scene. After this step, detected pedestrians along with 
their associated clusters are provided to the tracker i.e. our 
next step in sequence.

C. Tracking: The tracker is the component of our system that 
is responsible for estimating the parameters of motion and 
location attached with our pedestrian based on given updates 
from temporal correlation step. It uses a particle filter to 
estimate the position p, stride s, direction d and phase ph of a 
pedestrian as already employed in [1]. In brief the tracker 
keeps track of the pedestrians in three sub-steps (i) Update 
Step: Tracker weighs each pedestrian's particles proportional 
to their distance to the points belonging to its associated 
clusters: (ii) Sampling Step: After update step, the tracker 
randomly samples the weighted particles where the likelihood 
of any particle to be chosen is proportional to its weight. Thus 
a certain predefined number of particles M are chosen: (iii) 
Propagation Step: In the last step of tracking the sampled M
particles are propagated through a multidimensional space 
representing the motion of the tracked pedestrian according to 
the walk model described in detail in [1]. This step modifies 
the position, stride, direction and the walking phase of a 
pedestrian and is performed without taking into account 
whether a pedestrian has received updates or not. The 
propagation of pedestrians that do not receive updates helps 
our tracker to track occluded pedestrians up till a certain 
amount of distance D.

During tracking each foreground point belonging to the 
pedestrian is used for calculating its distance with each of M
particles belonging to the same pedestrian in tracker. For a 
maximum density of 1.8 pedestrians per sq. meter under which 
our tracker can perform optimally, it performs on the average 
nearly 504,000 calculations to update, sample and propagate
126 pedestrians through a single iteration. Given such high a 
penalty in terms of execution time, we deemed it extremely 
important for our algorithm to produce results with nearly 
same accuracy using fewer less computational resources in 
order to remain useful in real-time applications. Considering
this requirement, we were able to successfully track 
pedestrians with very little degradation of accuracy by 
skipping unnecessary observations from laser sensors (See 

Table 1). The laser sensors provide our system with 
observations effectively after every 0.025 seconds. We forced
our system to consider observations after every 0.05 seconds 
i.e. in effect dropping every second observation. This reduced 
the output accuracy by a very negligible value but the 
performance gain was more than 2 times. Since our system is 
specifically designed to handle occlusion, skipping an 
observation makes our system behave as if the skipped 
observation is due to an occlusion, thus by increasing the D
parameter in temporal correlation module it compensates for 
most of the loss in accuracy.

The resultant system described up till now is relatively 
robust and accurate means of detecting and tracking 
pedestrians given the fact that we are performing these steps in 
real-time.

Tier 2: Pedestrian Distribution Analysis

Although reliability in the results could have been 
achieved by integrating techniques like online-supervised 
learning [4], Multiple Hypothesis Tracking [3] or Auxiliary 
Particle Filter switching [2] in the first tier, but doing so will 
exclude our tracker completely from the realm of real-time 
systems. Thus, the second tier of our system is designed to 
further enhance the reliability of the pedestrian count output 
for each exhibit while keeping the computational complexity 
growth nearly constant. We term this tier as the pedestrian
distribution analysis tier as it is concerned with keeping track 
of pedestrians crossing in and out of each cell cells within the 
environment. A cell comprises of area in front of an exhibit 
defined using cell boundaries (as marked in Figure 1). By 
maintaining information about the distribution of people over 
cells, although the system cannot answer questions about 
where particular pedestrians are, one may still investigate 
questions about the flow of people and how their (average) 
route selection depends on the (average) presence or absence 
of people.

Fig. 2 An S-T representation of observable feet data

Occlusion caused by 
another pedestrian

Self occlusion 
caused by one foot 
in front of the other 

Laser sensor



Detecting number of people crossing into and out of each 

cell we were able to deduce the number of people t
iN   in each 

cell i at each time-step t. This number contains a certain error 
directly proportional to the percentage of the cell boundary 
hidden from laser sensors due to the pedestrians
standing/walking very close to the laser sensors. In order to 
factor-in the error present in this number, we choose to 
represent the output of the system for each cell as a 
distribution over the number of people. A distribution 

variable t
iX for each cell i at any given time t is a state of our 

belief that represents all past observations including the 
current one. This is achieved via updating the distribution 
variable t

iX for each exhibit at each time-step. Variable t
iX is 

defined as

  )3(),...,1(,, 111 rNrNrNuX t
i

t
i

t
i

t
u

t
i  

Here u is an index that runs through the range of weights 
 which represent our probability density function (pdf). 
Most generally the range adjustment value r is subject to the 
requirement of the analyst which differs with the application of 
our system. (We used the physical capacity of the exhibits to 
place limits on this range of values.) Changing the value of r 
increases or decreases the domain of our distribution function.

1t
iN is a number that has the maximum weight 1t

u
associated to it in the distribution 1t

iX from previous time-

step. Following steps update the variable t
iX at each time-step 

via a Gaussian update t
iU whose variance is determined by the 

percentage of cell boundary occluded at any given moment.
The update step is given below.

Here if 1t
iU has high variance relative to t

iU then 1t is 

small thus it has little impact on value of 1t
iX . This ensures 

that updates which have more chance of error are factored-in 

less into our current belief 1t
iX . 

2
t is the adjusted-variance 

in update distribution t
iU and is determined using this intuitive 

criteria :

Here 2
tg is the Gaussian variance of update t

iU . The criteria

described in (5), sets the variance to be directly proportional to 

the ratio of length of occluded boundary of cell t
io (calculated 

at every time-step) to the total visible length il of the cell 

boundary.

Pedestrian Distribution analysis tier thus represents 
snapshots of pdfs for each cell at each time-step which gives us 
a measured idea about the confidence that we can place on the 
pedestrian count in each cell (see Figure 3).

IV.  DISCUSSION

Tracking pedestrians at exits and entrances proved to be 
one of the trickiest parts during the system design. We know 
that the tracker output grows accurate with increase in the time 
for which a target is observed since tracker gets more chances 
to update and propagate its particles so that these can match 
target dynamics. Thus the places the tracker tends to be most 
inaccurate are the entrances to the observed area where the 
observed time for entering targets is limited. In order to 
estimate by what margin our tracker fails to track entering 
pedestrians, we performed an experiment by first measuring 
the number of pedestrians crossing east to west across a line 
dividing the observed area into two halves. We did this 
because our tracker is relatively accurate about pedestrians in 
the middle of observed area since the tracker had enough time 
to track these pedestrians. Then we considered the same line as 
an entrance and ran the tracker for the second time on the same 

Fig.3. Pedestrian Distribution Analysis tier Output
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set of observations for people entering in east to west direction 
considering updates only from one half of the observed area 
and ignoring the rest. The difference between the numbers of 
people crossing east to west in both cases provided us with the 
bias the tracker had in tracking pedestrians near the entrances.
We used this bias ib in following manner to adjust the number 

of people in cells that are situated at the entrances:

i
t
i

t
i bNN 

Using updated cardinality as an input to the second tier of 
our system proved to be beneficial in terms of accuracy but we 
restrained to declare it a formal part of our system since it 
would make tedious experimentation to learn bias, a 
prerequisite for deploying our system thus limiting its 
applications.

V.  RESULTS

We tested our system in terms of accuracy and 
computational efficiency. In data collection phase we manually 
recorded the pedestrian crossings over certain episodes of time 
observed via laser data stream for each of the cells. These 
time-stamped recordings were accurate up to 1 second 
resolution and served as our ground truth. For accuracy 
measurement we computed following two errors. (i) 
( t

i
t
i truthgroundN _ ) for exhibits i=1 to 7 (Figure 4a shows 

a single episode depicting the error for each of the cells). Here 
error is calculated using pre tier-2 measurement i.e. t

iN from 

tier-1. Here the cumulative average counting error for all our 
observations for all the exhibits totalled to be 13.8%. (ii) 

( t
i

t
i truthground _ ) for exhibits i=1 to 7 where t

i is the 

value with highest probability in the pdf representing 
t
iX (Figure 4b shows the same episode as shown in fig. 4a 

depicting the error for each of the cells). This error is 
computed using output from tier-2 of our system. The average 
counting error for all our observations for all the exhibits in 
this case stood at 9.83% which shows marked improvement as 
a result of applying tier-2.

By applying our tier approach to laser data collected by 
recording over 50 hours of museum visitors, we are able to 
plot locations of high-traffic. This is shown in Figure 5 using a 
colour coded scheme in which red highlights reflect the 
positions that people spend most of their time in. In a sense, 
this represents the time-averaged distribution from tier-2.

VI.  CONCLUSION

Techniques described in [1], [3], [4] and [6] stress the
tracking accuracy. Our effort is focused on retrieving 
analysable results using fast tracking techniques in order to get 
reliable pedestrian count in heavily occluded environments. 
Our pedestrian detection and tracking algorithm is extremely 
computationally intensive as is the case with all other multiple 
target tracking algorithms [7] and this happens in our case due 
to computations like inter-cluster, cluster to pedestrian 
distance calculation and propagation of a high number of 
particles in particle filter at each time-step. During our 
experiment phase we were able to produce sufficiently 
accurate results in a more reliable format for scientific analysis 
of pedestrian distribution in indoor environments.
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(a) Error before Tier-2 application (b) Error after Tier-2 application
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Fig. 4 System counting error comparison



TABLE I
COMPUTATIONAL EFFICIENCY FOR VARYING PEDESTRIAN 

DENSITY (System: Ubuntu 8.04, kernel 2.6.24-18, Intel Pentium Mobile 
1700 MHz Processor)

Frame 
skip rate

Average 
execution 
time for 1 

sec of 
frames

Peak density 
encountered
(people per 

sq. m)

Average 
density 

(people per 
sq. m)

Average 
counting error % 
(error/truth*100)

Every 2 
out of 3

0.58 sec 0.33 0.10 11.8

Every 2 
out of 3

0.8 sec 1.94 0.35 11.9

Every 2 
out of 3

0.92 sec 0.72 0.54 13.6

Every 
other

0.71 sec 0.33 0.10 9.7

Every 
other

0.94 sec 1.94 0.35 9.4

Every 
other

1.07 sec 0.72 0.54 10.2

None 
skipped

1.94 sec 0.33 0.10 8.5

None 
skipped

2.6 sec 1.94 0.35 8.4

None 
skipped

3.12 sec 0.72 0.54 9.3
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Abstract— Image fusion is fundamental to several 

modern day image processing applications.  It is often a 

vital preprocessing procedure to many computer vision 

and image processing tasks which are dependent on the 

acquisition of imaging data via sensors, such as infrared 

and visible.  One such task is that of human detection.  In 

this paper, we present improvements to our shape and 

heat flow-based technique of detection and classification 

of humans in unrestricted poses with the addition of 

image fusion.  We focus on both rural and urban 

environments and demonstrate the effectiveness of using 

image fusion as a preprocessing procedure for improved 

human detection and classification.  Extensive 

simulations using MWIR images were conducted and 

promising results are obtained.  Receiver Operating 

Characteristic (ROC) analysis also showed excellent 

performance of the SVM-based human classification. 

I. INTRODUCTION 

Infrared (IR) sensors have been applied to human 

detection applications such as vehicle safety, night vision, 

and military applications.  They directly detect targets with 

warm temperatures in an image, providing a potentially 

simpler and quicker solution to human detection, especially 

during nighttime.  However, IR sensors are much more 

expensive compared to optical cameras with comparable 

resolutions, making it less affordable for many applications.  

IR-based human detection has been investigated by a 

number of groups.  Most existing research on IR-based 

human detection is focused on pedestrian detection in an 

urban environment on the street or on campus to provide 

assistance to the drivers or for surveillance purposes, 

especially during the evening [1]-[8].  Compared to non-

urban environments where terrain, mountain, and/or forest 

scenes are the main background, urban scenes usually have 

artificial objects in their background such as buildings and 

streetlights whose temperatures are generally elevated 

during the evening. Vehicles also generate heat that can 
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show up as hotspots in IR images.  These background noises 

can make IR-based human detection more complicated.  On 

the other hand, however, pedestrians on the street are 

generally in simple walking or standing upright poses which 

are easier to model than other complicated poses such as 

stretching (e.g., running and bending) or hiding, which can 

often occur in a non-urban environment such as in the 

battlefield.  Human detection is obviously a more 

challenging situation and new methods have to be 

introduced, especially in dealing with the unrestricted human 

poses.  Since little research has been done for human 

detection in such a non-urban environment, we have 

analyzed many existing algorithms designed for pedestrian 

detection in urban environment, and experimentally 

evaluated them against non-urban IR images [9].  It is shown 

that, as expected, these existing algorithms performed 

especially poorly on humans in stretching or hiding poses 

because they rely heavily on features of standing or walking 

human shapes and appearances.  As a result, humans with 

stretching poses or partial occlusions (such as behind the 

trees) in the IR images are mostly missed. 

In this paper, we investigate the application of Image 

Fusion for the purpose of improving our human detection 

algorithm previously presented [10].  Image fusion has been 

investigated by many research groups and a number of 

algorithms have been developed [11] - [14].  The purpose of 

Image fusion is to integrate images of the same target or 

scene from multiple sensors to produce a composite image 

or images that will inherit most salient features from the 

individual images.  The fused image usually has more 

information about the target or scene than any of the 

individual images used in the fusion process.  The images 

used for fusion here are MWIR and visible.  This new 

method of combining image fusion to the human detection 

algorithm represents a natural yet powerful extension from 

existing pedestrian detection methods. 

In section II, we briefly review the heat flow and shaped-

based human detection algorithm.  The application and 

background on Image Fusion is described in section III.  

Section IV presents experimental results and simulations, 

and section V discusses conclusions, respectively.  
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II. REVIEW OF IR BASED HUMAN 

DETECTION/CLASSIFICATION ALGORITHM 

A. IR Spectrum for Human Detect 

Based  on  the  distribution  of  infrared  radiation  

spectrum, an  IR  sensor  can be  classified  as one of  the  

following  four categories according to its wavelength [12]:  

 

 Short Wave IR (SWIR): 0.7 - 3 μm  

 Mid Wave IR (MWIR): > 3 - 6 μm  

 Long Wave IR (LWIR): > 6 - 15 μm  

 Far IR (FIR): > 15 - 1000 μm   

 

IR energy is emitted by all materials and objects above 

0°K as thermal radiations. The upper limit of FIR occurs in a 

region  where  it  is  difficult  to  envision  the  output  from  

a source  as  heat  (peak  radiation  occurs  at  3°K).  At 

normal temperature, human body radiates most strongly in 

the IR range at about 10 μm, which apparently corresponds 

to the wavelength range of LWIR. As a result, LWIR, 

MWIR and some FIR sensors are usually used for human 

detection in most applications. 

B. Shape-based Feature Selection 

The process of human candidate selection consists mainly 

of three steps:  first preprocessing  such  as  histogram 

equalization  and  segmentation by  thresholding  the  image  

to obtain  the  hotspots,  then  morphological  operations  to 

suppress background noises,  and  finally  selection of 

human candidates using metrics such as aspect ratio 

constraint, local histogram  filtering,  and/or  morphological  

human  model matching.  

Thresholding  is  a  technique  often  used  to  separate 

foreground  targets  from  background  environment  based  

on their differences  in  image intensity.  In a simple 

thresholding process,  a  single  intensity  threshold  is  used  

to  generate  a binary  image  from  the  original  image.  For 

example, the intensity threshold can be determined using the 

following equation [2]. 

 

 
 

where  and  satisfy  and represent weights 

assigned to the mean intensity  and the maximum 

intensity  of the  original  image.  The best threshold 

setting will depend on the camera settings and the ambient 

conditions, e.g. temperature distribution of background 

objects; hence it will have to be tuned to the conditions.  

Determination  of  appropriate  values  for the  weights,  

however,  is  not  a  trivial  task.  It  is  usually dependent  on  

the  specific  setting  of  the  IR  camera  such  as brightness  

and/or  contrast.  By extensively testing our IR images  using  

different  weights,  it  is  shown  that  weights   and  

 perform  the  best,  as  shown  in  Figure  1, where 

456 MWIR images with forest background were used to  

plot  the  relationship  between  rate  of  correct  human 

selection  vs.  average  number  of  non-humans  selected  

per image  with  different  weight  values  and  in  different  

aspect ratio ranges. 

 

 
 

Figure 1:  Threshold vs. Aspect Ratio Optimization 

 

To  remove  isolated  noises  in  the  thresholded  binary 

images, morphological  operations  of  combined  erosion  

and dilation  are  effectively  used.  Further, it is shown that 

local histogram of the selected human candidates can be 

used as a powerful filter for the elimination of false human 

candidates such as tree branches or electric poles [1]. This is 

primarily based on the fact that the intensity values of a 

human body in an IR image are far less uniform compared to 

those cylinder shaped objects.  For  example,  the  middle  

portion  of  the histogram of a bounding-box for a hotspot 

resulting from an electric pole is often either empty (i.e., 

concentration on both dark  (background)  and  bright  (pole)  

pixels with  little  gray pixels  between  them),  or  narrowly  

concentrated  (i.e.,  with little or no dark or bright pixels) 

when  the pole  fills up  the whole  bounding-box.  An  

example  of  a  „spread-out‟  local histogram  of  a  human  

candidate  is  shown  in  Figure  2(g).  Figure 2 shows an 

example of the process of human candidate selection.   

 

  
   (a) Original Image   (b) Thresholding/Morphological Operation 

 

  
     (c) Grouping of Hotspots           (d) Bounding Boxes of Hotspots 



 

 

 

  
(e) Applying Aspect Ratio (f) Bounding Box for Human Candidate 

 
(g) Local Histogram of the Human Candidate 

Figure 2:  Example of Human Candidate Selection Process 

 

Overall,  with  shape-based  features  we  have  achieved  a 

maximum  correct  human  candidate  selection  rate  of  

96% with a false alarm rate (or false positive rate) of around 

20% in our initial experiments using  the 456 MWIR  images 

with forest background [9]. 

 

C. Heat Flow-based Feature Selection 

Heat  flow  is  a  similar  concept  as  optical  flow  in 

motion analysis  using  optical  images [15].  Optical  flow  

estimates motion information at pixel  at time  and 

 between two  consecutive  frames  of  a  video  

camera  by  assuming  a near-constant  pixel  intensity  value  

, which results in the following partial differential equation:  

 

 
 

where  represents the motion of the pixel  or its 

optical flow vector.  

In IR images, pixel values represent heat levels emitted by 

the  corresponding  physical  points  in  the  scene  being 

monitored by an  IR sensor, as compared  to optical  levels  

in the optical images reflected by the similar points. As a 

result, pixel  motion  in  an  IR  image  represents  flow  of  

the  heat caused by motion of  a warm  target  such  as  a 

human  in  the scene. We can thus use heat flow to detect 

relative motion of a human in an IR image.   

In our method, heat flow is primarily used to locate those 

hotspots or bounding boxes, for reexamination, that failed to 

qualify the shape-based feature criteria described above. 

Those  bounding  boxes  represent  hotspots  that  were  first 

picked up by the thresholding process, but were 

subsequently screened  out and discarded  primarily  because  

their  shape features  did  not  fall  in  the  range  of  a  

standing or walking human in the IR image. They were 

mostly treated as hotspots or noises of the background.  If  

relative  motion  can  be detected  from  those bounding 

boxes, however,  it  is strongly implicated  that  the  targets  

can  be  human  candidates  in stretching poses or with 

partial occlusions. As a  result,  they will  be  „rescued‟  from  

the  „trashcan‟  and  reexamined  for potential human 

candidates.   

Relative  motion  of  a  human  candidate  can  be  

detected when  the  magnitudes  of  heat  flow  vectors  of  a  

group  of pixels  inside  a  hotspot  are  larger  than  a  

threshold  value determined  in  a  similar  way  as  that  used  

in  shape-based feature  selection  above.  Figure  3  shows  a  

number  of examples  of  selection  of  human  candidates,  

in both MWIR and  LWIR  images,  in  stretching  poses  or  

with  partial occlusions using the proposed combined shape 

and heat flow method.   

 

  

  
 

Figure 3: Example of Initial Human Candidate Selection 

 

Preliminary  experiments  were  performed  comparing 

performance  of  initial  human  candidate  selection  using 

shape-based  features  vs.  using combined shape  and  heat 

flow-based  features.  A total of 198 LWIR images with 

mountain background were used. The shape-based algorithm 

achieved  a maximum  sensitivity  of  64%,  but  the  

combined shape and heat flow algorithm achieved a 

significantly higher maximum  sensitivity  of  over  90%  

while  keeping  the  false alarm  rate  at  the  similar  level.   

 

D. Classification 

Human candidates selected above are fed to a classifier 

for final classification into either a human or a non-human 

class.  We have implemented the SVM classification method 

[16]-[18] on our IR images, and used small templates (18x45 

in size) of both gray level IR images and their edge maps as 

training and testing samples. A number of such training 

samples are shown in Figure 4. 

 

 



 

 

 

     

     
 

Figure 4: SVM Training Samples 

 

III. IMAGE FUSION APPLICATION 

Multi-resolution image fusion schemes were developed to 

overcome the limitations of the previously introduced pixel 

averaging methods.  The goal of these methods is to extract 

the salient features of each source image, e.g. edges, texture, 

etc., at various levels of decomposition from coarse to fine, 

and then aggregate them to create a fused image.  The 

pyramid based schemes first put these concepts into practice.  

These methods generally produce sharp, high-contrast 

images that are clearly more appealing and have more 

information content that the simpler weighted pixel 

averaging techniques. 

First investigated in the early 1980‟s, the concept of the 

image pyramid was used as a fast method of representing the 

multi-resolution information contained within an image in a 

manner that reflects the multiple scales of processing in the 

human visual system [19].  The image pyramid is basically a 

data structure made of a series of low-pass or band-pass 

copies of the image, each depicting pattern information of a 

different scale. 

The most common example is the image pyramid, whose 

construction begins by convolving a source image  with a 

Gaussian kernel .  The filtered image is then sub-sampled 

by selecting only every other row and column to generate a 

new image  with half the width and height of the original 

image .  This combination of sub-sampling and 

convolution is known as a  operation and defined 

by: 

 

 
 

where the Gaussian kernel  is usually small, i.e. 

, for rapid execution.  This process is then 

repeated with  to develop , and so on, until a pyramid 

of images  are produced.  High spatial 

frequencies are lost when stepping from one level of the 

pyramid to the next due to the reduction in the resolution and 

sampling density.  This is interpreted as a loss of salient 

image detail. 

To compare the various image contents now available at 

each level of the Gaussian pyramid, the  operator is 

used.  Basically, this consists of duplicating each row and 

column in the image  and convolving the result with the 

Gaussian kernel  to generate the new image  of the same 

dimensions as .  The   operator can be expressed 

by the following: 

 

 

(4) 

 

A new image is then created from the difference between 

reduced image  and expanded image : 

 

        (5) 

 

which captures the high frequency spatial details of the kth 

level of the Gaussian pyramid.  Thus, new pyramids of 

varying resolutions are determined from the different 

Gaussian pyramids, i.e. , which represent 

salient information in the original image.  This structure is 

known as the Laplacian Pyramid due to the Laplacian 

operator that is utilized and was first used for image 

compression applications [20], [21] and then as an image 

fusion scheme [22]. 

 

A. Fusion using Laplacian Pyramid 

The Laplacian pyramid fusion method consists of an 

iterative process of calculating Gaussian and Laplacian 

pyramids of each source image, fusing the Laplacian images 

at each pyramid level by selecting the pixel with larger 

absolute values, combining the fused Laplacian pyramid 

with the combined pyramid expanded from the lower level, 

and expanding the combined pyramids to the upper level. 

 

IV. EXPERIMENTS AND SIMULATIONS 

We employed a Laplacian Pyramid fusion scheme to 

generate a series of fused images to be utilized as input to 

the Detection and Classification scheme.  Figure 5 depicts a 

representative test image where the green bounding boxes 

indicate a correct detection and red bounding boxes indicate 

a correct rejection, respectively.  Initial training and testing  

experiments  were  performed with  sample  fused images 

(bounding  boxes) of  selected human  candidates  (426  for  

training  –  253  humans  and  173 non-humans,  and  1146  

for  testing  –  654  humans  and  492 non-humans) using the 

SVM classifier. All sample images (bounding boxes) were 

scaled to the same template size of 18x45 before being fed to 

the classifier.   

The Receiver Operating Characteristic (ROC) curves for 

an SVM classifier with a quadratic kernel function were 

generated and are shown in Figure 6, which demonstrated 

significant improvement over the non-fusion based human 

detection scheme. 



 

 

 

 

 

 
Figure 5:  Sample Test Image fused via Laplacian Pyramid 

(Green, correct detection; Red, correct rejection) 
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Figure 6:  ROC Performance Comparison 

 

 

V. CONCLUSION 

We have developed an improvement to our original   

method of human detection using IR images.  This method 

incorporated image fusion as a preprocessing task to the 

combined shape and heat flow-based detection scheme. 

Preliminary experiments using a  large number of IR  images 

have shown  that  this  new  method  has  achieved  

significant performance  improvement  over  the  original 

algorithm.  The  ROC  curves  also  confirmed  the excellent  

performance  of  the  SVM-based  human  candidate 

classification. 
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Real-Time Object Tracking and Classification Using a Static Camera

Swantje Johnsen and Ashley Tews

Abstract— Understanding objects in video data is of partic-
ular interest due to its enhanced automation in public security
surveillance as well as in traffic control and pedestrian flow
analysis. Here, a system is presented which is able to detect
and classify people and vehicles outdoors in different weather
conditions using a static camera. The system is capable of
correctly tracking multiple objects despite occlusions and object
interactions. Results are presented on real world sequences and
by online application of the algorithm.

I. INTRODUCTION

It is important for vehicle operators around worksites to
be aware of their surroundings in terms of infrastructure,
people and vehicles. When an operator observes an object
moving in a way that will impact on their operations,
they take the necessary steps to avoid undesired interaction.
Their response depends on recognising the type of object
and its track. This skill is also important for autonomous
vehicles. An autonomous vehicle needs to be able to react
in a predictable and rational manner, similar to or better
than a human operator. Onboard sensors are the primary
means of obtaining environment information but suffer from
occlusions. However, offboard sensors such as webcams
commonly deployed around worksites can be used for this
purpose. We present our system for offboard dynamic object
tracking and classification using a static webcam mounted
outside a building that monitors a typical open work area.
As the preliminary step towards integrating the extracted
information to improve an autonomous vehicle’s situational
awareness, information about the objects such as location,
trajectory and type is determined using a tracking and
classification system. The system consists of several existing
subsystems with improvements in the detection and classifi-
cation phases. The system is capable of working in different
weather conditions and can distinguish between people and
vehicles by identifying recurrent motion, typically caused
by arm or leg motion in the tracked objects. Tests were
conducted with different types and numbers of vehicles,
people, trajectories and occlusions with promising results.

II. RELATED WORK

The common architecture of classification systems consists
of the following three main steps: motion segmentation,
object tracking and object classification [1] [2]. The steps
are described as follows.
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In the motion segmentation step, the pixels of each moving
object are detected. Generally, the motion segmentation con-
sists of background subtraction and foreground pixel segmen-
tation. Stauffer and Grimson [3] use the mixture of Gaussians
to perform background subtraction and apply a two-pass
grouping algorithm to segment foreground pixels. Simple and
common techniques are based on frame differencing [4] or
using a median filter [5]. In this work a technique based on
the Approximated Median Filter [6] was used. Better results
were obtained by introducing a step factor in the filter.

Following background subtraction, the mobile objects are
tracked. Tracking of objects is the most important but error
prone component. Problems arise when objects of interest
touch, occlude and interact with each other, and when objects
enter and leave the image. Israd and Blake [7] introduced a
method termed CONDENSATION to track objects. Chen
et al. [8] construct an invariant bipartite graph to model
the dynamics of the tracking process. Stauffer and Grimson
[3] use a linearly predictive multiple hypotheses tracking
algorithm. Yanget al. [4] use a correspondence matrix and
a merging and splitting algorithm to relate the measured
foreground regions to the tracked objects. Many algorithms
have been proposed in the literature, but the problem of
multiple interacting objects tracking in complex scene is still
far from being completely solved. Model based algorithms
[9] are computationally more expensive, because the number
of parameters to estimate the model is usually large. They
are also sensitive to background clutter. Overall, many of
those algorithms can only deal with partial object occlusions
for a short duration and fail to deal with complete object
occlusions.

In the classification step, the object type is determined.
Classification of 3-dimensional moving objects from 2-
dimensional images for known object classes is a highly
complex task. Toth and Aach [10] use a feed-forward neu-
ral network to distinguish between human, vehicles, and
background clutters. Rivlinet al. [11] use a Support Vector
Machine to distinguish between a vehicle, a human and
an animal. Zhanget al. [2] distinguish between cars, vans,
trucks, persons, bikes and people groups. They introduced the
error correction output code as a classifier. These techniques
need to be trained via test sequences of the objects. Javed
and Shah [1] produced an algorithm that does not need to
be trained.

III. SYSTEM OVERVIEW

A system that observes an outdoor environment by a single
static camera is developed and tested. The goal is to track
objects like walking people or moving vehicles in view of



the camera and to determine their type and position. In
Figure 1 the flow diagram of the system is shown. The
motion segmentation step detects the moving objects using
the current image in the image stream. This output (the
moving objects) is required by the object tracking algorithm
that provides the motion history of each object.

A particular characteristic of the tracking algorithm is its
ability to track objects with complete occlusion for a long
duration without knowledge about their shape or motion. The
output of the tracking algorithm is used by the classification
system. Our classification algorithm is a modified version of
the system presented in Javed and Shah [1]. The algorithm
uses on the motion history of each object and by determining
the type of motion. Motion type is determined by any re-
peated, recurrent motion of the object’s shape. This property
is used to classify between people and vehicles.

The motion segmentation, tracking and classification steps
are dependent on each other. Thus, the classification system
would deliver inappropriate results, if one of the previous
steps does not achieve good performance.

Classified Objects

Classification System

Motion Segmentation Object TrackingImage Stream Object Classification

Fig. 1. Flow diagram of common classification systems.

The tests and experiments in this paper were conducted
with a Canon VB-C50ir PTZ webcam. The maximal trans-
mission rate of the camera is 25f psand it captures 768×576
resolution color images. Our system is developed in the c++
programming language on a 3.2 GHz Pentium D using the
Open Source Computer Vision library (OpenCV).

IV. MOTION SEGMENTATION

An important condition in an object tracking algorithm as
well as in an object classification algorithm is that the motion
pixels of the moving objects in the images are segmented as
accurately as possible. The common approach for motion
segmentation consists of two steps: background subtraction
and segmentation of foreground pixels.

A. Techniques of Background Subtraction

Background subtraction [12] identifies moving objects by
selecting the parts of the image which differ significantly
from a background model. Most of the background sub-
traction algorithms follow a simple flow diagram shown in
Figure 2. Background modeling is a statistical description
of the current background scene. Foreground pixel detection
identifies the pixels in the current image that differ signif-
icantly from the background model and outputs them as a
binary candidate foreground mask.

The Approximated Median Filter was chosen to perform
background modeling. For our implementation, better results
were obtained by scaling the increment and decrement by a
step factor if the absolute difference between the current pixel
and the median-modeled background pixel is bigger than a
threshold.

Background
Modeling

Foreground Pixel
Detection

Image Stream

Background Subtraction

Segmentation of
Foreground Pixels

Fig. 2. Flow diagram of a general background subtraction algorithm.

Foreground pixels are detected by calculating the Eu-
clidean norm at timet:

‖I t(x,y)−Bt(x,y)‖ > Te (1)

where I t is the pixel intensity value,Bt is the background
intensity value at timet and Te is the foreground threshold
or by checking

|I j,t −B j,t | > Ta (2)

for j = 1, ...,c whereTa is the foreground threshold,

I t =
[

I1,t . . . Ic,t
]T

, Bt =
[

B1,t . . . Bc,t
]T

(3)

and c is the number of image channels. The foreground
thresholdsTe and Ta are determined experimentally. The
foreground pixels were detected by determining the threshold
Ta.

B. Segmentation of Foreground Pixels

In the next step, foreground pixels are segmented into
regions. Using the two-pass connected component labeling
method [3], a bounded box is applied to the connected
regions. After this step, only grouped regions with bordered
rectangles are considered. Any remaining noise is removed
in the second noise reduction step using a size filter [13].
Finally, blobs are merged if they intersect or if the distances
between them are below a threshold depending on the object
distance to the camera.

V. MULTIPLE OBJECT TRACKING WITH
OCCLUSION HANDLING

The goal of tracking is to establish correspondences be-
tween objects across frames. Robust classification of moving
objects is difficult if tracking is inaccurate. The flow diagram
of the implemented object tracking algorithm is shown in
Figure 3.

Object
Classification

Position
Prediction

Segmentation
Motion

Object Model
Extraction

Merging and
Splitting Tracked Objects

Object Tracking

A Priori
Assignment

Fig. 3. Flow diagram of the multiple object tracking algorithm.



A. Object Model Extraction

A region-based model of the objects is extracted in this
step. For every measured object, the normalized RGB color
histogram is determined to uniquely identify an object.
The histogram of an object was calculated by counting the
number of pixels of the mask image within the rectangle that
borders the object.

B. Position Prediction

In this step, the position of each tracked object on the
plane is predicted by a Kalman filter. By using a homography
the position measurement of each object is obtained. It is
assumed that the objects are orthogonal to the plane and the
lower points of the objects are touching the plane. Thus,
the midpoint of the lower rectangle edge is chosen as the
position and is projected onto the plane by the homography.

For the Kalman filter, a constant speed model is used.
Thus, it is assumed that the accelerations of all objects
are approximately zero except for noise to allow for non-
constant object velocities. Each tracked object is modeled
by one Kalman filter. The positions are also superimposed
with noise since initially, the object velocities can not be
estimated correctly due to absence of experience.

C. A Priori Assignment

In this step, the measured objects area priori assigned
to any existing tracks. Let̂T1−

t , T̂2−
t , ..., T̂m−

t denote the pre-
dicted positions of tracked objects andME1

t ,ME2
t , ...,MEn

t
denote the positions of the measured objects on the plane at
time stept. Then, the distance matrixDt is computed based
on the Euclidean norm as follows:

Dt(i, j) = ‖T̂ i−
t −ME j

t ‖ < Td, (4)

for i = 1, ...,m and j = 1, ...,n. It stores the distances be-
tween the predicted positions of the tracked objects and
the positions of the measured objects. The rows of the
distance matrix correspond to the existing tracks and the
columns to the measured objects. If the distance is above
thresholdTd, the element in the matrix will be set to infinity.
The thresholdTd is determined experimentally. Based on
analyzing the distance matrix, a decision matrixJt at time
stept is constructed. The number of rows and columns are
the same number as in the distance matrix and all elements
are set to 0. For each row inDt , find the lowest valued cell
and increment the corresponding cell inJt . The same is done
for the columns. Thus each cell inJt has a value between
zero and two.

Only if an element value of the decision matrixJt is
equal to two, the measured object is assigned to the tracked
object and their correspondence is stored. All elements in the
same row and column of the distance matrixDt are updated
to infinity and a new decision matrixJt is constructed.
This process is repeated until none of the elements in the
decision matrix equals to two. The correspondence between
the objects is calculated by the Bhattacharya distance:

BD(HT,HM) =
Nr ·Ng·Nb

∑
i=1

√

HT(i) ·HM(i) > Tco (5)

whereHT is the color histogram of the tracked object and
HM is the measured object withNr ·Ng ·Nb bins. The values
HT(i) andHM(i) are the normalized frequencies of the bin
i. If the Bhattacharya distance of the object histograms is
below the correspondence thresholdTco, a correspondence
between the objects is not given. The threshold is 1 for a
correspondence and 0 for a non-correspondence.

After the a priori assignment the tracked and measured
objects can be classified into the following three categories:

• matched tracked and measured objects,
• unmatched tracked objects and
• unmatched measured objects.
This step can not handle merging and splitting events,

in which one measured object may be assigned to multiple
tracks and one track may be assigned to multiple measured
objects. A merging and splitting algorithm was developed to
solve this problem.

D. Merging and Splitting

In this step, merging and splitting events are handled.
Here, it is a valid assumption that as soon as objects
touch each other, a large rectangle containing all objects is
generated. Thus, the objects are not occluding each other at
that time step. For tracked objects that are not matched to the
measured objects, a merging detection algorithm is used to
decide whether the track is merged with another track or it
remains unmatched. If the track remains unmatched, its age
increases until the object is assumed to be lost and therefore
no longer significant. For unmatched measured objects, a
splitting detection algorithm is developed. It decides whether
the measured object is split from a tracked object or it is a
new track.

E. Experimental Results

Three different scenes are chosen to represent the tracking
algorithm. The first two scenes are demonstrated in Figure
4. A moving car and a walking person is shown in the
leftmost figure. In the right three subfigures, two people
merge and split. After the splitting, the individuals were
identified correctly.

(a) (b) Before the
merging.

(c) After the
merging.

(d) After the
splitting.

Fig. 4. Multiple object tracking (left). Merging and splitting of two people
in a scene (right).

In figure 5, the third scene is demonstrated. In this scene,
two people cross each other. During the crossing, one person
occludes the other person. The persons are identified cor-
rectly after crossing. Note that complete occlusion of objects
via other moving objects is handled correctly.



(a) Before the
crossing.

(b) During the
crossing.

(c) Occlusion. (d) After the
crossing.

Fig. 5. Crossing of two people in a scene.

VI. OBJECT CLASSIFICATION

The goal is to classify each moving object visible in
the input images as a single person, group or vehicle. Our
approach to classify people and vehicles is based on [1].
The algorithm requires an appearance history of the object
from the tracking algorithm by means of a bounding box
(smallest possible rectangle bordering the mask of the object)
and correspondence of each object over the frames. In most
cases, the whole object is moving along with local changes
in shape (mask of the object). Thus, the objects are classified
by detecting repetitivechangesin their shapes. In Figure 6,
the flow diagram of the classification algorithm is presented.

Translation and
Scale Compensation
of Object Mask

History Image
Motion Image and Motion
Determination of Recurrent

Object Classification

Object Tracking

Classified Objects Type Assignment

Fig. 6. The flow diagram of the classification algorithm.

These steps are explained in the following sections where
an object mask is defined as the part of the mask image
within the bounding box of the object.

A. Translation and Scale Compensation of Object Masks

A moving object often changes its position within the
bounding box and its size. To eliminate effects of mask
changes that are not due to shape changes, the translation
and change in scale of the object mask over time needs
to be compensated. The assumption is that the only reason
for changes in the shape size is the variation of the object
distance from the camera. The translation is compensated
by aligning the objects in the images along its centroid. For
compensation of scale, the object mask is scaled in horizontal
and vertical directions such that its bounding box width and
height are the same as of the first observation.

B. Determination of Recurrent Motion Image and Motion
History Image

Let Ai
t(x,y), for i = 1, ...,m, be the pixel value of the

translation and scale compensated object maski at position
(x,y) and at timet. Then, a difference imageDi

t(x,y) is
generated for each objecti = 1, ...,m by using the exclusive-
or operator⊕ as follows:

Di
t(x,y) = Ai

t−1(x,y)⊕Ai
t(x,y). (6)

The value Di
t(x,y) indicates the shape changes of the

object. After this step, the Recurrent Motion Image (RMI)
is calculated as follows:

RMIit (x,y) =
∑τ

k=0Di
t−k(x,y)

τ
(7)

whereτ is the time interval that should be large enough
to capture the recurrent shape changes. The recurrent motion
image has high values at those pixels whose shape changes
repeatedly and low values at pixels where there are little
shape changes or no shape changes at all.

Our classification algorithm is based on the work of
Javed and Shah [1]. However, we found that it did not
always correctly classify objects that change shape through
turning. Henceforth, we enhanced their algorithm to increase
robustness by providing a second metric for analysing motion
- termed a ’Motion History Image’.

The Motion History Image (MHI) is a mask image that
indicates where motion of the object occurred during the
time intervalτ. It is calculated as follows:

MHI i
t (x,y) =

{

0 if ∑τ
k=0Ai

t−k(x,y) = 0
MHImax otherwise

(8)

whereMHImax is the maximum value of the MHI.

C. Type Assignment

Once the recurrent motion and the MHI of the object
is obtained, the type of the object needs to be classified.
Therefore, the recurrent motion is divided intoo×o equal
sized square blocks and the mean value for each block is
computed. The partitioning reduces the computation and the
averaging reduces noise. Then, the corresponding MHI is
computed by scaling it to ano× o image. In Figure 7,
examples of averaged recurrent motion and scaled MHI are
shown in three different scenes. As it can be seen, the ratio of
recurrent motion to motion occurrence of the single person
and the group in the bottom of the images is bigger than
that of the van, because a van has no repeated changes in its
shape.

The type assignment is also different to [1]. A Repeated
Motion Ratio is introduced to distinguish between people
and vehicles. The sumSi

t of all mean values of the blocks
in the bottom of the recurrent motion image at which the
corresponding blocks of the MHI has its maximum value
(motion has occurred) is determined for the objectsi =
1, ...,m at timet. During this step, the number of the blocks
oi

p,t in the bottom of the MHI with maximum value is
counted. In the next step, the Repeated Motion Ratio is
calculated by dividing the sumSi

t by the number of blocks
oi

p,t times the maximal valueRMImax of the recurrent motion
image. The Repeated Motion Ratio is 1, if the recurrent
motion image has its maximum mean value in every block
at which the corresponding MHI indicates motion. That is,
if the shape of the object changes repeatedly. If the recurrent
motion image has its minimum mean value 0 in every block,
the Repeated Motion Ratio is 0 as well which means that the
shape of the object does not change repeatedly. Thus, the
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Fig. 7. Examples of RMIs and MHIs in different scenes.

object type single person or group is assigned to the object,
if

RMRi
t =

Si
t

oi
p,t ·RMImax

> Tot (9)

whereTot is the fixed decision threshold of the object type.
If RMR is below that threshold, the object is classified as a
vehicle. The thresholdTot is determined experimentally.

D. Classification Results

The classification algorithm was applied to a variety of
video sequences. They contain people walking and vehicles
moving. Each sequence consists of 600 to 1000 frames.
The tracking algorithm provides the bounding box and
correspondence of each object over the images of each
sequence. The classification algorithm was applied for each
object after it has completely entered the image. The number
of frames over which the recurrent motion and the motion
history image were calculated isτ = 20. Thus, a wrong data
association do not have quite an impact on the recurrent
motion and the motion history image The decision threshold
of the object type isTot = 0.12. In Table I, the results of the
classification algorithm distinguishing between people and
vehicles are given. Even in presence of noisy mask images
accurate classifications were obtained.

TABLE I

RESULTS OF THE OBJECT CLASSIFICATION ALGORITHM.

TYPE OFOBJECT Classified as People Classified as Vehicle

Single People 38 0
Vehicle 1 20

VII. ONLINE APPLICATION OF THE
CLASSIFICATION SYSTEM

The classification system was applied online. The input
image stream is handled by the DDX framework (Dynamic

Data eXchange) developed by Corkeet al. [14]. To acquire
video live streams and controlling a camera the DDXVideo
framework is used [15].

Three representative scenarios were chosen. In the first,
a moving car enters the scene, stops, and a person egresses
and both leave. Two people crossing each other are displayed
in the second. During the crossing, one person occludes the
other. In the third scenario, two people merge and split. The
people occlude each other repeatedly when they are merged.
The results are shown in Figures 8 to 10.

Fig. 8. First scene: Person and car.

In all tests, the objects are correctly tracked and identified.
Further tests have shown that the classification system can
achieve frame rates 33−50f ps.

Fig. 9. Second scene: Two people cross each other.

We have also tested the algorithm on various vehicle types
and in different types of weather. Figure 11 below show
samples of a forklift in sunlight, and a bicycle rider in the
rain - both mounted and unmounted. The bicycle rider case
is interesting since the recurrent motion has a higher vertical
component than in walking cases. The classifier gave the
correct predictions in all cases.

VIII. CONCLUSIONS AND FUTURE WORK

We have demonstrated a vision based system for tracking
and classifying dynamic objects in an outdoor environment.
The system is based on [1] and shows improvements in
the detection and classification of people and vehicles. The
system can handle occlusions and has demonstrated good
results over multiple objects in varying weather conditions.
In each test case, the system accurately labeled the dynamic



(a) Before the
merging.

(b) After the
merging.

(c) During occlu-
sion 1.

(d) After occlu-
sion 1.

(e) During occlu-
sion 2.

(f) After occlu-
sion 2.

(g) After the
splitting.

Fig. 10. Third scene: Two people merge, occlude each other repeatedly
and split.

Fig. 11. Various types of dynamic objects have been used for testing the
system in different weather conditions.

objects and tracked them correctly. The system works in
real time and achieves a frame rate of 33− 50f ps for
768× 576 resolution color images on a 3.2 GHz Pentium
D computer. Our approach differs from existing approaches
in that multiple objects are reliably tracked, even presence
of occlusions, and the combination of using recurrent mo-
tion and Motion History Images improves classification and
tracking performance.

The system is a preliminary step towards improving
the situational awareness of either human-operated or au-
tonomous vehicles working in joint workspaces. Being more
aware of the environment makes operations safer and im-
proves efficiency since better local path planning can result
from knowing where potential path conflicts will occur and
anticipatory steps taken to avoid them.

Within this work a basis of classification system was
created. It is very efficient in terms of computational and
space requirements. The next step is to develop a cast
shadow algorithm in the motion segmentation step to create a
good prerequisite for object tracking and classification under
all lighting conditions. During the course of this research,
several cast shadow algorithms were tested [8], [16] but none
were robust or reliable enough in our test environment.

The object classifier of the system is also a basis for
investigating further improvements. For example, a classifier
could be developed that distinguishes between the different
types of vehicles like cars, vans, trucks etc. or between
single persons and groups. Furthermore the system could

be optimized in its implementation to improve its speed.
Introducing multiple camera viewing the scene in different
angles would improve the object tracking and classification
performance and robustness of the system.
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Abstract—We address and solve a number of problems in the
context of a robot surveillance system based on a pair of dioptric
(fisheye) cameras. These cameras provide a hemispherical field
of view that covers the whole robot workspace, with some
advantages over catadioptric systems, but there is little previous
work about them. Then, we had to devise and implement a
number of novel techniques to achieve robust tracking of moving
objects in dynamic, unknown environments from color image
sequences in real time. In particular, we present a new two-phase
adaptive background model that exhibits a robust performance
when there are unexpected changes in the scene such as sudden
illumination changes, blinking of computer screens, shadows or
changes induced by camera motion or sensor noise. The system
is also capable of tracking the detected objects when they are
not in movement. We also deal with fisheye camera calibration
to estimate both intrinsic and extrinsic parameters, as well as the
estimation of the distance between the system and the detected
objects with our dioptric stereo system. Experimental results are
reported.

Robotics research, from its begining, has been always
focused on building robots which help human beings in
their daily tasks while both of them coexist in the same
environment. That means new robot generations have to deal
with dynamic, unknown environments, unlike industrial robots
which act in a restricted, controlled, well-known environment.
For that reason, one of the key issues in this context is to be
aware of what is happening around.

In fact, robot performance in any real environment requires
to detect people and/or other objects, particularly if they are
moving, in the robot’s workspace. On the one hand, interaction
tasks require detection and identification of the objects with
which to interact. On the other hand, the safety of all elements
present in the robot workspace should be guaranteed at any
time, specially when they are human beings. Thus, it is
important that the robot quickly detects the presence of any
moving element to be able to properly react to the element
movements.

So, among the available robot sensors, cameras might be
suitable for this goal, since they are an important source of
information. Nevertheless, it is not straightforward to success-
fully deal with a non-constrained environment by using tradi-
tional cameras due to its limited field of view. That constrain
could not be removed by combining several images captured
by rotating a camera or strategically positioning a set of them,

because it is necessary to establish any feature correspondence
between many images at any time. This processing entails a
high computational cost which makes them fail for real-time
tasks.

An effective way is to combine mirrors with conventional
imaging systems [1] [2] [3]. The obtained devices are called
catadioptric systems. Moreover, if there is a single viewpoint,
they are referred as central catadioptric systems [4]. This is
a desired feature in such imaging systems since it describes
world-image mapping. In fact, a single viewpoint implies that
all rays go through a 3D point and its projection on the image
plane goes through a single point in the 3D space. Conven-
tional perspective cameras are devices of a single viewpoint,
for example. Although the central catadioptric imaging can be
highly advantageous, they unfortunately exhibit a dead area in
the centre of the image what can be an important drawback
in some applications.

With the aim of overcoming all the above drawbacks, a
dioptric system was used. Dioptric systems, also called fisheye
cameras, are systems which combine a fisheye lens with a
conventional camera [4] [5]. Thus, a conventional lens is
changed by one of these lenses which has a short focal
length what allows cameras to see objects in an hemisphere.
Although fisheye devices present several advantages in front
of catadioptric sensors such as no presence of dead areas in
the captured images, a unique model for this kind of cameras
does not exist unlike central catadioptric ones [6].

In this work, we have focused on dioptric systems to
implement a robot surveillance application for fast and robust
tracking of moving objects in dynamic, unknown environ-
ments. Although our final goal is to design an autonomous,
mobile manipulation robot system, here we present the first
stage: novel techniques for robust tracking of moving ob-
jects in dynamic, unknown environments from color image
sequences such that manipulation tasks could be safely per-
formed in real time when the robot system is not moving. For
that, three different related problems have been tackled:

• moving object detection
• object tracking
• distance estimation from the system to the detected

objects



First of all, a new robust adaptive background model has
been designed. It allows the system to adapt to different
unexpected changes in the scene such as sudden illumination
changes, blinking of computer screens, shadows or changes
induced by camera motion or sensor noise. Then, tracking
process from two omnidirectional images takes place. Finally,
the estimation of the distance between the system and the
detected objects must be done by using an additional method.
In this case, information about the 3D localization of the
detected objects with respect to the system was obtained from
a dioptric stereo system.

Thus, the structure of this paper is as follows: the new robust
adaptive background model is described in Section 2, while
in Section 3 the tracking process is introduced. An epipolar
geometry study of a dioptric stereo system is presented in
Section 4. Some experimental results are presented in Section
5, and discussed in Section 6.

I. MOVING OBJECT DETECTION

Research in human and object detection has taken a number
of forms. Well-known segmentation techniques from a taken
image are thresholding or frame subtraction. However, on
the one hand, it is difficult to deal with threshold selection
when it is working with an unknown, dynamic environment
and targets to track can have different features. Actually, the
uncertainty provided by those specified work conditions also
makes that automatic threshold search methods, mainly based
on histogram properties, fail [7]. In that way, other experiments
to obtain a robotic assistant in which a person is detected
and then followed by a mobile robot [8] [9] [10] [11] have
been carried out. Nevertheless, in spite of the fact that existing
algorithms are very fast and easy to use, image processing
for object identification is very poor since it is color- and/or
face-based. This restricts their utility because it is not viable
to track objects of a particular color, which has also to be
significantly different from the background, or it constrains
people to always face the vision system.

On the other hand, although the image difference method
provides a good detection of changing regions in an image, it
is important to pay attention to several uncontrolled changes in
the system environment which can produce multiple false ne-
gatives and make the system fail. These dynamic, uncontrolled
changes can be divided into:

• minor dynamic factors, such as, for example, blinking of
computer screens, shadows, mirror images on the glass
windows, curtain movement or waving trees, as well as
changes induced by camera motion, sensor noise, non-
uniform attenuation or atmospheric absorption, among
other factors

• sudden changes in illumination such as switching on/off
a light or opening/closing a window

Different research has been developed to adapt to this
changes. One of the most common is the background subtrac-
tion approach, which has been proposed by several researchers
[12] [13] [14] [15] [16]. Basically, a background model, which
is built after observing the scene several seconds, is used to

identify moving objects by thresholding the new frame with
respect to the built background model. However, this approach
presents two important drawbacks:

• everything observed when the background model is being
built is considered background

• no sudden change in illumination occurs during the whole
experiment

It is important to take into account that, unlike most of them
which each background pixel is represented by a Gaussian
distribution, Stauffer and Grimson [17] presented adaptive
background mixture models. However, as it was pointed out
in [18], some issues have to be solved.

Therefore, a novel algorithm is proposed here. It is divided
into two different phases, as can be seen in Figs. 1 - 2:

1) In the first phase, an initial background model is
obtained by observing the scene during several se-
conds. However, unlike most background estimation
algorithms, another technique for controlling the activity
within the robot workspace is performed. With the aim
of reducing the computational and time cost, this control
is performed by means of a simple difference technique.
In that way, there is no danger to damage people who
approach the robot while this initial model is being built.
Thus, basically, in this phase, a simple frame-difference
approach is performed in order to detect moving objects
within the robot workspace. Then, two consecutive mor-
phological operations are applied to erase isolated points
or lines caused by the dynamic factors mentioned above.
In this point, two different tasks are carried out:

• On the one hand, adaptive background model is
updated with the values of the pixels classified
as background in order to adapt it to some small
changes which do not represent targets

• On the other hand, a tracking process, which is
explained in the next sections, is performed

2) In the second phase, detection and identification moving
object process starts. When a human or another moving
object enters in a room where the robot is, it is detected
by means of a two-level processing:

• pixel level, in which the adaptative background
model, initially built in the previous phase, is used
to classify pixels as foreground or background. It is
possible because each pixel belonging to the moving
object has an intensity value which does not fit into
the background model. That is, the used background
model associates a statistical distribution (defined
by its mean color value and its variance) to each
pixel of the image. Then, when an interest object
enters and/or moves around the robot workspace,
there will be a difference between the background
model values and object’s pixel values. Actually, a
criterion based on stored statistical information is
defined to deal with this classification and it can be
expressed as follows:



b (r, c) =

{
1 if |i (r, c)− µr,c| > k × σr,c

0 otherwise
(1)

where b (r, c) is the binary value of the pixel (r, c)
to be calculated, i (r, c) represents pixel brightness
in the current frame, µr,c and σr,c are the mean
and standard deviation values calculated by the
background model respectively and k is a constant
value which depends on the point distribution

• frame level, whereby the raw classification based
on the background model is improved as well
as the model is adapted when a global change
in illumination occurs. A proper combination of
substraction techniques has been implemented. In
that way, a different segmentation process is applied
at frame level and it is used to improve the seg-
mentation carried out at pixel level. Furthermore,
this processing allows the system to identify global
illumination changes. That is, it is assumed that
an significant illumination change has taken place
when there is a change in more pixels than a half
of the image size. When an event of this type
occurs, a new adaptative background model is built
because if it was not done, the application would
detect background pixels as moving objects, since
the model is based on intensity values and a change
in illumination produces a variation of them.

As in the previous phase, after properly segmenting an
image, two consecutive morphological operations are
applied to erase isolated points or lines caused by small
dynamic factors. Later, pixels classified as background
are incorporated to the adaptive background model,
while foreground pixels are processed by applying a
tracking method.

II. TRACKING MOVING TARGETS

Once targets to be tracked have been identified, the next step
is to track them. For that, first of all, a connected-component
labeling algorithm is performed. However, due to segmentation
errors, it might be obtained more than one labeled component
for the same target. Thus, a merge algorithm, based on neigh-
bourhood and feature similarity, is applied. Then, a minimum
rounded rectangles are generated. After that, with the aim
of performing the corresponding tracking, a pattern is built
from each of them. In this case, a pattern is intended as the
data structure such that allows the system to track the moving
objects by means of matching an object in two consecutive
frames even when it suffers a partial or whole occlusion.

Thus, in our case, a pattern is composed of two different
things:

• a representative image of the target, that is, it is not
possible to directly compare two images of the same
object when they are provided by an omnidirectional
image. It is due to the fact that every object has different
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orientation depending on its position inside the scene. So,
several rotations would be necessary in order to correctly
match the images of the same object in two different
frames. Thus, it is necessary to apply a transformation
from the circular omnidireccional image to a perspective
one (see Fig. 3. This is done only for each region detected
as object of interest since transformation of the whole
image could become very high time-consuming.

• a feature array whose elements contain information about
brightness and blob width and height, among other things,
used to properly match to images of the same object in
two consecutive frames as well as two stereo images

Fig. 3. Representative perspective image from the labeled omnidirectional
image

Therefore, on the one hand, representative images are com-
pared with the extracted from the previous frame or the another
stereo image. In this way, a pixel-similarity likehood between
representative images is obtained. On the other hand, a feature-
similarity likehood is generated from feature array comparison.
Both likehoods are properly combined to match two images
from the same object in consecutive frames or frames taken
from a dioptric stereo system.

III. STEREO SYSTEM

For approximately determining the distance from the sys-
tem to an objective we need to estimate the correspondence
between omnidirectional images, that is, the epipolar equation.

From the point of view of stereo vision, an epipole is defined
as the projection of the camera center on the image plane
of another camera. Unlike traditional cameras, two epipoles
are visible, since any camera is within the field of view of
each other. For that reason, in the case of omnidirectional
cameras, it is not necessary to use a third external object
for stereo calibration. This is the idea in which Zhu et al
[15] [16] based to implement a virtual stereovision system
with a flexible baseline in order to detect, track and localize
moving human subjects in unknown indoor environments.
In the literature, other approaches developed for catadiotric
systems can be found [16] [19] [20] [21]. However, even
though there is almost no work with dioptric stereo systems,

we have implemented a process to estimate the distance from
the dioptric stereo system to the detected objects.

The guidelines of the distance estimation method are as
follows:

• a matching process between images taken by different
cameras is done. First, the adaptive background model
at two levels is independently performed for the images
captured by each camera. Then, each detected blob is
described by means of a feature array whose elements
contain information about brightness and blob width and
height, among other things. Next, each feature array
is compared with all the detected blobs in the frame
taken by the other camera in the system, while the
matching process included in the implemented moving
object detection method is simultaneously performed.
Thus, a similarity likelihood is calculated and a matching
decision is made based on it.

• detection of the other camera in each frame, as it is
depicted in Fig. 4. In fact, this step is necessary to be
performed only once because the baseline of the stereo
system is fixed.

• estimation of the distance with respect to each camera
from triangulation geometry, as it is shown in Fig. 4. The
triangle to solve is determined by the projection ray of a
3D point of the real world on each plane image as well
as the projection ray of the center of the other camera of
the system. It is possible thanks to the calibration step
since the projection rays can be estimated, as mentioned
above.

Fig. 4. Camera detection in images captured by the two cameras

IV. EXPERIMENTAL RESULTS

Two different experiments have been carried out to check
the designed application performance. First, the performance
of the moving object detection was evaluated by using only
one fisheye camera. After that, the obtained estimation of the
detected object distance through our dioptric stereo system was
analysed. In this section, some of these results are provided.

A. Experimental set up

For both kinds of experiments carried out, a mobile manipu-
lator which incorporates a visual system composed of 2 fisheye
cameras mounted on the robot base, pointing upwards to the
ceiling, to guarantee the safety in its whole workspace. Figs. 5
depicts our experimental setup, which consists of a mobile
Nomadic XR4000 base, a Mitsubishi PA10 arm, and two
fisheye cameras ( SSC-DC330P third-inch color cameras [22]
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Fig. 5. Experimental setup: external view of the arm and cameras.

with fish-eye vari-focal lenses YV2.2x1.4A-2, which provide
185 degree field of view).

Thus, on the one hand, a single fisheye camera was used to
evaluate the moving object detection performance. The robot
system was located in the center of our laboratory where
almost all the space was covered and where most of the
uncontrolled, dynamic factors named above were present (e.g.
blinking of computer screens, shadows, mirror images on the
glass windows or variations in illumination due to the different
time of the day or the switch on/off a light). On the other
hand, the dioptric system was used. In both cases, the images
to process were acquired in 24-bit RGB color space with a
640x480 resolution.

B. Moving Object Detection Evaluation

As it was pointed out, the first series of experiments were
to evaluate the performance of the novel adaptative, robust
background model. For that, illumination conditions and object
positions were changed. Two sequences of the images as a
result of applying the novel updated background model under
the same illumination conditions is depicted in Fig. 6. As it can
be seen, the method is able to visually track moving objects
without constraints such as clothes color or illumination.

In a similar way, illumination conditions were changed
and, as it is shown in Fig. 7, the obtained results were also
successful.

V. CONCLUSIONS

In this paper, a robust visual application to detect and track
moving objects within a robot workspace has been presented
based on a pair of fisheye cameras. These cameras have the
clear advantage of covering the whole workspace without
resulting in a time consuming application, but there is little
previous work about this kind of devices. Consequently, we
had to implement novel techniques to achieve our goal.

Thus, the first subgoal was to design a process to detect
moving objects within the observed scene. After studying
several factors which can affect the detection process, a novel
adaptive background model has been implemented where
contraints such as waiting a period of time to build the initial
background or illumination conditions do not exist. In a similar

Fig. 6. Results of applying the novel adaptative background model with
different subjects

Fig. 7. Results of applying the novel adaptative background model under
different illumination conditions



way, it is also capable of tracking the detected objects when
they are not in movement. In addition, the designed method
includes a matching process between two consecutive frames.

The next step is to estimate the distance from the detected
objects to the system. For that, a stereo dioptric system with
fixed baseline has been built. Therefore, it was necessary
to perform a calibration process in order to obtain the fun-
damental matrix. Three different toolboxes were tested, but
only two were used in the end. Finally, a method to estimate
distance from the objects to the system was implemented. In
this case, a triangulation technique is used. It is possible to
perform because the cameras can see each other. It must be
taken into account that epipolar geometry of the stereo dioptric
systems was not used, although the combination of that with
the current implementation in order to improve the accuracy
in the matching process is part of our future work.

ACKNOWLEDGMENTS

This paper describes research carried out at the Robotic
Intelligence Laboratory of Universitat Jaume I. Support for this
laboratory is provided in part by the European Commission
under project EYESHOTS (FP7 ICT-217077), by Fundacio
Caixa-Castello under project P1-1B2005-28 and by Ministerio
de Ciencia under project DPI2004-01920 and FPI grant BES-
2005-8860.

REFERENCES

[1] T. Svoboda, T. Pajdla, and V. Hlavác, “Epipolar geometry for panoramic
cameras,” in European Conf. on Computer Vision (ECCV’98), Freiburt
Germany, July 1998, pp. 218 – 231.

[2] S. C. Wei, Y. Yagi, and M. Yachida, “Building local floor map by use of
ultrasonic and omni-directional vision sensor,” in Int. Conf. on Robotics
and Automation, Leuven, Belgium, May 1998, pp. 2548 – 2553.

[3] S. Baker and S. K. Nayar, “A theory of single-viewpoint catadiptric
image formation,” Int. Journal of Computer Vision, vol. 35, no. 2, pp.
175 – 196, 1999.

[4] ——, “A theory of catadioptric image formation,” in Int. Conf. on
Computer Vision (ICCV’98), Bombay, India, 5–8 January 1998, pp. 35
– 42.

[5] R. W. Wood, “Fish-eye views, and vision under water,” Philosophical
Magazine, vol. 12, no. Series 6, pp. 159 – 162, 1906.

[6] C. Geyer and K. Daniilidis, “A unifying theory for central panoramic
systems and practical applications,” in European Conf. on Computer
Vision (ECCV 2000), Dublin, Ireland, 26th June – 1st July 2000, pp.
445 – 461.

[7] S. L. G. and S. G. C, Computer vision, U. S. River, Ed. Prentice Hall,
2001.

[8] B. Kwolek, “Color vision based person following with a mobile robot,”
in Third Int. Workshop on Robot Motion and Control (RoMoCo’02),
November 2002, pp. 375 – 380.

[9] M. Tarokh and P. Ferrari, “Case study: Robotic person following using
fuzzy control and image segmentation,” Robotic Systems, vol. 20, no. 9,
pp. 557 – 568, 2003.

[10] M. Kobilarov, G. Sukhatme, J. Hyams, and P. Batavia, “People tracking
and following with mobile robot using an omnidirectional camera and a
laser,” in 2006 IEEE Int. Conf. on Robotics and Automation (ICRA’06),
Orlando, Florida, May 2006, pp. 557 – 562.

[11] T. Yoshimi, M. Nishiyama, T. Sonoura, H. Nakamoto, S. Tokura,
H. Sato, F. Ozaki, N. Matsuhira, and H. Mizoguchi, “Development of
a person following robot with vision based target detection,” in 2006
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Beijing, China,
October 2006, pp. 5286 – 5291.

[12] K. Toyama, J. Krum, B. Brumitt, and B. Meyers, “Wallflower: Principles
and practice of background maintenance,” in Seventh IEEE Int. Conf.
on Computer Vision, vol. 1, Kerkyra, Greece, 1999, pp. 255 – 261.

[13] I. Haritaoglu, D. Harwood, and L. S. Davis, “W4: Real-time surveillance
of people and their activities,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 22, no. 8, pp. 809 – 830, August 2000.

[14] H. Liu, W. Pi, and H. Zha, “Motion detection for multiple moving targets
by using an omnidirectional camera,” in IEEE Int. Conf. on Robotics,
Intelligent Systems and Signal Processing, vol. 1, Changsha, China,
October 2003, pp. 422 – 426.

[15] Z. Zhu, K. D. Rajasekar, E. M. Riseman, and A. R. Hanson, “Panoramic
virtual stereo vision of cooperative mobile robots for localizing 3d
moving objects,” in IEEE Workshop on Omnidirectional Vision, 12th
June 2000, pp. 29 – 36.

[16] Z. Zhu, D. R. Karuppiah, E. M. Riseman, and A. R. Hanson, “Keeping
smart, omnidirectional eyes on you. adaptive panoramic stereovision for
human tracking and localization with cooperative robots,” IEEE Robotics
and Automation Magazine, pp. 69 – 78, December 2004, special Issue
on Panoramic Robotics.

[17] S. C. and G. W.E.L., “Adaptive background mixture models for real-time
tracking,” in Conference on Computer Vision and Pattern Recognition
(CVPR’99), vol. 2, 23rd – 25th June 1999, pp. 246 – 252.

[18] K. P. and B. R., “An improved adaptive background mixture model for
real-time tracking with shadow detection,” in 2nd European Workshop
on Advanced Video Based Surveillance Systems (AVBS 01), VIDEO
BASED SURVEILLANCE SYSTEMS: Computer Vision and Distributed
Processing, K. A. Publisher, Ed., September 2001.

[19] C. Geyer and K. Daniilidis, “Properties of the catadioptric fundamental
matrix,” in The 7th European Conf. on Computer Vision (ECCV2002),
vol. 2, LNCS 2351, Copenhagen, Denmark, 27th May – 2nd June
2002, pp. 140 – 154. [Online]. Available: http://link.springer.de/link/
service/series/0558/tocs/t2351.htm

[20] Y. Negishi, J. Miura, and Y. Shirai, “Calibration of omnidirectional
stereo for mobile robots,” 2004 IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems (IROS 2004), vol. 3, pp. 2600 – 2605, 28th September –
2nd October 2004.

[21] S. Li and K. Fukumori, “Spherical stereo for the construction of
immersive vr environment,” in IEEE Virtual Reality (VR’05), 12th –
16th March 2005, pp. 217 – 222.

[22] http://www.infodip.com/pages/sony/camera/pdf/SSC-DC58AP.pdf.



Proceedings of the IEEE ICRA 2009 
Workshop on People Detection and Tracking 
Kobe, Japan, May 2009 
 

Experimental Evaluation of a People Detection Algorithm in Dynamic
Environments

Dario Lodi Rizzini, Stefano Caselli
RIMLab - Robotics and Intelligent Machines Laboratory

Dipartimento di Ingegneria dell’Informazione
University of Parma, Italy

E-mail {dlr,caselli}@ce.unipr.it

Abstract— People detection is an important capability both
for human-robot interaction in service robotics and to dis-
tinguish the stable environment from the perturbation due
to people motion in localization and mapping tasks. Several
techniques have been proposed for different application contexts
and sensors. Range data acquired by laser scanners are met-
rically accurate and suitable for computationally-inexpensive
people detection. Furthermore, laser scans provide a geometric
description of local environment that can be combined with the
information about dynamic objects.

In this paper, a previously proposed method for detecting
people legs from laser scans is experimentally evaluated and
exploited to improve scan matching by removing dynamic parts
corresponding to people. This algorithm splits laser scans into
beam segments and classifies each segment. Classifications of
simple features are then combined into a boosted classifier
with Adaboost. The fundamental assumption of scan matching
is that consecutive scans can be aligned with a rigid body
transformation, since they represent the same scene. When
dynamic elements like human legs are removed from scans,
such assumption holds. We also investigate the effectiveness of
the proposed people detection algorithm in terms of its ability to
generalize across different environments and to support track
persistency across scans.

I. INTRODUCTION

The aim of service robotics is the execution of tasks
for people care. As a mobile service robot moves in an
environment populated by people, robot-human interaction
is therefore a fundamental requirement. Furthermore, even
if the tasks to be performed do not involve people care,
the recognition of dynamic elements including people is
required for localization and mapping. Indeed, localization
and mapping algorithms usually assume the complete state
hypothesis. According to this hypothesis, the evolution of
the system consisting of the robot and the static environment
is completely described by the state variables. State usually
includes robot location and map descriptors, but it does
not consider human presence. Thus, such assumption is
strongly violated in populated environments. Solutions for
this problem range from filtering the dynamic obstacles to
classifying and tracking them.

Several approaches have been proposed for people detec-
tion depending on the available sensor data and the context
of application. The most popular sensors are cameras and
range finders. Range finders have the advantage of lim-
ited processing requirements. Limiting our survey to laser-
based robot applications, the approaches can be divided into

tracking oriented techniques and geometric rule classifiers.
The first category includes simple extensions of localization
or SLAM algorithms [1], [2], [3] or specifically designed
techniques [4], [5]. The second category includes all the
methods that perform a classification using the features
extracted from laser scans [6], [7], [8]. However, the above
categorization remains arbitrary since tracking and feature
detection are typically mixed together.

In this paper, we experimentally evaluate the algorithm
for detecting people proposed in [7] that combines several
feature based classifiers to perform a more robust estimation
according to Adaboost boosting technique. This method has
the advantage of performing people detection on a single
scan without depending on a specific tracking technique or
on assumptions about motion of people.

Furthermore, we use this algorithm to improve scan match-
ing performance in a populated environment and apply the
concept of track persistency to the classification results. The
fundamental assumption of scan matching is that consecutive
scans can be aligned with a rigid body transformation,
since they represent the same scene. As discussed before,
this assumption is violated in a populated environment, but
the people detection algorithm can be used to filter out
people presence. Our contribution lies in the experimental
evaluation of the robustness of a scan matching technique
and of the improvement allowed by people filtering. A further
application of people classification relies on the concept of
persistency [8]. A track corresponding to a person is persis-
tent if the segment associated to the given track in each scan
is often classified correctly. The evaluation of the persistency
of people tracks yielding the potential of speeding-up the
training of the classifier is the final contribution of the paper.

The paper is organized as follows. Section II briefly
describes the algorithm for people detection. Section III
illustrates the application of the classifier to improve the scan
matching problem and the possibility to exploit track persis-
tency for semi-unsupervised training. Section IV presents the
experimental results. Finally, section V summarises the paper
drawing some conclusions and perspectives.

II. PEOPLE DETECTOR

This section illustrates the algorithm for detecting people
and its application to recognize dynamic and stable elements
in the environment. The basic people detection algorithm



has been adapted from [7], as described next. The algorithm
operates on a single laser scan in order to find if any
subset in the range readings of the scan corresponds to
a person as described in the following. First, the scan is
divided into groups of adjacent range values called segments.
Second, the algorithm classifies the segments establishing
their correspondence to people legs. The classifier is achieved
by combining several elementary classifiers that operate by
extracting a specific feature from the segment and evaluating
the value of such feature.

In literature, the outlined method for combining weak
decisors in order to reduce the classification error is known as
boosting. Adaboost algorithm is one of the most extensively
used boosting algorithm [9]. The input of the algorithm is
the training set, a set of examples (the scan segments in
this case) labeled with the result of correct classification.
Adaboost builds the final classifier by iteratively executing a
learning round. During each round, the weak classifiers are
trained using the examples of training set and the classifier
that minimizes the classification error is selected for the
round. The classification error is computed by weighting the
error of each misclassified example. Weights are larger for
the examples that have been wrongly classified in previous
rounds. The classification error is then used to compute
the coefficient that measures the contribution of the weak
classifier to the decision.

Adaboost is a meta-algorithm that does not impose the
form of the weak classifier. For people detection based on
laser scans, since the features extracted from each segment
are represented by a scalar, the weak classifiers hj(·) have
the following fixed expression

hj(e) =
{

true if pjfj(e) < pjθj

false otherwise (1)

where e is the item to be classified (the segment), fj(e) is
the feature extracted from e, θj is the decision threshold and
pj ∈ {+1,−1} gives the direction of inequality. This form is
suggested in [10] and adopted for the people detector in [7].

A. Feature Definition

The features used in the described classifier are scalar
values computed from a scan segment. As explained above,
a segment is a set of consecutive range values of a laser scan
approximately corresponding to a distinguishable object of
the environment. Segmentation is an important step of the
algorithm, which is sometimes neglected. In the experiments
section, it will become apparent how segmentation affects
the final result. In this paper, a simple splitting technique
has been used. The range values of the scan are traversed
in counterclockwise order and, when the jump distance of a
range reading with respect to the previous reading is above
a threshold, a new segment starts. Segments including only
one range reading are discarted. Comparing with the original
proposal in [7], it is unclear whether our segmentation
technique exactly reproduces the original approach; if not,
this is the only significant difference between the original
algorithm and our implementation.

The range values of the segment are then transformed
into cartesian coordinates with respect to the local reference
frame fixed on the sensor. Depending on the feature, polar
or cartesian coordinates are used. For each segment, we used
the same set of 14 features proposed in the original paper,
that are listed in the following.

1) Number of points.
2) Standard deviation: it is the mean distance from the

mean value of the points of the segment.
3) Mean average deviation from median: it is a more

robust version of the previous feature that uses the
median point instead of the mean point. The median
point coordinates are given by the 0.5 percentiles of
the distribution of x and y coordinates of points.

4) Jump distance from preceding segment.
5) Jump distance to succeeding segment.
6) Width: it is the Euclidean distance between the first

and the last point.
7) Linearity: it is the sum of square distances between

each segment point and the regression line computed
using the same points.

8) Circularity: it is the sum of square distances between
each segment point and the regression circle computed
using the same points. The regression circle is achieved
according to least square criterion. When only two
points are available, circularity is set to a large value.

9) Radius: it is the radius of the regression circle. When
only two points are available, the radius is set to a
large value.

10) Boundary length: it is the sum of the distances be-
tween consecutive segment points. It corresponds to
the length of the boundary defined by the poli-line that
connects each pair of points.

11) Boundary regularity: it is the standard deviation of the
line

12) Mean curvature: it is the average value of the curva-
tures computed on triplets of consecutive points.

13) Mean angular difference: it is the average value of the
angles computed on triplets of consecutive points.

14) Mean speed: it is the average speed of the range
readings of the segment. The computation of range
speed requires the value of the given range reading on
the current and previous scans and the time interval
between the acquisition of the two scans. Mean speed
is the only feature that requires temporal correlation
between two consecutive scans.

III. MULTIPLE SCANS APPLICATIONS

The algorithm for detecting people described above has the
remarkable advantage of performing a classification using
only the geometric information available in a single scan,
without requiring temporal correlations between scans. The
only exception is represented by feature 14 that usually gives
a negligible contribution to the boosted classifier as will be
shown in section IV. Indeed, an algorithm that does not
rely on temporal correlations is easier to implement and
to test, since there is no specific constraint on the order



of the scans. Moreover, the detection is independent from
the motion state of the people and of the robot carrying the
laser scanner. Common experience suggests that a person
usually moves in an environment, but a robust people de-
tector cannot rely on this assumption. In contrast to other
techniques exploiting tracking, the illustrated algorithm does
not require arbitrary dynamic models. However, this method
can be easily integrated into a tracking system. In this
subsection, we describe the application of the people detector
to two different problems both related to temporal proximity:
alignment of scan pairs and scan segment tracking.

A. People Filtering

Scan matching is the problem of finding a rigid motion
that makes a laser scan overlap another reference scan. The
fundamental assumption is that the two scans to be aligned
share the representation of a region of the environment. Such
hypothesis usually holds when the second scan is collected
from a location near to the reference location and the
environment is static. However, if there are people moving in
the environment, such assumption is clearly violated. While
several scan matching algorithms may be robust to such
violations, the people detector can improve the performance
of the scan matcher by removing the perturbation caused by
human presence. We call this operation people filtering hence
after. The effects of such correction are not easy to illustrate
and to evaluate. First, if the motion of an object is too slow
when compared to the frequency of acquisition, the object
appears still in two consecutive scans. Second, the scan
matcher can recover the values of translation and rotation
from the fixed background that often dominates the scans.
More details and results on people filtering are reported in
section IV.

B. Track Persistency

A second application of the people detection algorithm
exploits temporal correlation between scan segments to min-
imize the acquisition cost of training set. The described
boosted classifier learns the value of internal parameters
(the thresholds of weak classifiers, the weights, etc.) in a
supervised training phase. Currently, the examples in the
training set are manually labeled, but manual classification
is a tedious and time-consuming operation. It would be
convenient to perform a partially automatic labelling of the
collected segments, at least to expand the existing training
set. The concept of track persistency proposed in [8] could
be used for this purpose. The original aim of this proposal
is the unsupervised training of moving obstacles classifiers
in a multi-sensor architecture. First, moving obstacles are
detected as persistent tracks in the data acquired from a
given sensor source. Second, these data are labeled as moving
obstacles and are used to train a classifier.

Persistency can be applied to improve the performance of
the described feature-based classifier learnt from an initial
training set. In a typical scenario, one or more people move in
a trajectory and their legs are repeatedly observed by a range
finder. A perfect leg detector would find a segment for each

person (or two segments, if the legs are distinguishable) in
every scan and it would be possible to associate such segment
to another segment corresponding to the same person in the
previous scan. Thus, a persistent track could be found for
each person and for fixed obstacles. Such correspondences
between segments are not found in one of these cases:

• when the segmentation is not properly done;
• when the tracked person exits the visibility area;
• when the tracking algorithm fails;
• when the leg detector wrongly classifies the current or

previous segment.

The latter case is the most interesting one because, if a
wrongly classified segment is detected, it can be added to
the training set and used to train a better classifier.

IV. RESULTS

The aim of this section is to report the experimental eval-
uation of the legs detector described in previous sections and
of the correction on scan matching error achieved with such
algorithm. The experimental setup consists of an ActivMedia
Pioneer I equipped with a Sick LMS 200 laser scanner. The
scanning plane is 29.7 cm high from the ground floor.

Experiments reported in the following have been per-
formed in the Computer Engineer building of the University
of Parma. The robot moved in different positions to collect
scans from different locations in the environment during
both training and evaluation steps. Figures 1(a)-(b) show
two settings used in the tests: the hallway of Computer
Engineering building and the Robotics laboratory. The two
settings capture different kinds of rooms: the hallway is long
and narrow and allows robot motions; the laboratory is full
of obstacles, table and chairs legs that can be mistaken for
human legs. The choice of the two rooms is similar to the one
suggested in [7]. The main hallway of the Faculty building in
Figure 1(c) was used only for the scan matching tests, since a
larger environment was required. The robot moved to several
places for each locations to collect training set data, but it
stayed at a fixed position during the acquisition. The robot
moved only during scan matching tests. Since classification
is performed on a single scan, the motion of the robot is not
significant for performance assessment.

The method described in this paper has been implemented
independently from the original version described in [7]. The
illustration given in the paper was sufficient to reimplement
the same algorithm. Thus, the results shown in this section
provide an independent validation for such technique. The
differences between the two versions may depend only on the
value of few parameters and on the segmentation procedure.
A scan is split into a new segment when the jump between
two consecutive ranges is greater than a given threshold, that
has been set to 18 cm for these experiments. Such a simple
solution works quite well in almost all the considered cases,
even if segments representing legs are sometimes confused
with the background.



(a) (b) (c)

Fig. 1. Views of the experimental environments: (a) hallway of the Computer Engineering building; (b) laboratory; (c) hallway of the Faculty building.

A. Experiments with People Detector
The first set of experiments has been devoted to the assess-

ment of leg detector performance. Scans have been acquired
from the hallway and the laboratory in Figure 1(a)-(b) with
people inside as discussed above. A third collection of scans
has been acquired in the hallway after inserting additional
obstacles of several sizes and shapes, since the hallway
contained few obstacles during the first acquisition. Thus,
three settings will be initially considered: hallway, hallway
with obstacles and laboratory. During the experiments one
or two people moved in the area.

The acquired training set and test set contain respectively
300 and 341 scans. The number of segments extracted from
the training set is 5798, but only 2713 segments contain more
than one point. In the global test set, there are 3315 segments
consisting of more than one point on a total amount of 10259.
This result is a consequence of the simple segmentation
technique that splits when the jump distance is above the
threshold. In order to improve the efficiency of the classifier
and to avoid classification of segments with a single range
reading, we considered as eligible segments only those with
more than one range reading value.

Detected Label (Hallway Training Set)
True Label Person No Person Total

Person 454 (90.98%) 45 (9.02%) 499
No Person 84 (8.76%) 875 (91.24%) 959

Detected Label (All Training Set)
True Label Person No Person Total

Person 424 (84.97%) 75 (15.03%) 499
No Person 94 (9.80%) 865 (90.20%) 959

TABLE I
RESULTS OF PEOPLE DETECTION IN THE HALLWAY WITH FEW

OBSTACLES.

Tables I, II and III show the results for the hallway, the
hallway with more obstacles and the laboratory. In these three
tables, the top part provides the results obtained with the
classifier trained with the data of the specific environment
and the bottom part the results obtained with the timing data
collected from all the environments. In all three settings, the
latter classifier generally performs worse than the specifically
trained one, which performs correct detection, in average, on
90% of cases. The globally trained classifier only seems to

Detected Label (Hallway Obs. Training Set)
True Label Person No Person Total

Person 93 (83.78%) 18 (16.22%) 111
No Person 24 (4.26%) 539 (95.74%) 563

Detected Label (All Training Set)
True Label Person No Person Total

Person 107 (96.40%) 4 (3.60%) 111
No Person 263 (46.71%) 300 (53.29%) 563

TABLE II
RESULTS OF PEOPLE DETECTION IN THE HALLWAY WITH OBSTACLES.

Detected Label (Laboratory Training Set)
True Label Person No Person Total

Person 143 (89.94%) 16 (10.06%) 159
No Person 135 (13.18%) 889 (86.82%) 1024

Detected Label (All Training Set)
True Label Person No Person Total

Person 146 (91.82%) 13 (8.18%) 159
No Person 277 (27.05%) 747 (72.95%) 1024

TABLE III
RESULTS OF PEOPLE DETECTION IN THE LABORATORY.

reduce the number of false negatives for the hallway with
obstacles and the laboratory, but it increases the number
of false positives. We remark that the statistics illustrated
above do not include the one-point segments that are filtered
before performing the classification. Otherwise, the number
of correct “no people” classifications for hallway, hallway
with obstacle and laboratory would increase respectively of
1638, 691 and 1021.

Test Set
Training Set Hallway Hallway Obs. Laboratory

Hallway 91.15% 64.10% 72.44%
Hallway Obs. 83.20% 93.77% 73.37%

Laboratory 83.54% 68.99% 87.24%

TABLE IV
COMPARISON OF TRAINING SETS.

In order to gain some insight into the potential for en-
vironment generalization of the people detection algorithm,
Table IV compares the percentage of correct classification
achieved with classifiers learnt from different training sets.
The hallway with obstacles and laboratory classifiers provide



the best global performance, hinting that richer environments
should be used to favor generalization. The features that

Environment Five best features
Hallway 9, 4, 4, 3, 7

Hallway Obs. 9, 7, 3, 11, 13
Laboratory 4, 3, 12, 9, 7

All 2, 7, 9, 7, 3

TABLE V
THE BEST FIVE FEATURES FOR EACH CLASSIFIER.

allow better results (Table V) are radius (9), mean average
deviation from median (3), jump distance (4), and linearity
(7). They are almost the same features reported in [7].
From a general viewpoint, our experimental results confirm
with independent implementation and assessment, the results
reported in [7].

B. Evaluation of People Filtering

The aim of the second set of experiments is the evaluation
of the impact of people dynamics on operations that assume
a static world. In particular, the described leg detector
can be directly exploited for all the methods that extract
geometric information from laser scans. For example, scan
matching allows the estimation of local robot motion by
aligning a pair scans acquired in two different locations. Scan
matching presumes that two consecutive scans overlap on the
common region when the correct rigid motion is applied.
However, if the two scans contain segments corresponding
to dynamic objects like people, the relative position between
these segments and the environment may change.

In these experiments, the illustrated classifier is used to
filter the scan segments corresponding to legs that should
not be considered in scan alignment. The robot moved with
a mean speed of 0.2 m/s acquiring a laser scan approxi-
matively every 100 ms. Experiments were performed in two
environments. The first environment is the hallway of the
Faculty shown in Figure 1(c). Since the people leg detector
was not trained in this setting, we used the classifier trained
with the Hallway Obs. dataset. The size of this environment
allowed the robot to cover a path of about 25 m. The second
environment is the hallway of the Computer Engineering
building (Figure 1(a)), where classifier performance was
tested. One or two people were walking in the environment at
moderate speed. A standard scan matcher based on iterative
closest point (ICP) algorithm [11] has been used. Since no
ground truth information was available, the final robot pose
estimated using scan matching on filtered scans has been
compared with the final pose estimated on raw scans. These
data do not represent a real error, but a displacement between
two different evaluations.

Table VI illustrate the displacements for each coordinate
of robot pose obtained in the experiments in the Faculty
hallway. The overall position displacement is 9.3 cm on
a distance of about 25 m. Thus, the scan matcher is only
affected to a limited extent by the presence of people. A
second experiment was performed in a setting where the

Final Coordinate x (m) y (m) θ (m)
People Filtering 16.026 9.006 0.0114

No People Filtering 15.942 8.967 0.0180

TABLE VI
RESULTS OF SCAN MATCHING WITH PEOPLE FILTERING IN THE FACULTY

HALLWAY.
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Fig. 2. Displacements between the final position (top) and between the
final angle (bottom) of robot estimated by scan matching with leg detection
enabled and disabled in Computer Engineering building. The displacement
changes with the number of skipped scans.

people leg detector has been trained and tested. Figure 2
shows the position (top) and the angular (bottom) displace-
ments varying with the number of skipped scans for a single
experiment. In several cases, the human motion is slow
when compared with the frequency of sensor acquisition
and dynamic objects could be considered approximately
static in two consecutive scans. Scans are then skipped
to simulate systems subjected to computational load that
cannot perform scan matching between all the pairs of scans
or people moving at a faster rate. Note that the angular
displacement is negligible even if the number of skipped
scans is increased. Thus, orientation is not affected by people,
at least in an environment like the considered hallway that
has the strong reference provided by the parallel walls. On
the other hand, the position displacement increases from
about 1 cm to 7 cm, when 8 scans are skipped, even though
not monotonically. Thus, the evaluation of position is less
robust than the evaluation of orientation, but scan matching
is only marginally improved by people removal.

We interpret these results as follows. Motion estimation
techniques like those based on scan matching may have the
ability to filter out people presence, especially when only few
slowly-moving people occlude a small portion of the scan.
However, people filtering technique may play an important
role for more cluttered and complex environments.

C. Towards Semi-unsupervised Labelling

The third set of experiments is devoted to the evaluation
of track persistency as a criterion for semi-unsupervised
segment labelling.



For this experiment, a simple tracking algorithm has
been implemented. Each segment belonging to a scan is
associated to the nearest segment of the previous scan.
The considered distance is the distance between the centers
of the two segments. Such naive association criterion is
sufficient to achieve the results illustrated in the following,
but a better segment matching would improve performance.
For example, an accurate association rule should evaluate
whether more segments correspond to the same object, e.g.
two legs belonging to the same person. The robot moved
in the hallway (Figure 1(a)) and acquired laser scans from
the environment, while one or two people wandered in front
of the range finder. Robot motion is estimated by matching
pairs of consecutive scans and each scan is filtered removing
the segments corresponding to legs as explained above. Such
estimation is used to move the segments of the previous scan
before performing the association.

Track Persistency Percentage
Sequence number People No People

1 79.13% 96.96%
2 83.23% 96.87%
3 92.27% 96.82%
4 89.29% 97.14%

TABLE VII
TRACK PERSISTENCY PERCENTAGE

The first parameter evaluated is the persistency of people
tracks and no people tracks. A segment with a given clas-
sification is called persistent if it is associated to another
segment with the same classification. The persistency of a
category track can then be measured by the ratio between
the number of persistent segments and the total number of
segments belonging to this category. Table VII shows the
persistency ratio of people tracks and of no people tracks
for four scan sequences acquired in the hallway. People
persistency is about 80% for two sequences and 90% in the
other two sequences. Such high values demonstrate that both
the classifier and the tracking system work quite well.

However, we are interested in the remaining 10 − 20%
of positively classified segments that are associated to nega-
tively classified segments in the previous scan. Such negative
segments are possibly false negative. Currently, the tracking
algorithm is not sufficiently accurate to make a decision and
to add them to the training set.

V. CONCLUSION

In this paper, we experimentally evaluated an algorithm
for detecting people based on boosted features and tested
two multiple scan applications. In particular, we found that
the people detector performs a correct classification in about
90% of cases, when the training set has been acquired in the
same environment of the test set. The percentage decreases
when a different training set is used. Differences between the
results illustrated in this paper and in [7], where the algorithm
was proposed, may be related to the segmentation method.

Furthermore, the classifier has been applied to filter peo-
ple presence and improve scan matching in a populated

environment. Experimental results demonstrate that scan
matching is robust to the violation of the static environment
assumption and that people filtering marginally modifies the
estimation. However, further experiments in cluttered and
complex environments are likely to emphasize the benefits
provided by the people detector.

The third contribution of this paper is the experimental
evaluation of track persistency over a sequence of scans. A
track corresponding to a person is persistent if the segment
associated to the given track in each scan is often classified
correctly. Experiments illustrate that the people detection
algorithm recognizes tracks with high persistency and only
in few cases a person segment is not associated to another
segment classified in the same way. Such track interruptions
are due to several reasons, but may correspond to false
positives of the algorithm. Therefore, persistency may be
used to improve people detection by collecting misclassified
segments for further training.
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Abstract— This paper describes a stereo-based person detec-
tion and tracking method for a mobile robot that can follow a
specific person in dynamic environments. Many previous works
on person detection use laser range finders which can provide
very accurate range measurements. Stereo-based systems have
also been popular, but most of them have not been used for
controlling a real robot. We propose a detection method using
depth templates of person shape applied to a dense depth
image. We also develop an SVM-based verifier for eliminating
false positive. For person tracking by a mobile platform, we
formulate the tracking problem using the Extended Kalman
filter. The robot continuously estimates the position and the
velocity of persons in the robot local coordinates, which are then
used for appropriately controlling the robot motion. Although
our approach is relatively simple, our robot can robustly follow
a specific person while recognizing the target and other persons
with occasional occlusions.

Index Terms— Person detection and tracking, Mobile robot,
Stereo.

I. INTRODUCTION

Following a specific person is an important task for service
robots. Visual person following in public spaces entails
tracking of multiple persons by a moving camera.

There have been a lot of works on person detection
and tracking using various image features and classification
methods [1], [2], [3], [4], [5]. Many of them, however, use
a fixed camera. In the case of using a moving camera,
foreground/background separation is an important problem.

This paper deals with detection and tracking of multiple
persons for a mobile robot. Laser range finders are widely
used for person detection and tracking by mobile robots
[6], [7], [8]. Image information such as color and texture
is, however, sometimes necessary for person segmentation
and/or identification. Omnidirectional cameras are also used
[9], [10], but their limited resolutions are sometimes inap-
propriate for analyzing complex scenes.

Stereo is also popular in moving object detection and
tracking. Beymer and Konolige [11] developed a method of
tracking people by continuously detecting people using dis-
tance information obtained from a stationary stereo camera.

Howard et al. [12] proposed a person detection method
which first converts a depth map into a polar-perspective
map on the ground and then extracts regions with largely-
accumulated pixels. Calisi et al. [13] developed a robot sys-
tem that can follow a moving person. It makes an appearance
model for each person using stereo in advance. In tracking,
the robot extracts candidate regions using the model and

Camera Image Processing Part

Robot

robot motion
3D position 
of each person

PC

Robot Control Part

Fig. 1. Configuration of our system.

confirms it using stereo. Occlusions between people are not
handled in these works.

Ess et al. [14], [15] proposed to integrate various cues
such as appearance-based object detection, depth estimation,
visual odometry, and ground plane detection using a graph-
ical model for pedestrian detection. Although their method
exhibits a nice performance for complicated scenes, it is still
costly to be used for controlling a real robot.

In this paper, we propose a person tracking method using
stereo. We prepare several depth templates to be used for
dense depth images and detect person regions by template
matching, followed by a support vector machine (SVM)-
based verifier. Depth information is very effective in data
association with adjusting template size and values as well as
occlusion handling. Person detection results are input to Ex-
tended Kalman Filter-based trackers. The robot continuously
estimates the position and the velocity of persons in the robot
local coordinates to appropriately control its motion. Fig. 1
shows the configuration of our system. The main contribution
of the paper is to show that a simple depth template-based
approach, combined with EKF and an SVM-based verifier,
realizes a robust person following by a mobile robot.

II. STEREO-BASED PERSON DETECTION AND TRACKING

To track persons stably with a moving camera, we use
depth templates, which are the templates for human upper
body in depth images (see Fig. 2); we currently use three
templates with different direction of body. We made the
templates from the depth images where the target person
was at 2 [m] away from the camera. A depth template is a
binary template, the foreground and the background value
are adjusted according to status of tracks and input data.

A. Tracking

For a person being tracked, his/her predicted scene po-
sition is available from the corresponding EKF-tracker (see
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Fig. 2. Depth templates.

Sec. III-B). We thus set the foreground depth of the template
to the predicted depth of the head of the person and search
a region around the predicted image position for the person.

Concerning the background depth, since it may change as
the camera moves, we estimate it on-line. We make the depth
histogram of the current input depth image and use the Kth
percentile as the background depth (currently, K = 90).

For a depth template T (x, y) of H × W pixels (x ∈
[−W/2, W/2], y ∈ [−H/2, H/2]) and the depth image
ID(x, y), the 2D image position (x∗, y∗) is given as the
position which minimizes the following SSD (sum of squared
distances) criterion:

W/2
∑

p=−W/2

H/2
∑

q=−H/2

[T (p, q) − ID(x + p, y + q)]
2
. (1)

We use the three templates simultaneously and take the one
with the smallest SSD value as the detection result if that
value is less than some threshold.

Each template has the position of the head and the median
value of the neighboring region of that position is used as the
depth from the camera of the detected person. The accuracy
of the depth value is empirically estimated as about one
percent when a person is at about 3 [m] distance.

B. Detection

We continuously check if a new person appears in the
image. In this case, we do not have any prediction and
basically search the entire image. The foreground depth is
set to the depth of each image position and the background
one is set as in the same way as tracking.

We use the same SSD criterion (see eq. (1)) for judging
if a person exists at an image position. Since applying this
SSD calculation to the entire image is costly, we examine
the three boundary points, on the left of, on the right of, and
above the head position, and only when the depth values of
the points are one-meter farther than the depth of the head,
the SSD value is calculated and evaluated. We also set a
detection volume to search in the scene; its height range is
0.7 ∼ 2.0 [m] and the range of the depth from the camera
is 0.5 ∼ 5.5 [m]. In addition, if the image position under
consideration is in an already-detected person region, and
unless the its depth is at least one-meter smaller than the
depth of the region, the detection there is skipped. These
techniques can reduce the search cost largely. After collecting
pixels with qualified SSD values, we extract the mass centers
of all connected regions as the positions of newly detected
persons.

(a) Input images (b) Depth images

Fig. 3. Detection examples using depth templates.

(a) positive samples

(b) negative samples

Fig. 4. Training samples for the SVM-based verifier.

Figure 3 shows examples of detection using the depth
templates. Three rectangles in each depth image are detection
results with the three templates, and the one with the highest
evaluation value is shown in bold line. Even when the
direction of the body changed, it is possible to detect a person
stably by using multiple templates.

C. Intensity-based false detection elimination

A simple template-based detection is effective in reducing
the computational cost but at the same time may produce
many false detections for objects with similar silhouette to
person. To cope with this, we use an SVM-based person
verifier using intensity images.

We collected many person candidate images detected by
the depth templates, and manually examined if they are cor-
rect. Fig. 4 shows some of positive and negative samples. We
used 438 positive and 146 negative images for training. The
size of the sample images is normalized to 20×20. The SVM
is the one with RBF kernel (K(x1, x2) = exp(−γ||x1 −
x2||2), γ = 8.0). We use an OpenCV implementation of
SVM.

We examine the performance of the SVM-based verifier
using three image sequences, which had not used for training.
The numbers of persons appearing in the sequences are
zero, one, and two, respectively. We used the image regions



TABLE I

PERFORMANCE SUMMARY OF THE SVM-BASED VERIFIER.

# of persons results

judged to exist judged not to exist
0 exist —- —-

not exist 0 126

judged to exist judged not to exist
1 exist 414 5

not exist 0 75

judged to exist judged not to exist
2 exist 391 31

not exist 0 491

detected using the depth templates. Table I summarizes
the results. It is noted that the rate of eliminating false
positives is 100%. This is very important because a simple
depth template-based person detection tends to produce many
false positives. On the other hand, the verifier sometimes
eliminates actual person regions; the false negative rate is
about six percent. The EKF-based tracker can usually cope
with such an occasional failure of person detection.

III. PERSON TRACKING AND ROBOT CONTROL

A. Configuration of our system

Figure 5 illustrates the coordinate systems attached to our
mobile robot and stereo system. The relation between the
robot and the camera coordinate system is given by

Zc

[

x y 1
]T

= A
[

R | T
] [

Xr Yr Zr 1
]T

, (2)

where A, R, and T show the intrinsic parameters matrix,
the rotation matrix, and the translation vector, respectively.

B. Estimation of 3D position using EKF

1) State equation: In the robot coordinate system, the
person’s position at time t is defined as (Xt, Yt, Zt). The
state variable xt is defined as

xt =
[

Xt Yt Zt Ẋt Ẏt

]T

,

where Ẋt and Ẏt denote velocities in the horizontal plane.
We first consider the case where the robot does not move.

The system equation is given by

xt+1 = F txt + Gtwt (3)

where wt is the process noise and

F t =

⎡

⎢

⎣

1 0 0 Δt 0
0 1 0 0 Δt
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤

⎥

⎦
, Gt =

⎡

⎢

⎣

0 0
0 0
0 0

Δt 0
0 Δt

⎤

⎥

⎦
,

Qt = Cov(wt) = E
[

wtw
T
t

]

= σ2
w

[

1 0
0 1

]

.

We then consider the case where the robot moves. Figure 6
shows how a wheeled mobile robot moves. The distance of
two wheels is denoted as 2d. When each wheel rotates with
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Z
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X
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Y
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y

Fig. 5. Definition of coordinate systems.
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Fig. 6. Control of wheeled mobile robot.

speed vL and vR, the velocity v, the angular velocity ω, and
the turning radius ρ of the robot have the following relations:

v = (vR + vL)/2, ω = (vR − vL)/2d,

ρ = d(vR + vL)/(vR − vL).

The rotation angle Δθ and the moved distance ΔL during
time Δt are obtained respectively as

Δθ = ωΔt, ΔL = 2ρ sin(Δθ/2).

In addition, the robot movement ΔX and ΔY seen from the
robot position at time t are obtained respectively as

ΔX = ΔL cos(Δθ/2), ΔY = ΔL sin(Δθ/2).

We then have the relationship between the position and
the velocity of a person before and after the coordinate
transformation from the robot coordinate at time t to that
at time t + 1 as follows:

X(t+1) = (X(t) − ΔX) cosΔθ + (Y (t) − ΔY ) sin Δθ,

Y (t+1) =−(X(t) − ΔX) sinΔθ + (Y (t) − ΔY ) cosΔθ,

Ẋ(t+1) = Ẋ(t) cosΔθ + Ẏ (t) sinΔθ − v,

Ẏ (t+1) =−Ẋ(t) sinΔθ + Ẏ (t) cosΔθ.

By the combination of these equations and eq. (3), the state
equation that considers the robot movement u t = [vL vR]T

is expressed as

xt+1 = f t(xt, ut) + Gtwt, (4)



where

f t(xt, ut) =
⎡

⎢

⎢

⎣

(Xt + ΔtẊt − ΔX) cos Δθ + (Yt + ΔtẎt − ΔY ) sin Δθ

−(Xt + ΔtẊt − ΔX) sinΔθ + (Yt + ΔtẎt − ΔY ) cos Δθ
Zt

Ẋt cos Δθ + Ẏt sinΔθ − v

−Ẋt sin Δθ + Ẏt cos Δθ

⎤

⎥

⎥

⎦

.

2) Observation equation: The observed person’s position
in the robot coordinate system is denoted as y t. The obser-
vation equation is expressed as

yt = Htxt + vt, (5)

where vt is the observation noise and

yt =

[

Xr

Yr

Zr

]

, Ht =

[

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

]

,

Rt = Cov(vt) = E
[

vtv
T
t

]

= σ2
v

[

1 0 0
0 1 0
0 0 1

]

.

3) Extended Kalman filter: The Extended Kalman filter
(EKF) are formulated using the the state eq. (4) and the
observation equation (5). The EKF can estimate the position
and the velocity of a person with their uncertainty estimates.

C. Data association and occlusion handling

3D position information is effective in data association.
We use the predicted 3D position to adjust the size and
the foreground depth of the depth templates to be used
(see Section. II-A). If a person is detected, then its 3D
position is tested with the Mahalanobis distance to see if
the matching can be made between the detected person and
the corresponding track.

3D information is also used for occlusion handling. In the
case where an occlusion relation is reliably predicted be-
tween two persons, if an occluding one is correctly detected,
only the prediction step in EKF is performed for the occluded
person. Possible occlusion relationships are enumerated by
examining the predicted 3D positions of tracks.

In an ordinary situation, persons pass each other with
keeping a certain distance (say, one meter) between them. In
our current setting, this distance difference can be detected
as long as they are within about four meters from the camera;
this is enough for the robot to correctly recognize the person
motion in a local region around the robot.

Figure 7 shows an example of correctly tracking two
persons under occlusion and depth change. In the middle
row of the image, the person behind is completely occluded
and only the prediction step in EKF is performed. After the
occlusion, the track continues correctly.

D. Tracking algorithm

The image processing part (see Fig. 1) works as follows:
1) Stereo processing: The depth image is made with a stereo
camera.
2) Person tracking: Each person is tracked by using the
EKF described in Section III-B.

input images depth images

Fig. 7. Correctly tracking two persons in an occlusion case.

2.1) Prediction: The 3D position and its uncertainty at
the current time t are predicted from the state variable at
the previous time t − 1. They are then projected to 2D
image by eq. (2). The projected uncertainty region is used
for determining the predicted region.
2.2) Observation: The predicted region is searched for
the person by the method described in Section II-A. The
templates used for search are made based on the depth to
the person. After the search, the person’s 3D position y t

is calculated by eq. (2) based on image coordinates (x, y)
and distance from camera Zc = D.
2.3) Data association: Correspondences are made be-
tween tracks and observations by the procedure described
in Section III-C.
2.4) Update: The state variable is updated, if an obser-
vation is obtained.

3) Detection: The persons who appear newly in image are
detected with depth templates.
4) Communication: The estimated position is sent to the
robot control part, and the rotational speeds of the left and
right wheels are received.

IV. CONTROL TO FOLLOW A SPECIFIC PERSON

The robot with two-wheel drive follows a circular trajec-
tory from the current to the target position (path A in Fig. 8).
In this case, the speeds for the wheels to move the robot at
velocity v is calculated as follows. From the equation:

ρ2 =
{

(X/2)
2
+ (Y/2)

2
}

+
{

(X/2)
2
+ (ρ − Y/2)

2
}

,

we have

ρ = (X2 + Y 2)/2Y.
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Fig. 8. Path to target position.

Then we can calculate the velocities as:

vL = v
(

1 − d
ρ

)

= v
(

1 − 2dY
X2+Y 2

)

,

vR = v
(

1 + d
ρ

)

= v
(

1 + 2dY
X2+Y 2

)

.

When the robot follows this circular path, however, since the
turning rate of robot orientation is relatively slow, the target
person tends to go out of the field of view. On the other
hand, the robot first turns and then moves straight toward
the target like path B, the robot movement is not smooth.
We thus use the one like path C, on which the robot turns
to the target while moving ahead. In this case, the velocity
of each wheel is adjusted as follows:

vL = v
(

1 − k 2dY
X2+Y 2

)

, vR = v
(

1 + k 2dY
X2+Y 2

)

.

This means the turning radius ρ is reduced to ρ/k.

V. EXPERIMENTAL RESULT

A. Experimental setup

We have implemented the proposed method on a People-
Bot (by Mobile Robots) with a Bumblebee2 stereo camera
(by PointGrey Research) for the experiments (see Fig. 5).
A note PC (Core2Duo, 2.6GHz) performs all processes in-
cluding stereo calculation, person detection and tracking, and
robot motion control. The processed image size is 512×384
and the processing time is about 90 [msec/frame]. Table II
shows the breakdown of processing time; our system can
process about eleven frames per second.

We implemented the software modules for person detec-
tion and tracking, motion planning, and robot control as
RT components in the RT-middleware environment [16] for
easier development and maintenance.

TABLE II

BREAKDOWN OF PROCESSING TIME.

Processing Time

1) Image acquisition & stereo processing 40 [ms]

2) Person tracking (in the case of two persons) 20 [ms]

3) Person detection 10 [ms]

4) Communication, display, and save data 20 [ms]

Total 90 [ms]

person C
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person A
robot

ceiling 
camera
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Fig. 10. Initial positions of the robot and the persons.

person A

person B

robot

4 m
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Fig. 11. Trace of two persons and the robot.

B. Person following experiments

Figure 9 shows a result of tracking. The left row images
are the results of person detection. Each circle in the image
shows the result of observation with depth templates, and
each small point shows the 3D head position estimated using
EKF. The right row images show the positions of the robot
and the persons taken by a ceiling camera. In addition, the
curves in the final frame (#156) shows the traces of the robot
and the persons.

Figure 10 shows the initial positions of the robot and the
persons. The robot moved toward person A who was detected
first and considered the target. Even when person B and C
passed between the robot and person A, the target person
was correctly tracked.

C. Evaluation of person position estimation

We evaluated the quality of the person position estimation.
Figure 11 shows the traces of the robot and two persons in
the robot initial coordinates. Person A moved on two edges
of a 4 × 4 [m] square drawn on the floor. Person B moved
so that it temporarily occluded person A.

The robot followed person A while estimating the posi-
tions of the persons. The averaged and the maximum error
in position estimation for person A were 125 [mm] and
336 [mm], respectively. This result shows that the position
estimation is accurate enough for the robot to follow a
specific person.
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Fig. 9. Experimental result with one person to follow and the other two.

VI. CONCLUSIONS AND FUTURE WORK

This paper has described a method of detecting and track-
ing multiple persons for a mobile robot by using distance
information obtained by stereo. We presented an EKF-based
formulation by which the robot continuously estimates the
position and the velocity of persons. Distance information is
effectively utilized for robust person detection, data associ-
ation, and occlusion handling. We realized a robot that can
robustly follow a specific person while recognizing the target
and other persons with occasional occlusions.

The current algorithm does not consider the case where
multiple persons are too close to be separated by depth
information. To cope with such cases, it would be necessary
to use other visual information such as color and texture.
It is also necessary to manage static obstacles such as
furniture as well as an effective path planning to realize a
person following robot that can operate in more complex
environments.
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Abstract—People searching and tracking (SAT) is a key 

technology for interactive robots since the tracked people are 

sheltered by environments frequently. For robots, it is a 

tracking problem given that the target is observable, but 

otherwise it is a searching problem. Traditional tracking 

algorithms may lead to divergent estimation of object position 

when moving objects are unobservable. Moreover, SAT 

conditioned on simultaneous localization and mapping (SLAM) 

is complex since it aims at estimating people position, robot 

position, and map under sensor uncertainty. Motivated by this, 

we propose a novel stream functions and Rao-Blackwellised 

particle filter based SAT algorithm in this paper. This laser 

based algorithm is conditioned on simultaneous localization and 

mapping (SLAMSAT) to search and track people. With this, 

the position of the targeted person sheltered by the environment 

can be successfully estimated by the virtual stream field in a 

mapped environment. Our experimental results show that this 

algorithm can search and track people effectively.  

 

I. INTRODUCTION 

IN a dynamic environment, the robot navigation problem 

becomes interactive and it includes leading, following, 

intercepting, and obstacle avoiding. For most applications, a 

robot should be capable of tracking, following, 

self-localization, and obstacle avoidance in an unknown 

environment. Most tracking algorithms aim at correctly 

estimating the position, velocity, and acceleration of moving 

objects based on the past and sensor measurement [1]. Object 

tracking can be realized with Kalman filter (KF) with 

constant velocity model and/or constant acceleration model 

[2]. With particle filter (PF), objects with nonlinear states, 

non-Gaussian probability distribution, and multi-hypotheses 

are tracked with higher accuracy although the price is its high 

computational complexity. SLAMMOT uses scan matching 

and EKF with laser range finders to simultaneously estimate 

robot position, map, and object state [3]. The conditional PF 

estimates people motion conditioned on the probability 

model of robot position with a previously mapped 

environment [4]. 
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Fig.1. The relationship among SLAM, SLAP, SLAMMOT and SLAMSAT. 

 

The tracking problem will turn into the searching problem 

if moving objects are unobservable. In [5], a map-based 

tracking algorithm using Rao-Blackwellised particle filter 

(RBPF) models the physical interaction between the ball and 

the wall even if the ball is unobservable. However, this 

algorithm can only track passive objects. Dynamic action 

spaces can be utilized to search and explore a moving object 

which goes toward one of the known destinations [6]. SAT 

techniques autonomously search and track objects using 

Bayesian estimator [7]. However, these algorithms cannot 

achieve simultaneous localization, tracking, and searching in 

an unknown environment. Motivated by this, a 

self-localization and partially observable moving object 

tracking (POMOT) algorithm is proposed in [8]. This 

algorithm is designed for a static and known environment. 

However, a robot has to localize itself, map, and search and 

track objects in most applications. 

 As shown in Fig. 1, objects can be static or dynamic. If the 

dynamic object is out of sight, it will be an unobservable 

object. Otherwise, it will be an observable object. 

Simultaneous localization and people tracking (SLAP) is to 

estimate robot and people position [4]. Localization and 

POMOT is to estimate robot and people position even if the 

person is unobservable [8]. SLAMMOT is to estimate robot, 

map and moving objects position [3].  

In this paper, we propose a novel stream field based SAT 

algorithm conditioned on SLAM called SLAMSAT. 

SLAMSAT is to estimate robot, map and people position 

even if the person is unobservable. With stream field, we 

model interactions among goal position, updated 

environmental features, and people position. Traditional 

tracking algorithms deemed that objects move actively with 

velocity and acceleration generated themselves. But from the 

viewpoint of the stream field, object motion is passive due to 

the attraction and rejection forces resulted from the goal and 

environment. Based on this, we can still keep SAT the object 

Stream Field Based People Searching and Tracking  

Conditioned on SLAM 

Kuo-Shih Tseng and Angela Chih-Wei Tang 



 

 

 

position based on the virtual stream field. The remainder of 

the paper is organized as follows. Section II describes the 

stream field based motion model for the RBPF based SAT 

proposed in Section III. Section IV gives our AdaBoost 

based leg detection. In Section V, we present the proposed 

SAT algorithm which combines the stream field and RBPF 

conditioned on the EKF SLAM algorithm. The experimental 

results are given in Section VI. Finally, Section VII 

concludes this paper. 

II. MOTION MODEL USING STREAM FIELD 

 

 
Fig.2. An example of a real environment and its virtual stream field. (a) 

Obstacle avoidance. (b) Stream field. (c) Real environment. 

      

Complex potential is often employed to solve fluid 

mechanics and electromagnetism problems [9]. For an 

irrational and incompressible flow, there exists a complex 

potential consisting of the potential function ),( yxφ  and 

stream function ),( yxψ , where ),( yx  is the 2-D coordinate. 

Although the complex potential has been studied quite 

extensively in motion planning and obstacle avoidance due to 

its high efficiency, it is seldom considered in object tracking. 

Motion model plays a key role in probability based tracking 

algorithms. To achieve on-line prediction of motion model 

according to the estimated map and virtual goal, we adopt 

stream field based motion model proposed in [8] for SAT 

algorithm in this paper. In the following, we give a brief 

description of this motion model. More details can be found 

in [8].  

Stream field consists of a sink flow ),(sin yxkψ  and a 

doublet flow ),( yxdoubletψ  by 
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where ),( ss yx is the center of sink, ),( dd yx is the center of 

doublet, a is the radius of doublet, and C is the constant 

proportion to the flow velocity. If the number of doublet 

flows is more than one, the stream field will be superposed by 

the sink flow and doublet flows. Details of stream fields can 

be found in [10]. Stream functions will be computed if the 

robot position, object goal, and obstacle positions are known. 

The object velocities are computed by the derivative of (1). 

In typical tracking algorithms, the object position at time t 

is modeled by ),( 11 −−= ttt f vxx , where 1−tv  is object 

motion at time t-1, and f is the object motion model. A robot 

cannot track a moving object successfully when the object is 

unobservable. By (1), we assume that objects will avoid a 

known obstacle (doublet) and move toward a virtual goal 

(sink) as in the stream field (Fig. 2(c)). Since the stream field 

constructs an active field where an object is moved inactively 

by attraction and rejection forces, we can predict object and 

goal position and construct search path using the known 

stream field. 

 A stream field is constructed by a virtual sink and a 

doublet resulted from a known environment, and then the 

object motion is predicted by 
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where ),( 1,1, −− toto yx is the object position at time t-1. To 

estimate the position of virtual goal of an unobservable 

moving object, a probability based tracking algorithm with 

multi-hypothesis would work better than that with single 

hypothesis. Thus, Section III adopts RBPF to estimate N 

possible positions of an object goal. 

III. RBPF BASED SAT USING STREAM FIELD BASED 

MOTION MODEL 

To improve the accuracy of motion prediction in search 

case, we adopt stream field based motion model. However, 

the major problems of tracking with multi-hypothesis (e.g. 

PF) using this motion model are its heavy computational load 

and the requirement of precise probability distribution for 

prediction in the searching case. Since RBPF is capable of 

reducing the heavy load due to multi-hypotheses and 

approximating the probability distribution function more 

precisely [11], we adopt RBPF for SAT. Our RBPF based 

SAT algorithm using stream field based motion model is 

quite different from traditional ones where prediction will 

diverge if the moving object is unobservable.  

Let the stream sample set { },1|, Niw
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where i

kO  is object state of the ith particle at time k including 

the mean ),( ,, kykx OO  and covariance
kO,Σ . Object goal i

kG  

consists of direction kG ,φ  and intensity
kU . D   is doublet 

position generated by map features. In our RBPF based SAT, 

PF estimates goal state 
i

kG  and KF estimates object state i

kO . 
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We factorize stream distribution into goal set distribution, 

object set distribution, and stream set distribution at time k-1 

as follows. 
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 After sampling goal positions, object set distribution is 

divided into two cases. It will be the tracking case if the robot 

detects object successfully, otherwise it will be the searching 

case.  
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For the tracking case, object set distribution is derived from 

Bayes theorem and updated by KF as follows.  
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Finally, we resample stream sample set after computing the 

particle weightings. Based on the predicted object goal 

position, the algorithm can keep predict the object position 

when the object features are occluded or are fragmentation.  

IV. LEG DETECTION 

Detection is a necessary stage prior to tracking. 

Algorithms of laser based people detection usually work well 

only if the scan data of one or two of human legs is available. 

In [14], AdaBoost based leg detection is proposed for people 

detection.  However, such algorithm will fail if the scan data 

of either leg is not available due to the sheltering effects 

resulted from environments. Another possible solution is to 

detect based on motion. However, it is difficult to distinguish 

slower legs from static objects.  

 
In [15], the authors propose a multi-hypothesis leg-tracker 

for occlusion problem under known map. In SLAMSAT, a 

robot has to distinguish leg features (moving object) from 

static ones. Static features will be considered to be added into 

maps while leg features will be the candidates of tracked 

targets.  The robot will search the dynamic feature based on 

the virtual stream field if there is not any dynamic feature 

detected.  

 

 In this section, we design a leg detection algorithm which 

is composed of AdaBoost, scan association, and data 

association of old landmarks. The decision flow of this 

detection algorithm is shown in Fig. 3. After applying 

AdaBoost based detection proposed in [14], all features are 

divided into leg features and non-leg features. Then, scan 

association determines whether a feature is static or dynamic 

by comparing scanned features at time t with those at time t-1. 

Let the Euclidean distance of a feature position at time t and a 

feature position at time t-1 be d. Please note that the feature at 

time t-1 could be static or dynamic. As shown in Fig. 4, a 

feature will be classified into a static one if d is smaller than 

the radius of black circle. Otherwise, this feature will be 

classified as a dynamic one. 

 Data association distinguishes whether a feature is for 

mapping or tracking based on the decision of scan 

association and AdaBoost based leg detection. If the static 

feature determined by scan association is not associated with 

any old landmark, it will be deemed as a new landmark. If a 

static or dynamic feature is associated with an old landmark, 

it will be deemed as an old landmark. Otherwise, the leg 

feature is still deemed as the leg. 

 It is a simplified task to distinguish static features from 

dynamic features using data association with a known map. 

However, such task will become difficult if a robot must 

simultaneously explore new landmarks with unknown map 

and search unobservable people. For example, when the 

dynamic features are sheltered by environments and a new 

feature is observable, it is difficult to distinguish a new 

landmark from a dynamic feature. A possible solution for 

such problem is employing multi-hypotheses based 

estimators instead of a single-hypothesis based one.  

 
Fig.4. Thresholds for feature classification in scan association. 

 
Fig.3. Decision flow of landmarks and leg.  



 

 

 

V. THE PROPOSED SAT ALGORITHM CONDITIONED ON 

SLAM 

 
Effective search of sheltered object relies on robust 

localization, mapping, and tracking. To improve prediction 

accuracy, a robot has to move toward the sheltered zone and 

get more object information. This section proposes a scheme 

where the robot can simultaneously localize it, map 

environment features, and SAT a moving object (Fig. 5).  

The SLAMSAT sample set is { }Nimr
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kkkk ≤≤= 1|,, SX , 

and 
i

kk

i

kOkykxkkrkkykx

i

kkkk UGOOmrrrmr ,,,,,,,,,,, ,,,,,,,, φθ ΣΣ== SX

where kr  is the robot state at time k and km  is the map state 

at time k. Our SLAMSAT factorizes states into goal set 

distribution, object set distribution, robot state distribution, 

and the previous state set distribution as follows.   
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SAT conditioned on robot position and map is 
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 Thus, we simplify (6) to be an EKF localization problem  
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Details of EKF localization can be found in [12]. 
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Our RBPF based SAT algorithm conditioned on SLAM is 

summarized in Table I. The EKF SLAM predicts and 

corrects robot position using EKF (lines 3-10). Laser 

measurements are represented as line features using the least 

square algorithm. The feature is either associated with a 

known landmark (line 7) or a leg feature (line 12). Goal states 
i

kG  are sampled and then the N kinds of object states i

kO  are 

predicted according to (1) (lines 15-16). Based on stream set 

distribution at time 1−k , we assume the distance between 

the object and the goal is fixed at 200 cm so that we only 

randomly sample sink flow direction 
kG ,φ

and sink flow 

intensity
kU for efficiency. If the ith particle is associated 

with a moving object, RBPF will update moving object 

position i

kO . This is described as follows. First, the algorithm 

computes the weighting of the ith particle 
i

kw  and particles 

will be resampled (lines 20-22). In tracking case, the stream 

sample set i

kS  including the object sample set i

kO and the goal 

sample set i

kG  will converge.  In searching case, it will keep 

predict the object sample set i

kO  based on the previous 

stream field i

kS 1−
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Fig. 5. Dynamic Bayesian Networks (DBNs) of SLAMSAT. 



 

 

 

VI. EXPERIMENTAL RESULTS 

We adopt UBOT with one SICK laser as the mobile robot 

platform and a 1.6 GHZ IBM X60 laptop with 0.5G RAM as 

the computing platform. The area of the experimental 

environment is 3.6m by 3.6m. We use PhaseSpace for the 

precise ground truth of people and robot trajectories [13]. 

The LEDs of PhaseSpace are mounted on two legs of the 

people and Ubot (Fig. 6(b)). The people walks along the line, 

and the robot follows the people through the remote control 

(Fig. 6(a)). The person is sheltered by the desk, bookcase and 

chair frequently so that tracking may turn into the searching 

case. 

 
Fig.6. Environment setup: (a) Walking trajectory. (b) The experimental 

environment. 
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Fig.7. (a) Trajectories of KF, PF, RBPF, and ground truth. (b) Errors of KF, 

PF and RBPF. 

 

 

 
Fig.8. The experimental results of SLAMSAT. Small white circles are 

mapped landmarks. Black and black points are static and dynamic features, 

respectively. Black circle and red circle are robot position of odometer and 

estimated robot position of EKF SLAM, respectively. Blue circle is the 

original point. Blue square is the estimated people position of KF. Pink 

circle is the estimated people position of PF. White/Red circle is estimated 

people position of RBPF when it is the searching/tracking case. Red solid 

circle is people goal (sink) position of stream field. Green square is the 

ground truth of people position. (a) 44th frame. (b) 45th frame. (c) 46th frame. 

(d) 47th frame. 

 

The confusion matrices of detection based on AdaBoost 

only and detection based on AdaBoost, scan association and 

data association are presented in Tables II and III, 

respectively. Obviously, scan association and data 

association increase accuracy rate of detection. 

The tracking trajectories are shown in Fig. 7. In searching 

case, KF diverges faster than PF while RBPF keeps 

 
(a)                                                  (b) 

 
(c)                                                  (d) 

TABLE IV.  

Comparisons of tracking errors. 

 Total mean (cm) Total std. (cm) 

KF 107.4 77.59 

PF 94.0 48.39 

RBPF 63.7 26.30 

 

TABLE III.  

Confusion matrix of AdaBoost, scan association and data 

association. 

 Detected Label  

Ground Truth Person No Person Total 

Person 39 (88.8%) 5(11.2%) 44 

No Person 23 (5.9%) 367(94.1%) 390 

TABLE II.  

Confusion matrix of AdaBoost detection. 

 Detected Label  

Groud Truth Person No Person Total 

Person 39 (88.8%) 5(11.2%) 44 

No Person 45 (11.4%) 345 (88.6%) 390 

 

(a)                                         (b) 



 

 

 

predicting the object position based on the stream field. 

Comparisons of average tracking errors among KF, PF, and 

RBPF are shown in Table IV. The average tracking errors of 

KF, PF, and RBPF are 107.4cm, 94.0cm, and 63.7cm, 

respectively.  

 
Fig.9. The experimental results of SLAMSAT with false data association. (a) 

58th frame. (b) 59th frame. (c) 63th frame. (d) 64th frame. 

 

The experimental results of SLAMSAT are shown in Figs. 

8 and 9.  As shown in Figs. 8(a) and 8(b), the KF and PF 

based tracking keep predicting people based on their motion 

model. However, RBPF can further keep searching people 

position based on the virtual goal. Figures 8(c) and 8(d) 

shows the incorrect KF estimation which is resulted from 

false detection. Parts of the PF particles are associated with 

the wall feature while others are not. Accordingly, the people 

position estimated by PF is between those by KF and RBPF. 

Nevertheless, RBPF can still keep searching people position 

based on the virtual goal.  

In Fig. 9, the algorithm will infer that the chair is the 

person if the chair is deemed as leg features and the person is 

out of sight but near the chair. The false alarm of leg 

detection may result in the incorrect estimation of KF and 

RBPF (Fig. 9(a)). Also, the incorrect PF estimation is 

resulted from another false alarm of leg detection. As shown 

in Fig. 9(b), the incorrect estimation of KF and PF are 

resulted from false detection. However, RBPF can still keep 

searching people position based on the virtual goal. In Fig. 

9(c), KF and PF diverge when there is no feature near the last 

estimation. When the leg feature is detected, the estimation 

of the people position by RBPF is near the feature so that 

RBPF can estimate the people position correctly. However, 

the feature position is far from that by KF estimation. Parts of 

PF particles are associated with the leg feature, but others are 

not so that the estimation of PF is inaccurate (Figs. 9(c) and 

9(d)). Obviously, the experimental results show that our 

proposed RBPF algorithm is better than KF and SIR PF in 

the searching and tracking case.   

VII. CONCLUSIONS 

This paper proposes a novel SAT algorithm based on 

stream functions and RBPF conditioned on SLAM called 

SLAMSAT. SLAMSAT estimates the moving object 

position, robot position, and map under sensor uncertainty. 

The experimental results show our algorithm can search and 

track moving objects effectively. 
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