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Abstract— We present an integrated approach for creating
conceptual representations of human-made environments using
mobile robots. The concepts represent spatial and functional
properties of typical indoor environments. Our model is com-
posed of layers which represent maps at different levels of
abstraction. The complete system was integrated in a service
robot which is endowed with laser and vision sensors for
place and object recognition. It also incorporates a linguistic
framework that actively supports the map acquisition process
and is used for situated dialogue. In the experiments we show
how the robot acquires the conceptual information and how it
is used for situational and functional awareness.

I. INTRODUCTION

Recently, there has been an increasing interest in robots
whose aim is to assist people in human-like environments,
such as domestic or elderly care robots. In such situations,
the robots will no longer be operated by trained personnel
but instead have to interact with people from the general
public. Thus an important challenge lies in facilitating the
communication between robots and humans.

One of the most intuitive and powerful ways for humans to
communicate is spoken language. It is therefore interesting
to design robots that are able to speak with people and un-
derstand their words and expressions. If a dialogue between
robots and humans is to be successful, the robots must make
use of the same concepts to refer to things and phenomena
as a person would do. For this, the robot needs to perceive
the world similar to a human.

An important aspect of human-like perception of the world
is the robot’s understanding of the spatial and functional
properties of human-made environments, while still being
able to safely act in it. For the robot, one of the first tasks
will consist in learning the environment in the same way as
a person does, sharing common concepts like, for instance,
“corridor” or “living room”. These terms can be used not
only as labels but as semantic expressions that relate them
to some complex object or objective situation. For example,
the term “living room” usually implies a place with some
particular structure, and includes objects like a couch or a
television set. Moreover, a spatial knowledge representation
for robotic assistants must address the issues involved with
safe and reliable navigation control, with representing the
space in a way similar to humans, and finally, with the
way linguistic references to spatial entities are established
in situated natural language dialogues.
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Fig. 1. Anexample of a layered spatial representation. Solid arrows indicate
innate knowledge from the ontology. Dotted arrows refer to knowledge from
the environment: asserted, acquired or inferred.

In this work we present an integrated approach for creat-
ing conceptual representations of human-made environments
using mobile robots. The concepts represent spatial and
functional properties of typical indoor environments. Our
model is composed of layers containing maps at different
levels of abstraction as shown in Fig. 1. The lower layers
contain a metric map, a navigation map and a topological
map, each of which plays a role in navigation and self-
localization of the robot. On the topmost level of abstraction,
the conceptual map provides a richer semantic view of the
spatial organization, containing acquired, asserted and both
inferred and innate conceptual-ontological knowledge about



the environment. This model permits the robot to do spatial
categorization rather than only instantiation.

The complete multi-layered representation is created in a
semi-supervised map acquisition process, which is actively
supported by a linguistic framework. This has been integrated
into a cognitive system for mobile robots that is capable of
conceptual spatial mapping in an indoor environment and
that is endowed with the necessary abilities to conduct a
reflected, situated dialogue about its environment.

The rest of the paper is organized as follows. In Section II,
we present some related work. Section III describes our
multi-layered conceptual spatial representation. The map
acquisition process is outlined in Section IV. Situated di-
alogue is introduced in Section V. Section VI discusses
how to achieve a notion of situational awareness using our
conceptual representations. In Sections VII and VIII, we
present implementation details and results respectively from
an experimental evaluation of the integrated system. Finally,
some concluding remarks are given in Section IX.

II. RELATED WORK

Several approaches on mobile robotics extend metric maps
of indoor environments with semantic information. The work
by Diosi et al. [1] creates a metric map through a guided tour.
The map is then segmented according to the labels given by
the instructor. Martinez Mozos et al. [2] extract a topological
semantic map from a metric one using supervised learning.
Alternatively, Friedman et al. [3] use Voronoi Random Fields
for extracting the topologies. In our system we use a similar
approach to [2] for semantic classification.

Research in spatial representations has yielded different
multi-layered environment models. Vasudevan er al. [4]
suggest a hierarchical probabilistic representation of space
based on objects. The work by Galindo et al. [5] presents
an approach containing two parallel hierarchies, spatial and
conceptual, connected through anchoring. Inference about
places is based on objects found in them. Furthermore, the
Hybrid Spatial Semantic Hierarchy (HSSH) is introduced by
Beeson et al. [6]. This representation allows a mobile robot
to describe the world using different representations each
with its own ontology. Compared to these approaches our
implementation uses human augmented mapping for collect-
ing information. The communication with the robot is made
entirely using natural language and dialogues. Moreover our
conceptual representation comes from the fusion of acquired,
asserted, and both inferred and innate knowledge.

There are more cognitively inspired approaches to robot
navigation for conveying route descriptions from a techni-
cally naive user to a mobile robot. These approaches need
not necessarily rely on an exact global self-localization,
but rather require the execution of a sequence of strictly
local, well-defined behaviors in order to iteratively reach a
target position. Kuipers [7] presents the Spatial Semantic
Hierarchy (SSH). Alternatively, the Route Graph model
is introduced by Krieg-Briickner er al. [8]. Both theories
propose a cognitively inspired multi-layered representation
of the “map in the head”, which is at the same time suitable

for robot navigation. Their central layer of abstraction is the
topological map. Our approach differs in that it provides an
abstraction layer that can be used for reference resolution of
topological entities.

A number of systems have been implemented that per-
mit a robot to interact with humans in their environment.
Rhino [9] and Robox [10] are robots that work as tour-
guides in museums. Both robots rely on an accurate metric
representation of the environment and use limited dialogue
to communicate with people. The robot BIRON [11] is
endowed with a system that integrates spoken dialogue and
visual localization capabilities on a robotic platform similar
to ours. This system differs from ours in the degree to
which conceptual spatial knowledge and linguistic meaning
are grounded in, and contribute to, situational awareness.

III. MULTI-LAYERED CONCEPTUAL MAPPING

The aim of this work is to generate spatial representa-
tions that enable a mobile robot to conceptualize human-
made environments similar to the way humans do. These
concepts correspond to spatial and functional properties of
typical indoor environments. Following findings in cognitive
psychology [12], we assume that topological areas are the
basic spatial units suitable for situated interaction between
humans and robots. We also proceed from the assumption
that the way people refer to a place is determined by the
functions people ascribe to that place and that the linguistic
description of a place leads people to anticipate the functional
properties or affordances of that place. At the same time, the
constructed maps must allow for safe navigation and reliable
self-localization of the robot. Considering these ideas, our
final representation model is divided into layers, each repre-
senting a different level of abstraction. Each individual layer
is important for the overall system because each layer serves
a specific purpose. Starting from sensory input (laser scanner
and odometry), a metric map and a navigation map represent-
ing traveled routes are constructed. On the basis of detected
doorways, a topological partitioning of the navigation map is
maintained. All these layers play a crucial role for the robot
control systems. The conceptual map provides a conceptual
abstraction layer of the lower layers. In this layer, spatial
knowledge, innate conceptual knowledge and knowledge
about entities in the world stemming from other modalities,
such as vision and dialogue, are combined to allow for
symbolic reasoning and situated dialogue. Fig. 1 depicts the
four layers of the conceptual spatial representation.

A. Metric Map

The first layer of our model (Fig. 1, bottom) contains
a metric representation of the environment in an absolute
frame of reference. The geometric primitives consist of
lines extracted from laser range scans. Such lines typi-
cally correspond to walls and other flat structures in the
environment. The complete metric map is created by a
mobile robot using Simultaneous Localization and Mapping
(SLAM) techniques. The metric map is created online as
the robot navigates around the environment based on the



Fig. 2. The metric map is represented by lines. The navigation map is
visually represented by the stars. Different colors represent different areas
separated by doors, which are marked by bigger red stars.

same framework as in Folkesson et al. [13], which uses
general representations for features that address symmetries
and constraints in the feature coordinates to be added to the
map with partial initialization. The number of dimensions
for a feature can grow with time as more information is
acquired. The basis for integrating the feature observations
is the extended Kalman filter (EKF). An example metric map
created using this method is shown in Fig. 2.

B. Navigation Map

The second layer contains the navigation map represented
by a graph. This representation establishes a model of free
space and its connectivity, i.e. reachability, and is based on
the notion of a roadmap of virtual free-space markers [14],
[15]. As the robot navigates through the environment, a
marker (navigation node) is dropped whenever the robot has
traveled a certain distance from the closest existing marker.
The graph serves for planning and autonomous navigation in
the known part of the environment.

We distinguish between two kinds of navigation nodes:
place nodes and doorway nodes. Doorway nodes indicate
the transition between different places and represent pos-
sible doors. They are detected and added whenever the
robot passes through a narrow opening. Later, the status
(open/closed) of a known door can be monitored using
the laser scanner. Additionally, doorway nodes are assigned
information about the door opening such as width and
orientation.

Each place node is classified into one of two semantic
labels, namely Corridor or Room, following the approach
by Martinez Mozos et al. [2]. This method classifies the
position of the robot based on the current scan obtained from
the range sensor. The approach uses the AdaBoost algorithm
to boost simple geometrical features into a strong classifier.
Examples for typical features extracted from scans obtained
in an office environment are shown in Fig. 3. The approach is
supervised, which means that the robot must first be trained
in an environment containing the semantic labels. As shown
in [2] the training process does not have to be carried out in
the same environment as the testing.

The approach for semantic classification assigns a label
to each pose of the robot. To increase the robustness of the
method, we classify each place node using the majority vote
of the classification of the poses close to it. As explained
before, a node is added when the distance to the previous

Fig. 3. Examples of features generated from laser data, namely the average
distance between two consecutive beams, the perimeter of the area covered
by a scan, and the mayor axis of the ellipse that approximates the polygon
described by the scan. The laser beams cover a 360° field of view.

node is greater than a threshold. We use this fact to store
the classification of the last IV poses of the robot in a buffer
previous to adding the node. We then compute the majority
vote of these last [N poses and assign the final classification
to the corresponding node.

C. Topological Map

The topological map divides the set of nodes in the
navigation graph into areas. An area consists of a set of
interconnected nodes (cf. Fig. 2). In this view, the exact shape
and boundaries of an area are irrelevant. The set of nodes
is partitioned on the basis of the door detection mechanism
explained in the previous section. This approach complies
with previous studies [12], [16], which state that humans
segment space into regions that correspond to more or less
clearly defined spatial areas. The borders of these regions
may be defined physically, perceptually, or may be purely
subjective to the human. Walls in the robots environment are
the physical boundaries of areas. Doors are a special case of
physical boundaries that permit access to other areas.

D. Conceptual Map

The conceptual map provides the link between the low-
level maps and the communication system used for situated
human-robot dialogue by grounding linguistic expressions in
representations of spatial entities, such as instances of rooms
or objects. It is also in this layer that knowledge about the
environment stemming from other modalities, such as vision
and dialogue, is anchored to the metric and topological maps.

Based on the work by Zender [17], our system is en-
dowed with a commonsense OWL! ontology of an indoor
environment (see Fig. 4) that describes taxonomies (is-a
relations) of room types and typical objects found therein
through has-a relations. These conceptual taxonomies have
been handcrafted and cannot be changed online. However,
instances of the concepts are added to the ontology during
run-time. Through fusion of acquired and asserted knowl-
edge — gathered in an interactive map acquisition process (cf.
Section IV) — and through the use of the innate conceptual
knowledge, a reasoner? can infer information about the world
that is neither given verbally nor actively perceived. This way
linguistic references to spatial areas can be generated.

'http://www.w3.0org/TR/owl-guide/
2http://wuw.racer-systems.org
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Fig. 4. Tllustration of a part of the commonsense ontology of an indoor
office environment. Solid arrows denote the taxonomical is-a relation.

1) Acquired Knowledge: While the robot moves around
constructing the metric and topological maps, our system
derives higher-level knowledge from the information in these
layers. Each topological area, for instance, is represented
in the conceptual map as an ontological instance of the
type Area. Furthermore, as soon as reliable information
about the semantic classification of an area is available, this
is reflected in the conceptual map by assigning the area’s
instance a more specific type of either Room or Corridor.
Information about recognized objects stemming from the
vision subsystem is also represented in the conceptual map.
Whenever a new object in the environment is recognized, a
new instance of the object’s type, e.g. Couch, is added to the
ontology. Moreover, the object’s instance and the instance
of the area where the object is located are related via the
hasObject relation. This process is shown in Fig. 1.

2) Asserted Knowledge: During a guided tour with the
robot, the user typically names areas and certain objects
that he or she believes to be relevant for the robot. Typical
assertions in a guided tour include “You are in the corridor,”
or “This is the charging station.” Any such assertion is stored
in the conceptual map, either by specifying the type of the
current area or by creating a new object instance of the
asserted type and linking it to the area instance with the
hasObject relation.

3) Innate Conceptual Knowledge: We have handcrafted
an ontology (Fig. 4) that models conceptual commonsense
knowledge about an indoor office environment. On the top
level of the conceptual taxonomy, there are the two base con-
cepts Area and Object. Area can be further partitioned
into Room or Corridor. The basic-level subconcepts of
Room are characterized by the instances of Object that
are found there, as represented by the hasObject relation.

4) Inferred Knowledge: Based on the knowledge repre-
sentation in the ontology, our system uses a description-
logics based reasoning software that allows us to move
beyond a pure labeling of areas. Combining and evaluating
acquired and asserted knowledge within the context of the
innate conceptual ontology, the reasoner can infer more
specific categories for known areas. For example, combining
the acquired information that a given topological area is
classified as a room and contains a couch with the innate
conceptual knowledge given in our commonsense ontology,
it can be inferred that this area can be categorized as being
an instance of LivingRoom. Conversely, if an area is
classified as a corridor and the user shows the robot a
charging station in that area, no further inference can be
drawn. The most specific category the area instantiates will
still be Corridor.

Our method allows for multiple possible classification of
any area because the main purpose of the reasoning mecha-
nisms in our system is to facilitate human-robot interaction.
The way people refer to the same room can differ from
situation to situation and from speaker to speaker, as reported
by Topp et al. [18]. For example, what one speaker prefers to
call the kitchen might be referred to as the recreation room
by another person. Since our aim is to be able to resolve
all such possible referring expressions, our method supports
ambiguous classifications of areas.

IV. INTERACTIVE MAP ACQUISITION

The multi-layered representation is created using an en-
hanced method for concurrent semi-supervised map acqui-
sition, i.e. the combination of a user-driven supervised map
acquisition process with autonomous exploration discovery
by the robot. This process is based on the notion of Human-
Augmented Mapping, as introduced by Topp and Chris-
tensen [19]. We additionally use a linguistic framework that
actively supports the map acquisition process and is used for
situated dialogue about the environment (see Section V).

The map can be acquired during a so-called guided tour
scenario in which the user shows the robot around and con-
tinuously teaches the robot new places and objects. During
such a guided tour, the user can command the robot to follow
him or instruct the robot to perform navigation tasks. Our
system does not require an initial complete guided tour. It is
also possible to incrementally teach the robot new places and
objects at any time the user wishes. With every new piece
of information, the robot’s internal representations become
more complete. Still, the robot can always perform actions
in, and conduct meaningful dialogue about, the aspects of its
environment that are already known to it.

Whenever the user gives an assertion about areas in the
environment or objects found therein, the robot updates the
conceptual map with the asserted information. The concur-
rent constructions of the metrical map and the topological
abstraction level propagate information in a bottom-up man-
ner. Together with the laser-based area classification, these
pieces of information lead to an update of the conceptual
map with acquired knowledge.



Following the approach by Kruijff et al. [20], the robot
can also initiate a clarification dialogue if it detects an
inconsistency in its spatial representation, illustrating the
mixed-initiative capabilities of the dialogue system.

V. SITUATED DIALOGUE

In this section, we will present the linguistic methods used
for natural language dialogue with a robot. We will also
address the role of dialogue for supervised map acquisition
and task execution.

On the basis of a string-based representation that is gen-
erated from spoken input through a speech recognition soft-
ware, the Combinatory Categorial Grammar (CCG) parser
of OpenCCG? [21] analyzes the utterance syntactically and
derives a semantic representation in the form of a Hybrid
Logics Dependency Semantics (HLDS) logical form [22].
The dialogue system mediates the content from the speech
input to the mapping or navigation subsystem in order to
initiate the desired action of the robot or to collect pieces of
information necessary to generate an answer. The generated
answer string is then generated by the OpenCCG realizer
and sent to a text-to-speech engine. The complete dialogue
system is described in more detail in Kruijff et al. [23].

In the experiment of Section VIII, the user guides the robot
around using a set of commands for initiating and stopping
the interactive people following process and for instructing
the robot with navigation commands to move near around.
During this tour, the user augments the robot’s internal map
with assertions about the environment. In order to grasp the
robot’s understanding of its environment, the user has the
possibility to ask the robot questions about the environment.
The following examples contain HLDS representations of
typical utterances in our scenario example:

(1) HLDS logical form of the utterance “This is the
charging station.”

@{Blzstate} (be
& (Mood)indicative
& (Restr)(T6 : thing & this
& (Proxzimity)proximal)
& (Scope)(C3 : thing & chargingstation
& (Delimitation)unique
& (Number)singular))

(2) HLDS logical form of the utterance “I am in a living
room.”

@{BQ:state} (be
& (Mood)indicative
& (Restr)(R2 : person & 1)
& (Scope)(I4 : region & in
& (Plane)horizontal
& (Positioning)static
& (Dir : Anchor)(L1 : loc & livingroom
& (Delimitation)existential
& (Number)singular)))

3http://openccg.sourceforqe.net

(3) HLDS logical form of the utterance “Follow me!”

@{FS:action} (fOllOW
& (Mood)imperative
& (Actor)(RT : hearer & robot)
& (Patient)(12 : speaker & T))

VI. SITUATIONAL AND FUNCTIONAL AWARENESS

We currently investigate how the information encoded in
the multi-layered conceptual spatial representation can be
used for a smarter, human- and situation-aware behavior. As
one aspect of this, the robot should exploit its knowledge
about objects in the environment to move in a way that allows
for successful interaction with these objects. For instance,
when following a person, the robot should make use of
its knowledge about doors in the environment, such that it
recognizes when the person wants to perform an action with
the door. As actions that are performed in a doorway or
with the door itself potentially require a wide space, e.g. for
swinging or sliding open the door, for letting people pass, or
for stepping past the door opening to grab the door handle,
it is crucial that the robot adjusts its actions accordingly. A
failure to understand such a situation could, for example,
lead the robot to a position where it traps the user in the
doorway that he or she was trying to close. In the experiment
presented in this paper (see Section VIII), we opt for the
robot to increase the distance it keeps to the user when it
detects that the user approaches a door and to decrease it
again when it detects that the user left the area. In this way,
as the robot does not stop tracking and following the person,
the people following behavior stays smooth and intuitive.

VII. SYSTEM INTEGRATION DETAILS

The complete system was implemented and integrated in
an ActivMedia PeopleBot mobile platform (Fig. 5, left). The
robot is equipped with a SICK laser range finder, which is
used for the metric map creation, people following, and for
the semantic classification of places. The place classification
is based on a 360° field of view (Section III-B). However
our robot has only one laser at the front covering a restricted
180° field of view. To solve this problem we follow the
approach in [2] and maintain a local map around the robot,
which permits us to simulate the rest of the beams covering
the rear part of the robot. Additionally, a camera is used
only for object detection. The detection systems uses SIFT
features for finding typical objects like a television set, a
couch or a bookcase. We recognize instances of objects and
not categories [24]. The objects must be shown previously
to the robot and learned by it (Fig. 5, right).

The communication with people was completely done
using spoken language. The user can talk to the robot using a
bluetooth headset and the robot replies using a set of speakers
mounted on the mobile platform.

As an additional tool, we use an online viewer for the
metric and navigation maps. The output of this program is
composed of the lines extracted by our SLAM implementa-
tion extended to 3D planes to facilitate the visualization. The



Fig. 5.

The left image shows the robot used during the experiment. The
right images depict examples for for object detection: training couch image
(top), detected couch image (bottom).

viewer shows the different nodes and edges used to construct
the navigation map. Nodes corresponding to doorways are
drawn bigger and with red color and with an associated
doorframe (Fig. 6). Finally, the robot and the user are
constantly shown in the positions where they are localized.
The localization of the robot is calculated using SLAM
[13], while the pose of the person is estimated using people
tracking methods based only on laser readings [25].

The robot, being equipped with an onboard computer (850
MHz) connected to two built-in loudspeakers, runs the Player
software* for control and access of the hardware, and the
speech synthesis software®. The rest of the system runs
on five laptops (1.8 GHz) interconnected using a wireless
network. The first laptop is placed aboard the robot platform.
It is connected to the onboard computer via an Ethernet
crossover cable and to the rest of the system using its wireless
adapter. This laptop runs the software for navigation, SLAM
and people tracking. A second laptop runs the Windows
operating system and is used for the real time speech
recognition®. It is also placed on the robot platform in order
to ensure a reliable bluetooth connection to the headset that
recorded the user’s voice commands. The recognized speech
strings are sent to a third laptop, which runs the real-time
dialogue processing and conceptual mapping subsystems.
The fourth computer constantly classifies the current pose of
the robot into a semantic class based on laser data. The last
computer handles the viewer tool for debugging purposes.
The communication between the different processes is estab-
lished in a mixed environment using TCP/IP sockets and an

‘http://playerstage.sourceforge.net/
Shttp://www.cstr.ed.ac.uk/projects/festival/
Shttp://www.nuance.com

Fig. 6. Snapshot of the online viewer using during the experiment. The
stars indicate the nodes in the navigation map. Blue for corridor, yellow
for room, red for doorways and green for the actual position of the robot.
Additionally, lines are extended to 3D planes and simulated doorways are
drawn for facilitating the visualization. The person is drawn in the position
detected by the people following software.

OAA” framework. Fewer computers could have been used,
but the setup was convenient as it allowed each subsystem
developer to have his own computer.

VIII. EXPERIMENTS

In order to show all the functionalities explained in the pre-
vious sections, we carried out an experiment at the 7th floor
of the CAS building at the Royal Institute of Technology in
Stockholm. In this experiment the robot, together with a user,
goes through different situations (or episodes). The complete
experiment was carried out non-stop, i.e. we did not stop the
robot or restart the system at any moment. The duration of
the complete experiment was of approximately 6 minutes.
Each of the episodes is explained in detail in the next sections
and a video is available on the Internet®. The experiment was
thought of as a test, and for this reason we “forced” some
artificial situations to simulate possible real ones (e.g. the
false doorway of Section VIII-B). A similar experiment was
carried out in which the robot interacts constantly with the
user and the environment for more than 30 minutes during
a demo in the CoSy project’. In this case, the robot was
presented to an audience while explaining its actions. Some
of the episodes were repeated to clarify some questions. The
robot again run with no interruptions or system problems.
This led us to think that our implementation is quite robust
and maybe can serve as basis for a long term service robot.

The idea of the experiments is to show how the robot
learns its environment while interacting with a tutor. How-
ever, some previous knowledge is needed during this process.
First, the robot needs an ontology representing the general
knowledge about the environment. For this purpose, we use
the ontology depicted in Fig. 4. Furthermore, the classifica-
tion of places is based on previous general knowledge about
the geometry of rooms and corridors, which is encoded in a

Thttp://www.ai.sri.com/ oaa/
8http://www.dfki.de/cosy/www/media
http://www.cognitivesystems.org
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Fig. 7. Trajectory followed by the robot to train the classifier for
distinguishing between corridor and room. The different places are depicted
with distinct colors.

classifier based on laser readings as explained in Section III-
B. The classifier is trained using examples of corridors
and rooms from real environments as the one shown in
Fig. 7. These two kinds of knowledge are independent
of the environment used for testing, in the sense that the
robot does not need to be physically present in the test
environment to acquire the information. Finally, the robot
has to recognize different objects, such as couches or TV
sets, using vision. Because we do instance recognition rather
than categorization, the objects we want to recognize must
be presented to the robot before running the experiment. For
this purpose, we position the robot in front of these objects,
acquire a training image and label it with the corresponding
term, which is added to a small database of objects and also
included in the language systems for its posterior use.

A. Episode 1: Waking Up

The experiment starts in the corridor, where the robot is
positioned close to the charging station. The user activates
the robot and tells it that it is located at the charging station.
The user then asks the robot to follow him. The robot drops
markers (navigation nodes), which are classified as corridor.
Then the person followed by the robot enters a room through
a doorway. The door is recognized and the corresponding
node is set. From this point the next nodes will be classified
as a new area and correctly labeled as room.

B. Episode 2: Clarification Dialogues

In this episode we want to show the utility of the clari-
fication dialogues. As explained in Section III-B, our door
detection is simply based on detecting when the robot passes
through a narrow opening. However, this alone will still lead
to some false doors in cluttered rooms. Assuming that there
are few false negatives in the detection of doors, we get great
improvements by enforcing that it is not possible to change
room without passing through a door. For example, while
moving around in a room the robot may detect a narrow
passage and falsely assume that a door was passed, putting
a door label on that particular node. The robot continues to
move around in the room and eventually reaches the nodes
from before adding the false door. These nodes will then
have different room labels, that is, the room has changed
without passing a door. If this happens, an inconsistency is
found and a clarification dialogue with the user is triggered.

Fig. 8.

The user asks the robot: “Where is the charging station?”.

To test the former situation we put a bucket close to a
table in the room creating an illusion of a doorway when
using only the laser as sensor. The robot passes through this
false doorway and comes back to a previously visited node.
At this point the robot infers that there is an inconsistency
in the map and initializes a clarification dialogue asking if
there was a door previously. The user denies this fact and the
map is updated accordingly. A more detailed explanation of
the complete process of clarification dialogues for a similar
situation is presented in Kruijff et al. [20].

C. Episode 3: Inferring New Concepts

In this episode we test how the robot infers new catego-
rizations of places when discovering new objects. The goal
is to use our SIFT-based object detector together with the
laser-based place classification to detect simple objects and
places. Then, using the inference on the office ontology as
explained in Section III-D, the robot is able to come up with
more specific concepts.

While staying in the room, the robot is asked for the
current place and it answers with the indefinite description
“a room”, which is inferred from the navigation nodes in
the area. A majority vote among the nodes in the area is
used in case the node classification is not unanimous. Then
the robot is asked to look around. This command activates
the vision-based object detection capabilities of the robot.
The robot moves and detects a couch, and then a television
set. After that, the user asks the robot for the name of the
place. Because of the inference over the detected objects and
places, the robot categorizes the place as a Livingroom.
Note that previous to the detection of objects the same place
was categorized as a Room. As a further test of the robot’s
classification it is asked where the charging station is located
and correctly answers “it is in a corridor” (Fig. 8).

D. Episode 4: Situational and Functional Awareness

This episode shows the social capabilities of our robot.
The robot must behave accordingly to the current situation,



which in our case, is the opening of a door by the user (see
Section VI).

Continuing with the experiment, the user asks the robot
to follow him while he approaches a doorway. The robot
knows from the navigation map where the doorway is and
keeps a long distance to the user when he is near to the door.
It then continues following the user by again decreasing its
distance to him when he has passed the door. This action
implies a certain degree of knowledge about social behavior,
which is important if the goal is to create a robot that will
live together with people.

E. Episode 5: Going to Objects

Finally, we show how the navigation map is used by the
robot to come back to previously visited places.

After the door opening situation, the robot is asked to go to
the television. The robot then navigates to the node where the
television was observed. This functionality permits the user
to command the robot to places without the need of giving
concrete coordinates. It is also more powerful in the sense
that the user may not know the concrete name of the place,
but he can remember it as ‘the room with a television”. After
that, the robot is commanded to go to the charging station.
Again the robot follows the navigation map until it positions
itself on the station, thus finishing the experiment.

IX. CONCLUSIONS

We presented an integrated approach for creating concep-
tual representations of human-made environments where the
concepts represent spatial and functional properties of typical
office indoor environments. Our representation is based on
multiple maps at different levels of abstraction. The complete
system was integrated and tested in a service robot which
includes a linguistic framework with capabilites for situated
dialogue and map acquisition. The experiments show that
our system is able to provide a high level of human-robot
communication and certain degree of social behavior.
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