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Abstract In this paper we compare the behavior of dif-
ferent interest points detectors and descriptors under the
conditions needed to be used as landmarks in vision-
based simultaneous localization and mapping (SLAM).
We evaluate the repeatability of the detectors, as well
as the invariance and distinctiveness of the descriptors,
under different perceptual conditions using sequences of
images representing planar objects as well as 3D scenes.
We believe that this information will be useful when se-
lecting an appropriate landmark detector and descriptor
for visual SLAM.
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1 Introduction

Acquiring maps of the environment is a fundamental task
for autonomous mobile robots, since the maps are re-
quired in different higher level tasks, such as navigation
and localization. In consequence, the problem of simul-
taneous localization and mapping (SLAM) has received
significant attention during the last decades. The SLAM
problem considers the situation in which an autonomous
mobile robot moves through an unknown space and in-
crementally builds a map of this environment while si-
multaneously uses this map to compute its absolute lo-
cation. It is an inherently hard problem because noise
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in the estimate of the robot pose leads to noise in the
estimate of the map and vice-versa. Typical SLAM ap-
proaches use laser range sensors to build maps in two and
three dimensions (e.g., [8,9,3,5,28]). However, in recent
years the interest on using cameras as sensors in SLAM
has increased. These approaches are normally denoted
as visual SLAM. The main reason for this interest stems
from the fact that cameras offer a higher amount of in-
formation and are less expensive than lasers. Moreover,
they can provide 3D information when stereo systems
are used.

The underlying SLAM algorithms used in laser and
vision are basically the same. However, the main problem
in visual SLAM is the selection of adequate landmarks.
That means that it is unclear which are the best visual
landmarks. In the case of laser-based SLAM, different
landmarks have been proposed with demonstrated good
results, such as lines or other geometrical features ex-
tracted from the range scans [1,21].

Common approaches in visual SLAM are feature-
based. In this case, a set of significant points in the
environment are used as landmarks. Mainly, two steps
must be distinguished in the selection of visual land-
marks. The first step involves the detection of interest
points in the images that can be used as landmarks. The
points should be detected at several distances and view-
ing angles, since they will be observed by the robot from
different poses in the environment. This situation is rep-
resented in figure 1, where the same points in the space
are observed by the robot from different poses in the
environment. At a second step the interest points are
described by a feature vector which is computed using
local image information. This descriptor is used in the
data association problem, that is, when the robot has
to decide whether the current observation corresponds
to one of the landmarks in the map or to a new one.
Typically, when the robot traverses previously explored
places, it re-observes landmarks seen before. In this case,
if the current observations are correctly associated with
the visual landmarks, the robot will be able to find its
location with respect to these landmarks, thus reducing
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the error in its pose. If the observations cannot be cor-
rectly associated to the landmarks in the map, the map
will be inconsistent. To sum up, the data association is
a fundamental part of the SLAM process, since wrong
data associations will produce incorrect maps.

Nowadays, a great variety of detection and descrip-
tion methods have been proposed in the context of visual
SLAM. In our opinion, there exists no consensus on this
matter and this means that the question of which interest
point detector and descriptor is more suitable for visual
SLAM is still open. This situation motivated the work
presented here. The problem of finding the best detector
and descriptor can be tackled in two different manners:

1. At the SLAM stage: This involves using a partic-
ular interest point detector, a description method
and building a map using a SLAM technique. Fi-
nally, the quality of the results should be analyzed to
evaluate different detectors and descriptors. In some
cases, the path of the robot estimated using a visual
SLAM approach is compared to the estimation us-
ing laser range data [7,29], since laser-based SLAM
usually produces more accurate results. However, the
visual SLAM results greatly depend on the SLAM al-
gorithm used and several implementation details. In
consequence, the results obtained with this procedure
may not be general.

2. At the landmark extraction stage: In this case the fo-
cus is on measuring the quality of the detectors and
descriptors in terms of stability and robustness un-
der image transformation, which are the properties
needed in a visual landmark. This evaluation is in-
dependent of the SLAM algorithm and is thus more
general. This is the approach we consider.

In this paper we compare the behavior of different
interest points detectors and descriptors under the con-
ditions needed to be used as landmarks in vision-based si-
multaneous localization and mapping (SLAM). We eval-
uate the repeatability of different interest point detec-
tors, as well as the invariance and distinctiveness of sev-
eral description methods, under changes in scale, view-
point and illumination. In order to do this we use se-
quences of images representing planar objects as well as
3D scenes. We have divided the problem of finding the
most suitable detector and descriptor for visual SLAM
into two parts. First, we concentrate on the selection of
the most suitable interest point detector. Second, we an-
alyze several description methods.

In the case of the interest point detectors, we ana-
lyze the repeatability of the points in a set of images
obtained from the same scene when viewed at differ-
ent distances, angles and light conditions. This situation
typically occurs in visual SLAM applications when the
robot explores the environment and observes the same
points from different poses. In order to do this we an-
alyze whether a point extracted in a reference image is
detected in the remaining images in the sequence.

Fig. 1 Some points in the scene are observed by the robot
from different poses

In order to evaluate the descriptors we have per-
formed a series of experiments in a matching context.
First, by means of precision and recall. Second, we apply
clustering measurements [27] to estimate how well the
descriptors representing the same landmark are grouped
in the different descriptor subspaces. These measurements
can be used to decide which descriptor has better sepa-
rability properties.

An extensive set of experiments has been carried out
with sequences of real indoor environment images. The
sequences include significant changes in scale, viewing
angle, as well as illumination changes. We believe that
these results would help the selection of visual landmarks
for SLAM applications.

We consider the case in which SLAM is performed
with a mobile robot that carries a camera. The camera
maintains always the same position with respect to the
robot and it rotates only over the vertical axis. This as-
sumption has been applied to many SLAM approaches [7,
24,29]. We additionally assume that the same landmark,
when rotated, converts into a different one. This assump-
tion is based on the fact that sometimes the same land-
mark indicates different information when rotated, for
example, a panel with different arrows indicating differ-
ent directions.

The remainder of the paper is organized as follows:
In Section 2 we introduce related work. Next, Section 3
presents the set of interest point detectors evaluated in
this work. Following, Section 4 describes the different
local image descriptors analysed here. In Section 5 the
methods to evaluate the detection methods are presented.
Section 6 deals with the techniques used to evaluate the
performance of the descriptors. Finally, in Section 7 we
present experimental results.
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2 Related Work

To the present days, different combinations of detectors
and descriptors have been used for mapping and local-
ization using monocular or stereo vision. For example,
in the context of monocular SLAM, Davison and Mur-
ray [4] used the Harris corner detector to find signifi-
cant points in images and described them using a win-
dow patch centered at the detected points. Lowe [16]
presented the SIFT transform, which combines an inter-
est point detector and a description method, which was
initially applied to object recognition applications [15].
Later, Se et al. [24] used SIFT features as landmarks in
the 3D space. Little et al. [14] and Gil et al. [7] addition-
ally tracked the detected SIFT points to keep the most
robust ones. Jensfelt et al. [11] use a rotationally variant
version of SIFT in combination with a Harris-Laplace de-
tector for monocular SLAM. Recently, Herbert et al. [2]
presented the SURF features, which also proposes an in-
terest point detector in combination with a descriptor.
Lately, Murillo et al. used the SURF features in localiza-
tion tasks [22] using omnidirectional images.

In the context of matching and recognition, many
authors have presented their works evaluating several
interest point detectors and descriptors. For example,
Schmid et al. [23] evaluate a collection of detectors by
measuring the quality of these features for tasks like
image matching, object recognition and 3D reconstruc-
tion. However, the mentioned work does not consider the
interest point detectors that are most frequently used
nowadays in visual SLAM.

Several comparative studies of local region detectors
and descriptors have been presented so far. For instance,
Mikolajczyk et al. [20] present a comparison of several
local affine region detectors. Similarly, Fraundorfer and
Bischof also present in [6] an evaluation of detectors,
but introducing a new tracking method in order to use
non-planar scenes. On the other hand, Mikolajczyk and
Schmid [19] use different detectors to extract affine in-
variant regions, but they focus on the comparison of dif-
ferent description methods. A set of local descriptors are
evaluated using a criterion based on the number of cor-
rect and false matches between pairs of images. All these
previous approaches perform the evaluation of detection
and description methods using pairs of images and ana-
lyze different imaging conditions.

In contrast to the previous approaches, we present a
novel approach in which the stability and invariability
of the interest points are evaluated along a sequence of
images obtained from the same scene, emulating the dif-
ferent viewpoints from which the robot observes a point
while performing visual SLAM tasks. The total variation
in the camera position from the first image to the last
image in the sequences is significant, as typically occurs
in visual SLAM. Instead of having pairs of correspondent
points in images, we consider clusters of points. A clus-
ter is composed of a point which has been observed from

different viewpoints in some images of the sequence and
its associated descriptor in each frame. Furthermore, we
evaluate separately the detectors and descriptors under
the particular conditions of visual SLAM.

3 Interest Point Detectors

In the following, we present five different interest point
detectors that are suitable to extract visual landmarks
in visual SLAM applications.

Harris Corner Detector: The Harris Corner Detector [10]
is one of the most widely used interest point detectors.
For each point in the image the eigenvalues of the second
moment matrix are computed. The associated eigenvec-
tors represent two perpendicular directions of greatest
change. A corner is characterized as a point with two
large eigenvalues, corresponding to a strong change in
both directions. In [4] Harris points are used to extract
visual landmarks in monocular SLAM.

Harris-Laplace: The interest points extracted by Harris-
Laplace are detected by a scale adapted Harris function
and selected in scale-space by the Laplacian operator.
This detector has previously been used in image index-
ing applications [18], as well as in bearing only visual
SLAM [11].

SUSAN: The Smallest Univalue Segment Assimilating
Nucleus (SUSAN) is an approach to low level image
processing [26]. It works by placing a circular mask over
the pixel in the image to be evaluated. The decision
whether a point is a corner or not depends on the number
of pixels similar to the central that lie inside the mask.
SUSAN has been traditionally used in object recognition
applications.

SIFT: The Scale-Invariant Feature Transform (SIFT)
is an algorithm that detects distinctive points in images
by means of a difference of Gaussian function (DoG) ap-
plied in scale space [16]. The points are selected as local
extrema of the DoG function. Next, a descriptor is com-
puted for each detected point, based on local image in-
formation at the characteristic scale. The algorithm was
initially presented by Lowe [15] and used in object recog-
nition tasks. Lately, it has been used in visual SLAM
applications [25,29,7]. In this work we separate the de-
tection process from the description, thus when used as
a detector, points are extracted using a DoG function.

SURF: The Speeded Up Robust Features (SURF) were
introduced by Bay et al. [2]. According to its authors [2]
SURF features are said to outperform existing methods
with respect to repeatability, robustness and distinctive-
ness of the descriptors. The detection method is based
on the Hessian matrix and relies on integral images to
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reduce the computation time. As with SIFT features, we
concentrate only on the detected points when used as an
interest point detector.

MSER: Maximally Stable Extremal Regions were in-
troduced by Matas et al. [17]. The regions are extracted
with a method similar to the watershed segmentation
algorithm. The method has been tested in wide-baseline
stereo images with significant scale and perspective dif-
ferences. This fact encourages to evaluate this detection
method, since, to the best of our knowledge, MSER has
not yet been applied to the visual SLAM problem.

Kadir: Kadir’s detector measures the entropy of pixel
intensity histograms computed for elliptical regions in
order to find salient points [12].

4 Local Descriptors

In this work we have evaluated descriptors according to
the requirements for visual SLAM. Some of the methods
have been used previously in the context of visual SLAM.
Next, we list the set of descriptors that have been stud-
ied.

SIFT: The SIFT transform assigns a global orientation
to each point based on local image gradient directions.
Next, a descriptor is computed based on orientation his-
tograms at a 4 × 4 subregion around the interest point,
resulting in a 128-dimensional vector [16]. To obtain illu-
mination invariance, the descriptor is normalized by the
square root of the sum of squared components.

GLOH: Gradient location-orientation histogram is an
extension of the SIFT descriptor [19], designed to in-
crease its robustness and distinctiveness. In order to com-
pute the GLOH descriptor, the SIFT descriptor is com-
puted at a log-polar location grid with three bins in ra-
dial direction and 8 bins in angular direction. Initially,
the descriptor is of size 272 but is reduced to a final
length of 128 by means of PCA analysis. According to [19]
the GLOH descriptor outperforms the SIFT descriptor
in several tests.

SURF: The SURF descriptor represents a distribution
of Haar-wavelet responses within the interest point neigh-
bourhood and makes an efficient use of integral images.
Three different versions of the descriptor have been stud-
ied: the standard SURF descriptor, which has a dimen-
sion of 64, the extended version (E-SURF) with 128 ele-
ments and the upright version (U-SURF). The U-SURF
version is not invariant to rotation and has a length of
64 elements [2].

Gray level patch: This method describes each landmark
using the gray level values at a 10×10 subregion around
the interest point. This description has been used in [4]
in the context of monocular SLAM.

Orientation Histograms: The computation of orienta-
tion histograms is based on the gradient image. For each
pixel a module and an orientation are computed. The ori-
entation is divided in a number of bins and a histogram is
formed with the values of the module. In [13] orientation
histograms are applied in mobile robot navigation.

Zernike Moments: The moment formulation of Zernike
polynomials [30] appears to be one of the most popular
in terms of noise resilience, information redundancy and
reconstruction capability. Complex Zernike moments are
constructed using a set of complex polynomials which
form a complete orthogonal basis set defined on the unit
disc.

5 Evaluation Methods for Interest Point
Detectors

In order to evaluate the different interest point detectors
introduced in Section 3, we use series of images obtained
from the same scene under different scales, viewpoints
and illumination. In Fig. 2 we show example images ex-
tracted from each sequence in different indoor environ-
ments. We are interested in evaluating which detector
allows us to extract the same points in the space when
the scene is observed at different distances and angles.

For each image in a sequence, we first extract the
interest points using the methods explained in Section 3.
Next, we would like to evaluate if a point detected in
one of the images appears in the other images in the
sequence. To do this we have implemented two different
algorithms, suitable for 2D and 3D scenes. We consider
that a 2D sequence is constituted by a planar object (e.g.
a poster), whereas a 3D scene contains both planar and
non-planar objects. In both cases, the sequences were
obtained from a typical laboratory. The evaluation was
performed independently for 2D and 3D scenes, since the
same detectors behave differently in each situation.

5.1 Matching the Position of Interest Points

The algorithms described in this section are capable of
predicting the position of the detected points along the
sequences by only establishing geometric constraints, thus
allowing us to perform the matching of the points in-
dependently of the description method. The points de-
tected in the scene with a particular position and ori-
entation of the camera are searched in the other images
of the sequence. Ideally, the same points should be de-
tected in every image of the sequence. However, due to
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j)

Fig. 2 Some example images from the sequences used in the experiments. Fig. 2(a) and (b) show two images from a scale
changing sequence (2D). Fig. 2(c) and (d) present two examples from a viewpoint changing sequence (2D). In Fig. 2(e)
and (f) examples from a 3D scale changing sequence are presented. Fig. 2(g) and (h) show two more examples with changes
in scale. In Fig. 2(i) and (j) two images with changes in illumination are shown.

image variations, some points tend to disappear in some
frames. The performance of the matching method is not
the scope of this paper; on the contrary, we employ it as a
tool in order to obtain the correspondences between the
detected points in the images. These correspondences are
used in the evaluation methods explained in Section 5.2.

In the 2D case, we used a method based on the ho-
mography matrix as in [23]. In this case, given a point X
in 3D space, we assume that this point projects at posi-
tion x1 = K1X in image I1 and at position xi = KiX
in image Ii, where K1 and Ki are projection matrices. If
we suppose that the point X is detected in both images,
then

xi = H1ix1, with H1i = KiK
−1
1 . (1)

The homography matrix H1i can be computed by se-
lecting manually four correspondences of coplanar points
between images 1 and i. In consequence, in order to find
correspondences between the points found in image 1 and
j, we proceed in this manner: first, we compute the ho-
mography matrix H1j by selecting manually four corre-
spondences between images 1 and j. Next, we can predict
the position of point x1 in the first image, which is com-
puted as: xj = H1jx1. If the predicted position lies at a
distance below ε pixels from an interest point detected in
the image j, then we consider that both interest points
are correspondent and the interest point is successfully
found. If no interest point lies in the neighborhood of the
predicted point, then we consider that the point is not
detected. In this case, we still look for the same point x1

in the remaining images of the sequence. The process is
repeated for every point detected in the first image in the
sequence. This method has been applied to sequences of
images containing planar objects, such as posters.

In the case of 3D scenarios, we have implemented a
tracking method based on the fundamental matrix. The
fundamental matrix is a 3 × 3 dimensional matrix with
rank 2 which relates the corresponding points between
two stereo images. Given a point x1 in image I1, the
fundamental matrix F computes the epipolar line on the
second image I2 where the corresponding point x′1 must
lie. The epipolar line is computed as l′ = Fx1 (see Fig-
ure 3). In consequence, two corresponding points will
satisfy the following equation

x′Ti Fxi = 0 . (2)

For each point xi the correspondent point in the other
image x′i is selected as the one with smallest distance to
the epipolar line. This strategy can cause a large number
of false correspondences, since several points can lie next
to a line. To restrict the correspondences, the point x′i
must lie inside a 10 × 10 pixel window centered at the
point xi. This is valid for the sequences used in the ex-
periments, since the camera moves slightly between con-
secutive images. In addition the correspondences were
checked manually in order to avoid false matches.

The computation of the matrix F is done in two steps.
First, seven correspondences between each pair of con-
secutive images are selected manually, which allows us
to compute a fundamental matrix F . Second, using this
fundamental matrix F we find a set of preliminary cor-
respondences that are used as input for the computation
of a second fundamental matrix F ′. In this second step,
the fundamental matrix is computed using a RANSAC
approach [31], which results in a more accurate matrix
F ′, that permits to find the final correspondences with
more precision. Fig. 4 shows examples of tracked points
along different sequences.



6 Arturo Gil et al.

Fig. 3 The point x′1 is the corresponding point of x1 in the
image I2. This point lies in the epipolar line l′ computed with
the fundamental matrix F .

In both 2D and 3D scenes we track the points ex-
tracted with any of the previously exposed algorithms.
Note that the tracking of the points is based only on
geometric restrictions and does not use any visual de-
scription of the points. Thus, the tracking is indepen-
dent of the description and we can study the detection
and description problems separately.

An example of a tracking using one of these methods
is shown in Figure 4. First, Harris points were extracted
at each image. Second, the correspondence of the points
is found along the sequence. When a point is not detected
in one of the images, we still look for it in the remaining
images of the sequence. In Figure 4 the points that could
be tracked along the whole sequence are shown.

5.2 Evaluation Criteria

To evaluate the different interest point detectors we study
their repeatability under changes in scale and viewpoint.
Once the correspondence of the points in a sequence has
been performed, we can define the repeatability rate rri

in the frame i of a sequence as:

rri =
npi

npr
, (3)

where npi is the number of interest points found in
image i in the sequence and npr is the number of interest
points detected in the reference image of the sequence.
This definition is similar to the employed in [23], but
extended to the case where the correspondence is made
across a set of images and not only a pair. A perfect
detector would detect the same points in the first and
the last frame, i.e. rri = 1 for every frame. However, as
we will see in the experiments, we normally observe a
decreasing tendency in rri, indicating that some of the
points observed in the first frame are lost in subsequent
frames.

When the robot explores the environment, it is desir-
able to obtain a set of visual landmarks that are robust
and stable. In order to do this a common technique con-
sists of tracking each point across consecutive frames and

include only the points that can be detected in p con-
secutive frames [14,7]. As a result, the number of land-
marks in the map is reduced and also the complexity
of the SLAM problem. Taking into account this require-
ment we analyze for how many frames we should track
a landmark before integrating it in the map. We use the
following conditional probability:

P (fj |fi) =
np1:j

np1:i
, j ≥ i, (4)

where, now, np1:k is the number of points that could be
tracked from the first frame until frame k in the sequence.
This value represents the probability of an interest point
to be tracked until frame fj given that it was tracked
until frame fi. This value ranges between 0 and 1. It
is 0 when all points tracked until frame fi are lost in
frame fj , and 1 if both frames fj and fi contain the
same tracked points. This value is particularly interesting
when fj is the last frame in the sequence. In this case
P (fj |fi) gives us the probability of a detected point to
be in the last frame, given that it was tracked until frame
fi. Expression (4) gives a prediction of the survival of an
interest point in future frames if the movement of the
robot remains similar. This expression can be used to
estimate the number of frames p a landmark needs to be
tracked before it is incorporated in the map.

6 Evaluation Methods for Local Descriptors

The evaluation of the different local visual descriptors is
done in three steps. First, we choose one of the interest
point detectors described in Section 3 and we apply it to
every frame in the sequence we want to analyze. Second,
we apply the correspondence method of Section 5.1 to
match the interest points along the sequence. Third, we
extract each of the descriptors presented in Section 4 at
the position of each interest point found at least in two
images in the sequence.

As a result of the previous steps, an interest point x,
which was found in N images in a sequence {f1, . . . , fN},
will be represented by M different sets Dx

1 , . . . Dx
M , where

the set Dx
m = {dx

m(1), . . . , dx
m(N)} represents the point

along the trajectory using the descriptor method m, and
each element dx

m(i) indicates the descriptor representing
the point x in frame fi. In our case m ∈ {Patch, SIFT,
SURF, E-SURF, U-SURF, Zernike, Histogram, GLOH}.

An example of this process is shown in Fig. 5. Here,
three interest points {x1, x2, x3} are tracked in three
frames. At each frame, each interest point is described
by two descriptors d1, d2 ∈ <2. From this tracking we
obtain three vector sets for the descriptor d1 which rep-
resent the points along the frames:

Dx1
1 = {dx1

1 (i− 1), dx1
1 (i), dx1

1 (i + 1)},
Dx2

1 = {dx2
1 (i− 1), dx2

1 (i), dx1
1 (i + 1)},

Dx3
1 = {dx3

1 (i− 1), dx3
1 (i), dx3

1 (i + 1)},
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Fig. 4 The top images are examples of a planar object under different changes in viewpoint. The bottom images depict a
3D scene under different scales. These are the first, the central and the last image of a sequence of 21 images (viewpoint
transformation) and of 12 (scale transformation). The tracked points are indicated by white marks.

In the same way we can obtain three sets for the second
descriptor d2. In the general case we will have V sets
of vectors for each descriptor m, where V is the num-
ber of points that where found at least in two images
in the sequence. We consider that each tracked point is
a visual landmark, and, in consequence, there exists V
visual landmarks. Using the description method m the
landmark is represented by N descriptors, each one cor-
responding to a different view.

Let us concentrate on only one descriptor, e.g. d1.
Each of the V sets Dx1

1 , . . . , DxV
1 , corresponding to the

selected descriptor, forms a cluster in the descriptor sub-
space. Each cluster represents the point x in the images
where it could be found. An example is given in Fig. 6.
Here, the three points {x1, x2, x3} of Fig. 5 are found
in 10 images, thus Dxv

1 = {dxv
1 (1), . . . , dxv

1 (10)} for each
point xv. For this example we assume again that d1 ∈ <2

and has two components d1 = {a, b}. Depending on the
performance of the description method 1, each set Dxv

1
forms a different cluster in <2 and represents the same

interest when viewed at different distances and angles.
Fig. 6 shows three possible clusterings, that depend on
the method used to describe the points.

6.1 Feature Matching

We would like to further evaluate the performance of
the descriptors in a feature matching context, by means
of recall and precision curves. In this way, not only do
we evaluate the quantity of correct correspondences ob-
tained, but also the relative cost of false positives. How-
ever, in contrast to the work exposed in [19] the evalu-
ation is made considering that each landmark is repre-
sented by a cluster, consisting of descriptors obtained at
different views of the same point in space. We consider
that this situation is common in visual SLAM, since in
most approaches the robots observe the same visual land-
marks from different distances and angles [24,7,29].
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Frame i Frame i+1
Frame i−1

x2 = {d1, d2}
x2 = {d1, d2} x2 = {d1, d2}

x3 = {d1, d2} x3 = {d1, d2}x3 = {d1, d2}

x1 = {d1, d2}

x1 = {d1, d2} x1 = {d1, d2}

Fig. 5 Three interest points are tracked along three consecutive frames. At each frame, each interest point xp is represented
by two descriptors: d1 and d2.

0 100
0

100

a

b

(a)

0 100
0

100

a

b

(b)

0 100
0

100

a

b

(c)

Fig. 6 Three examples of clusterings representing the three tracked interest points of Fig. 5. The clusters are created using
one descriptor with two features d1 = {a, b}. Fig. 6(a) shows three clusters with small within-class variance and small
between-class distances. Fig. 6(b) shows clusters with large within-class variance and small between-class distances. Finally,
in Fig. 6(c) clusters with small within-class variance and large between-class distances are shown. This clustering example is
based on [27].

By means of the tracking explained in Section 5.1, an
interest point x, which was found in, at least, two images
in a sequence, will be represented by M different sets
Dx

1 , . . . Dx
M . Thus, the set Dx

m = {dx
m(1), . . . , dx

m(N)} is
considered as a cluster and represents the point along the
trajectory using the descriptor method m when viewed
from different viewpoints, being N the number of images
where the point was found. We consider that there ex-
ists a total of V clusters, which correspond to the total
number of points that were tracked. Given one descriptor
that represents a particular view of a visual landmark,
we would like to find its correspondent cluster using a
distance measure. To do this we make use of the Euclid-
ean distance, defined as:

E =
√

(dxi
m − d

xj
m )T (dxi

m − d
xj
m ) (5)

where dxi
m is a descriptor belonging to the class ωi and

d
xj
m is a descriptor associated to class ωj .

For each descriptor dxi
m that we want to classify, we

compute the Euclidean distance to all the clusters in the
data set and look for the cluster that minimizes this dis-

tance. In addition, we know the correct correspondences
for all the descriptors: the correspondence is true when
the descriptor dxi

m is assigned to the cluster ωi and false
when the descriptor is assigned to a different cluster. As
a result, we have a list of descriptors, each one with an
associated minimum Euclidean distance to a cluster and
a true/false correspondence. Next, we sort in ascend-
ing order the list of matches according to the minimum
Euclidean distance. We use this list in order to compute
the precision and recall parameters, which are defined
as:

recall =
#correct matches retrieved

#total correct matches

precision =
#correct matches retrieved

#matches retrieved

In the expressions above, recall expresses the abil-
ity of finding all the correct matches, whereas preci-
sion represents the capability to obtain correct matches
when the number of matches retrieved varies. Select-
ing different thresholds for the Euclidean distance in the
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ranked list produces different sets of retrieved matches,
and therefore different values of recall and precision.
The factor ‘#matches retrieved’ represents the number
of matches in the list whose distance is below a given
threshold value, and varies from 1 to the total num-
ber of matches that compose the list (AV ). The variable
‘#correct matches retrieved’ is the number of correct
correspondences obtained for a given threshold in the
ranked list. The factor ‘#total correct matches’ is a con-
stant value, which expresses the total number of correct
correspondences in the list.

In a precision vs. recall curve, a high precision value
with a low recall value means that we have obtained cor-
rect matches, but many others have been missed. On the
other hand, a high recall value with a low precision value
means that we have obtained mostly correct matches but
there are also lots of incorrect matches. For this reason,
the ideal situation would be to find a descriptor that
obtains high values of both parameters simultaneously,
thus having values located at the upper-right corner in
the precision vs. recall curve.

6.2 Cluster Separability

The recall vs. precision curves give a result that needs
to be carefully interpreted, since it represents the per-
formance of the descriptors in different situations. For
this reason we are also interested in obtaining a value
that would allow us to rank the descriptors according
to its suitability for visual SLAM. In order to do this a
separability criterion is introduced in this section.

Ideally, a description method should be invariant to
image changes and should also provide a good distinc-
tiveness. In consequence, the cluster representing the
same interest point should be compact (small within-
class variance) and have a large distance to other clusters
representing different interest points (large between-class
distance). In this case, we would have a good separability
and the landmarks could be distinguished easier. How-
ever, if the clusters are very spread and have small sep-
arability between them, then the classification of land-
marks becomes difficult. Fig. 6 shows three examples of
clustering in <2. We can see here that the rightmost clus-
ters provide a better separation according to the previous
criteria, as they have a small within-class variance and a
large between-class distance.

To study the separability of the clusters representing
the interest points, i.e. within-class variance and between-
class distance, we use the J3 separability criterion [27].
This measure is based on two scatter matrices: Sw and
Sb. Sw is called within-class scatter matrix, and mea-
sures the within-class variance of a cluster. The between-
class scatter matrix Sb measures the between-class dis-
tance between different clusters. In our case, Sw mea-
sures the invariance of the descriptor to viewpoint and
scale changes, whereas Sb measures the distinctiveness of

the points described. For a given clustering, the within-
class scatter matrix Sw is computed as:

Sw =
V∑

i=1

PiSi, (6)

where Si is the covariance matrix for the class ωi:

Si = E[(x− µi)(x− µi)
T ], (7)

Pi the a priori probability of class ωi and µi the mean
descriptor for the class ωi. In this case we consider that
all classes are equiprobable. Obviously, trace(Sw) is a
measurement of the average variance, over all classes, of
the samples representing each class. In our case, each
class ωi represents, for a given descriptor m, the set of
vectors of a visual landmark along N frames, i.e. Dxi

m .
The between-class scatter matrix Sb is calculated as:

Sb =
V∑

i=1

Pi(µi − µ0)(µi − µ0)T
, (8)

where µ0 is the global mean computed as:

µ0 =
V∑

i=1

Piµi. (9)

trace(Sb) is a measurement of the average distance (over
all classes) of the mean of each individual class to the
global mean value. The J3 criterion is defined as:

J3 = trace(S−1
w Sm), (10)

where Sm is the mixture scatter matrix and is computed
as Sm = Sw + Sb. A good descriptor should have a low
value of Sw, since the variability of the vectors describing
the same class should be small. Furthermore, it is desir-
able that vectors describing different points are as dis-
tinctive as possible, resulting in a high value of Sb. In con-
sequence, a suitable descriptor would have a high value
of J3. This descriptor would have good results in terms
of the data association problem, despite of changes in
imaging conditions, such as viewpoint and scale changes.

To compare descriptors with different length we use
a normalized version of the criterion: J ′3 = J3

L , where L
is the descriptor length.

7 Experiments

In order to evaluate the different interest point detectors
and local descriptors, we captured 12 sequences of view-
point changing images, each containing 21 images. Addi-
tionally, we captured 14 sequences of images with scale
changes, each containing 12 images. Additionally, 2 more
sequences present changes in illumination, obtained us-
ing different combinations of natural and artificial light.
The images were obtained by opening and shutting the
window lids at our laboratory. It is worth noting the pres-
ence of shadows and non-linear effects in these sequences.
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All sequences were captured using a camera (Videre De-
sign MDCS3) mounted on a robotic arm in order to
achieve constant variations of viewing angle and distance
change. In the case of viewpoint changing sequences,
we moved the camera following a semicircular trajec-
tory with center at a point in the scene. We moved the
camera 2.5 degrees between consecutive images. Since we
captured 21 images, the total amount of angle variation
between the first and the last image in the sequence is
therefore 50 degrees. In the case of scale changing se-
quences the camera followed a linear trajectory, moving
0.1 meters between consecutive frames. The total dis-
placement of the camera between the first and the last
image in the sequence is 1.1 m. The sequences repre-
sent scenes with planar objects (such as posters) and
3D scenes (images at our laboratory). Examples of both
types of images are shown in Fig. 4. Finally, the images
were captured at different resolutions (320× 240, 640×
480 and 1280×960), so that the set of images was as much
representative as possible. The complete image data set
contains approximately 500 images and can be down-
loaded from http://www.isa.umh.es/arvc/vision/imgsDataBase/.

7.1 Evaluation of Interest Point Detectors

In the first experiment we extracted interest points at
each image of the sequences using the methods described
in Section 3. Next, the points were followed using the
techniques explained in Section 5.1. We computed the
repeatability rate using Equation (3) for each sequence.
The results are shown in Fig. 7 and Fig. 8 respectively.
The figures show the mean value and 2σ intervals ob-
tained for several sequences with the same image vari-
ations. In most of the cases, the Harris detector shows
the best results. For example, in Fig. 7(a) it achieves
a repeatability rates above 0.7 in all the images in the
sequence. In addition, in the 3D case, the Harris cor-
ner detector obtains a bigger difference with respect to
the other detectors. For example, in Fig. 8(b) the Harris
corner detector is able to find approximately a 60% of
the points in the last image of the sequence. It is worth
noting that the MSER detector obtained results com-
parable with the Harris corner detector, outperforming
Harris in the case of 2D images with changes in scale.
In general, we can observe that Harris-Laplace, SIFT
and SURF behave in a similar way, with poorer results
compared to the Harris corner detector. In the case of
3D scenes the SIFT detector obtained worse results. On
the other hand, Kadir’s detector obtained good results
in some of the experiments. However in the case of 2D
viewpoint changing scenes, the results were unsatisfac-
tory. In general the worst results are obtained by the
SUSAN detector.

The results obtained with illumination changes are
presented in Fig. 9(a) and Fig. 9(b) corresponding to two
different scenes the repeatability rate is plotted against

the mean brightness in the whole image, however, the il-
lumination changed in an non-linear way, with different
variations in the shadows. In this case, the Harris detec-
tor obtained the best results with difference. It is worth
noting that, in this case, the MSER detector obtained
substantially worse results. This degradation can be ex-
plained by the fact that MSER tries to extract regions,
which have been specially altered by shadows and other
artifacts.

Next, using the same sequences and tracked points,
we computed P (fn|fi) using Equation (4), that repre-
sents the probability that a point is found in the last
frame n given that it was tracked until the frame fi. In
this case, a tracking of the points was performed from
the first to the last image in the sequence. Once a point
is lost it is never considered again. The values were com-
puted for sequences with the same transformation, com-
puting at each frame a mean value and 2σ error bounds.
Fig. 10 and Fig. 11 show the results. For instance, in
Fig. 11(b) it can be observed that a point detected with
Harris which is tracked until frame 3 has a probability
of 0.6 of being tracked until the last frame. These curves
allow us to make a slightly different interpretation of the
data. The value of P (fn|f1) indicates the fraction of de-
tected points in the first frame that appeared in all the
frames of the sequence. For example, in Fig. 10(b) ap-
proximately a 55% of the points detected by Harris in the
first image could be tracked along the whole sequences.
Normally, the probability curves show an increasing ten-
dency, meaning that, if a point has been tracked success-
fully for a number of frames, it is normally more stable,
and consequently the probability that it also appears in
the last frame increases. Using this criterion, the Harris
detector and the MSER detector obtained comparable
results, followed by the remaining methods.

The results showed that the Harris corner detector
has demonstrated a high stability under changes in scale
and viewpoint in most of the experiments. The good re-
sults obtained by the Harris corner detector can be ex-
plained by the high amount of corner-like structures that
appear in the images that can be robustly extracted. It
is worth noting that the results highly depend on the set
of images used. For example, the Harris-Laplace detec-
tor shows a good behaviour when blob-like structures are
present in the environment. However, the main purpose
here was to find the best detector that would allow us to
perform visual SLAM in this particular environment.

7.2 Evaluation of Local Descriptors

First, we present the evaluation of local descriptors us-
ing a feature matching criterion as explained in Sec-
tion 6.1. Figures 12 and 13 show the results obtained in
viewpoint and scale changing images respectively, both
for 2D and 3D scenes. The figures represent the recall
and precision curves for each descriptor. The results
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Fig. 7 The left image shows the average repeatability rate of the interest points in all sequences of 2D scenes with changes
in viewpoint. The right image depicts the same values but for sequences of 3D scenes. Both figures show 2σ error bounds
computed for the sequences with the same changes in the image.
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Fig. 8 The left image shows the average repeatability rate of the interest points in all sequences of 2D scenes with changes in
scale. The right image depicts the same values but for sequences of 3D scenes. Both figures show 2σ error bounds computed
for the sequences with the same changes in the image.

are presented in Fig. 12 (viewpoint changes), Fig. 13
(scale changes) and Fig. 14 (illumination changes). In
the case of viewpoint changing images (Fig. 12), the
three versions of SURF (SURF, U-SURF and E-SURF)
and GLOH obtained similar results, achieving high val-
ues of recall and precision both in 2D and 3D. The U-
SURF descriptor shows good results with this criterion,
although it is not invariant to rotation. These results,
can be explained by the fact that the camera does not
rotate around its optical axis in the sequences.

In the case of scale changing images (Fig. 13) the
results are similar, in this case the GLOH descriptor
obtains the best results in the 2D case, outperforming
SURF-based descriptors. In the 3D case GLOH obtains
results similar to the SURF versions. Both SURF de-

scriptors and GLOH outperform the SIFT descriptors in
all the cases.

In Fig. 14 we show the results obtained with se-
quences with variations in illumination. In this case, the
SURF descriptors and GLOH present similar results. In
this case, the SIFT descriptor shows comparable results
with the before mentioned.

In the next experiment we computed the descriptors
at a local neighborhood of the points detected by the
Harris corner detector in each frame of the sequences.
The different description methods explained in Section 4
were applied. Tables 1 and 2 show the results of apply-
ing the J ′3 criterion to different sequences of 2D and 3D
scenes. Maximum values are indicated in bold face. The
U-SURF descriptor achieves the highest value of sepa-
rability in 96% of the sequences, outperforming signifi-
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Fig. 9 The figures show the repeatability rate of a sequence with illumination changes.
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Fig. 10 The left image shows the average value of Equation (4) of the interest points in all sequences of 2D scenes with
changes in viewpoint. The right image depicts the same values but for sequences with 3D scenes.Both figures show 2σ error
bounds computed for the sequences with the same changes in the image.

cantly the other descriptors. It is worth noting that the
sequences that have been used in the experiments do not
present changes in rotation. The reason for this restric-
tion is that, in most visual SLAM applications [7,29,11]
the camera moves parallel to the ground, and rotates
only around its vertical axis. This fact can explain the
high performance that the U-SURF has obtained in the
experiments.

When comparing only rotationally invariant descrip-
tors (SURF, E-SURF, SIFT and GLOH), it is remark-
able that SURF and E-SURF present similar results. In
this case, the computational cost of computing the ex-
tended version of SURF is not worth the trouble, since
the results are not improved substantially. Comparing
SURF with GLOH, in the 3D case, SURF always out-
performs GLOH in the viewpoint changing images and in

the scale changing images, whereas GLOH obtains better
results in the 2D sequences.

With reference to the rest of description methods
(patch, histogram and zernike moments), is is observable
that they do not present remarkable results. It is worth
noting that, in the case of the patch description, the re-
sults presented may underestimate the maximum capac-
ity of the descriptor to produce good matches. Typically,
the matches between different patches are obtained us-
ing the normalized cross correlation, which improves the
matching capability with illumination changes (e.g. [4]).
However, the Euclidean distance to the nearest neigh-
bour is often used to compare descriptors in a matching
context (e.g. [19]).
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Fig. 11 The left image shows the average value of Equation (4) of the interest points in all sequences of 2D scenes with
changes in scale. The right image depicts the same value but for sequences of 3D scenes.Both figures show 2σ error bounds
computed for the sequences with the same changes in the image.
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Fig. 12 The left image shows the recall vs. precision curve for the 2D sequences with changes in viewpoint. The image on
the right shows the results for the 3D sequences.

8 Conclusions

In this paper, we have focused on the evaluation of detec-
tion and description methods for visual landmarks under
the requirements of vision-based SLAM.

First, we analyzed each detector according to the
properties desired for visual landmarks. To do this, we
analyzed the stability of the points extracted using differ-
ent detection methods. The evaluation was performed in
image sequences where the total movement of the camera
is significant, as usually occurs in visual SLAM applica-
tions. On the one hand, we used the repeatability rate
in order to analyze the percentage of points found in one
image that can be found in the remaining images of the
sequence, and therefore are more stable. On the other
hand, the evaluation was also performed using the con-

ditional probability. This measure is really profitable for
performing SLAM tasks, since estimates for how many
frames a landmark should be tracked before being incor-
porated in the map.

In the case of local descriptors we analyze its cluster-
ing properties and matching performance. Two different
evaluation methods have been used in order to study the
local descriptors under changes in viewpoint and scale.
First, the descriptor were evaluated in a matching con-
text. To do this, each descriptor was assigned to the clus-
ter that minimizes the Euclidean distance over all clus-
ters. Next, recall and precision curves were computed
to compare the descriptors. It is noticeable that both
evaluation methods agree to conclude that GLOH and
the SURF versions are the most suitable descriptors in
the experiments that have been performed. The U-SURF
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Fig. 13 The left image shows the recall vs. precision curve for the 2D sequences with changes in scale. The image on the
right shows the results for the 3D sequences.
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Fig. 14 The left image shows the recall vs. precision curve for the images with illumination changes.

descriptor is not invariant to rotation. For this reason, it
is limited to applications where the camera only rotates
around the vertical axis, which is the case studied in this
paper. If we analyze separately the rotationally invariant
descriptors (SURF, E-SURF and SIFT), the results ob-
tained with different criteria show that SURF is the best
descriptor. In consequence, the SURF descriptor would
be the most suitable in situations where the rotation of
the camera is not constrained. Next, the evaluation was
performed using a clustering measurement, by means of
the J ′3 criterion [27], that allows to study the behaviour of

the local image descriptors associated to the same point
when observed from different viewpoints.

It is also relevant, that the SURF descriptors and
GLOH outperformed SIFT in all the situations analyzed
in this paper.

Finally, there are other factors that should be con-
sidered in the election of a detector and descriptor for
visual SLAM. An important parameter in this selection
is the computational cost of the detection and descrip-
tion methods. However, this is not the scope of this pa-
per. As an example, and according to its authors [2], the
SURF descriptor has a lower computational cost com-
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Table 1 J ′3 values computed in the viewpoint changing se-
quences.

Seq. SIFT GLOH SURF E-SURF U-SURF Patch Hist. Zernike

2D

1 22.90 24.93 36.87 34.18 126.63 15.53 2.48 6.39

2 15.89 18.37 39.45 34.00 119.58 9.03 1.83 2.93

3 10.18 15.00 30.49 25.81 118.64 6.06 1.85 2.90

4 27.24 58.99 68.32 57.81 184.06 15.78 2.13 6.54

5 23.75 16.49 27.60 28.32 55.94 13.59 2.02 5.87

6 13.38 10.05 29.45 23.47 67.36 6.83 1.77 3.68

3D

7 5.71 4.84 10.70 10.70 35.93 2.59 1.46 2.13

8 17.62 13.02 16.45 18.96 73.23 5.99 1.51 4.33

9 7.11 5.08 7.83 7.65 25.17 3.33 1.72 2.35

10 16.44 9.70 14.47 16.60 50.58 7.37 1.54 5.54

11 6.22 3.43 9.60 9.41 30.33 2.76 1.78 2.25

12 10.26 8.70 9.63 11.13 41.09 4.00 1.43 3.43

Table 2 J ′3 values computed in the scale changing sequences.

Seq. SIFT GLOH SURF E-SURF U-SURF Patch Hist. Zernike

2D

1 7.10 2.43 3.29 2.87 8.82 2.32 1.78 2.15

2 7.97 2.94 6.27 5.89 13.67 2.59 1.51 2.45

3 9.42 2.85 4.47 4.50 13.03 3.45 1.92 2.81

4 14.09 3.07 7.00 9.05 26.89 4.22 1.94 2.70

5 103.36 4.98 17.58 38.58 131.54 27.73 0.87 14.20

6 4.24 2.69 3.51 3.22 8.56 2.81 1.12 2.32

7 7.34 2.46 4.03 4.90 12.71 4.87 1.77 2.73

8 26.49 2.8311 5.99 10.62 22.65 12.34 2.89 9.05

3D

9 7.06 1.74 10.12 10.24 28.01 4.47 1.70 3.10

10 14.48 2.34 10.39 14.97 47.48 5.98 1.67 4.54

11 8.76 1.97 9.18 10.02 24.72 3.47 2.48 3.95

12 22.22 2.61 15.53 23.09 67.38 8.50 2.15 5.61

13 6.28 1.84 8.84 10.00 25.56 3.56 1.94 3.06

14 17.45 2.12 11.10 16.86 42.37 7.37 2.10 5.88

pared to SIFT, and this fact would facilitate the online
extraction of visual landmarks. In our opinion, the time
required detect points and compute descriptors depends
highly on implementation details. As a consequence, a
general comparison is difficult to obtain.
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2765 (2003)

2. Bay, H., Tuytelaars, T., Gool, L.V.: SURF: Speeded up
robust features. In: European Conference on Computer
Vision (2006)

3. Biber, P., Andreasson, H., Duckett, T., Schilling, A.: 3D
modelling of indoor environments by a mobile robot with
a laser scanner and panoramic camera. In: IEEE/RSJ
Int. Conf. on Intelligent Robots & Systems (2004)

4. Davison, A.J., Murray, D.W.: Simultaneous localisation
and map-building using active vision. IEEE Transactions
on Pattern Analysis and Machine Intelligence (2002)

5. Eustice, R., Singh, H., Leonard, J.: Exactly sparse
delayed-state filters. In: IEEE Int. Conf. on Robotics
& Automation (2005)

6. Fraundorfer, F., Bischof, H.: A novel performance evalu-
ation method of local detectors on non-planar scenes. In:
IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’05) (2005)

7. Gil, A., Reinoso, O., Burgard, W., Stachniss, C.,
Mart́ınez Mozos, O.: Improving data association in rao-
blackwellized visual SLAM. In: IEEE/RSJ Int. Conf. on
Intelligent Robots & Systems (2006)

8. Grisetti, G., Stachniss, C., Burgard, W.: Improved tech-
niques for grid mapping with rao-blackwellized particle
filters. IEEE Transactions on Robotics 23(1) (2007)

9. Hähnel, D., Burgard, W., Fox, D., Thrun, S.: An efficient
FastSLAM algorithm for generating maps of large-scale
cyclic environments from raw laser range measurements.
In: IEEE/RSJ Int. Conf. on Intelligent Robots & Sys-
tems. Las Vegas, NV, USA (2003)

10. Harris, C.G., Stephens, M.: A combined corner and edge
detector. In: Alvey Vision Conference (1998)

11. Jensfelt, P., Kragic, D., Folkesson, J., Björkman, M.: A
framework for vision based bearing only 3D SLAM. In:
IEEE Int. Conf. on Robotics & Automation (2006)

12. Kadir, T., Brady, M., Zisserman, A.: An affine invariant
method for selecting salient regions in images. In: Proc. of
the 8th European Conf. on Computer Vision, pp. 345–
457 (2004)

13. Kosecka, J., Zhou, L., Barber, P., Duric, Z.: Qualita-
tive image based localization in indoor environments. In:
Proc. of the IEEE Conf. on Computer Vision and Pattern
Recognition (2003)

14. Little, J., Se, S., Lowe, D.: Global localization using dis-
tinctive visual features. In: IEEE/RSJ Int. Conf. on In-
telligent Robots & Systems (2002)

15. Lowe, D.: Object recognition from local scale-invariant
features. In: Int. Conf. on Computer Vision (1999)

16. Lowe, D.: Distinctive image features from scale-invariant
keypoints. International Journal of Computer Vision
2(60), 91–110 (2004)

17. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide
baseline stereo from maximally stable extremal regions.
In: Proc. of the 13th British Machine Vision Conf., pp.
384–393 (2002)

18. Mikolajczyk, K., Schmid, C.: Indexing based on scale in-
variant interest points. In: Int. Conf. on Computer Vision
(2001)

19. Mikolajczyk, K., Schmid, C.: A performance evalua-
tion of local descriptors. IEEE Transactions on Pattern
Analysis and Machine Intelligence 27(10) (2005)

20. Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman,
A., Matas, J., Schaffalitzky, F., Kadir, T., Van Gool, L.:
A comparison of affine region detectors. International
Journal of computer Vision 65(1/2), 43–72 (2005)

21. Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B.:
Fastslam: a factored solution to the simultaneous local-
ization and mapping problem. In: Eighteenth national
conference on Artificial Intelligence, pp. 593–598. Amer-
ican Association for Artificial Intelligence, Menlo Park,
CA, USA (2002)

22. Murillo, A.C., Guerrero, J.J., Sagüés, C.: Surf features for
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