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Abstract— This paper addresses the problem of detecting Detector r
people using multiple layers of 2D range scans. Detecting Layer 1
persons is an important capacity for intelligent systems that Detector ~,
have to interact with people. Our approach uses a supervised Layer 2
learning algorithm to train one classifier for each layer, which
concentrates in a different body part. The classifiers are then - .
combined in a probabilistic way to create a final robust goinb'tned .
detector. Experimental results with real data demonstrate the eredor .
effectiveness of our approach to detect persons in cluttered
environments, and its ability to deal with occlusions.
Detector j r €
|. INTRODUCTION Layer N

Detecting people IS a key capacity for mtelllgent SyStemEi . 1. The left image shows the configuration for the complettitiayer

that _ have to interact in populated enViron_mentS such %éétem with 2D range scans situated at different layersassifier is learned
service robots [3], [23], [18], autonomous vehicles [1TP],  for the body part found in each layer. These classifiers &e tombined to

or ambient intelligence and surveillance systems [6], [PG] create afi_nal person detector. The'right image depicts exampegments
. . . S representing body parts at three different layers: legseupody, and head

robust detection of persons in the environment will improveyirqs eye view for each layer).

the ability of these systems to communicate with people and

to take decisions accordingly.

In this paper we address the problem of detecting peopiiifferent body part like the legs, the upper body or the head.
using 2D laser range finders. These kind of proximity sensomhe output of the different detectors is then combined in
are often used in robotic applications since they provide & probabilistic framework to obtain a robust final classifier
wide field of view and a high data rate. In addition, theirrhe complete system is shown in the left image of Figure 1.
measurements are invariant to illumination changes. Buevi Our method is based on the classification of segments that
works have used 2D laser range finders to detect people ridpresent each body part (right image of Figure 1). For
the environment. Typically the lasers are located at a heigbach layer, a classifier is trained using a supervised legrni
which permits the detection of legs [5], [8], [14], [4], [15] approach based on boosting [2]. The training data for each
[18], [3], [2], [17]. Although good classifications ratesviea classifier is composed of the segments that represent the
been obtained using machine learning techniques [2], [L1Mody part of the corresponding layer. In the classification
there is still the need to improve the robustness of the fingtep, each new segment accumulates evidence for its final
detectors. One of the main problems is the little informatio classification using a probabilistic voting approach [8]olr
that range scans provide about legs. An example is showniifiethod, the voting for a specific segment takes into account
the bottom right of Figure 1. Here, the legs of a person ange classification of all segments in the scene.
represented by short segments composed of few points. InExperimental results shown in this paper illustrate that
cluttered environments like homes or offices, these segimeithe resulting classification system can detect persons in
can be easily misclassified due to the different objects ifluttered environment with high recognition rates. Morov
the environment, such as tables, chairs or other furnitur@e present results illustrating that the multi-layer difess
Finally, occlusions often occur and make the detection afmproves the detection over single-layer ones. Finally, we
people quite difficult, or even impossible when the legs arehow the robustness of the classifier under occlusions.
hidden.

The key idea of this work is to improve the robustness Il. RELATED WORK

of people detection systems by taking into account differen |n the past, several researchers focused on the problem of
body parts. Our approach uses 2D laser range scans situa@gecting/tracking people in range scans. One of the most

at different heights. Each laser is responsible for detgcdi popular approaches in this context is to extract legs by
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work by Arraset al. [2], boosting is used to learn a classifiernegative classification respectively. More details abbig t
to detect legs segments. In this work we additionally learapproach are given in [2].
classifiers for other body parts, and we introduce a method
to combine the classifications. B. Geometrical Features
The multi-part detection of people has been studied mainly |n this section we describe the segmentation method and
in vision. Leibeet al. [9] use a voting approach to detectthe features used in our system. Our system is equipped
people in images with a previous learned codebook. Thgith several range sensors that deliver observations. The
works from loffe and Forsyth [7] and Ronfaret al. [13] observationz from one laser sensor is composed of a set
incrementally assemble body parts detected in a picturgf beamsz = {b;,...,b;,}. Each beanb; corresponds to a
Also Mikolajczyk et al. [11] use a probabilistic assembly tuple (¢;, p;), wheres; is the angle of the beam relative to
of different body part detectors. Wu and Nevatia [21] applyhe sensor ang; is the length of the beam. Following the
a Bayesian combination of body parts detected using edgelgiproach in [2], each observatianis split into an ordered
features. Finally, Zivkovic and Kise [24] combine different partition of segmentss = {s1,52,..., 537} using a jumping
body parts detected using Haar-like features in omnidiregtistance condition. The elements of each segment
tional images. {x1,%s,...,x,} are represented by Cartesian coordinates
Other works combine different sensors to detect peopl& = (z,7), wherez = pcos(¢) andy = psin(¢), and
Spinello et al. [17] use laser and vision sensors to detecty, p) are the polar coordinates of the corresponding beam.
people from a car. Also Zivkovic and Kse [24] combine  The set of training examples for the AdaBoost algorithm
panoramic images with laser scans. In contrast to theseswoli§ then composed of the segments together with their label,

we use only laser range finders. and their pre-calculated single-valued features
AdaBoost has been successfully used as a Boosting algo- J
rithm in different applications for object recognition. ol X = {(si,yi i) |l € {41, -1}, fi e R},

and Jones [20] boost simple features based on grey leve

differences to create a fast face classifier using image\t’%(./tersxiim|e+;n$ql(fite_sl tﬂ%;:;:?ﬁ;:iﬁi |2ear§§§ g
Treptow et al. [19] use the AdaBoost algorithm to track a. P v 9 t

ball without color information in the context of RoboCup.'Csori gzgit'\cﬁ s;(anr?grlﬁé I;‘:t Sc?)trrg; %?;'“ngbggamr:ﬁz Iosf
Further, Mozost al. [12] apply AdaBoost to create a classi- P 9 P y P

fier able to recognize places in 2D maps. Our application rsons. The negatives examples are represented by ssgment

boosting is similar to [2], although we extended it to othe _at co_rrespond to other objects in the environment. The
body parts. dimensiond of the feature vectof; depends on the number

of single features extracted from each segment. In our case

I1l. SINGLE LAYER CLASSIFICATION we calculate eleven features selected from the list given

This section describes the individual classifiers used i [_2]:_number of po_mts, s_tanda_rd de_V|at|(_)n, mean average
eviation from median, width, linearity, circularity, riag,

each layer. Each classifier is trained to detect a differedyb bound lenath. bound larit t d
part of a person like the legs, the upper body or the head. oundary length, boundary regulanty, mean curvature, an
mean angular difference.

A. Boosting

o . IV. MULTI-LAYER DETECTION
To create the individual classifi€¥, for layern we follow

the approach introduced in [2]. This method uses the super-After training the individual classifiers for each body part
vised AdaBoost algorithm to create a final strong classifie@ur system is able to detect in each layer the segments
by combining several weak classifiers. The requirement ®prresponding to a person. In this section we explain how to
each weak classifier is that its accuracy is better than G@mbined the output of the different classifiers to obtain a
random guessing. In a series of rounds= 1,...,7, the more robust final people detector.

AdaBoost algorithm selects the weak classifiers that have a

small classification error in the weighted training exaraple A Shape Model

Each weak classifiet; is based on a single-valued feature Based on [9], we learn a shape model of persons that

f; and has the form specifies the geometrical relations among the differenybod
1 pifi(e) < pifs parts. Figure 2 shows an example of a shape model for

. — JJ7 J7 1 I
hj(e) _{ _1 otherwise (1) the segments corresponding to the three layers shown in

the right image of Figure 1. To calculate the geometrical
whered, is a threshold, ang, is either+1 or —1 and thus relations in our shape model, we first project the segments
represents the direction of the inequality. In each rounél pertaining to a person into the 2D horizontal plane (bird’s
the algorithm, the values faf; and p; are learned so that eye view). We then calculate the maximum distance of a
the misclassification in the training data is minimized. Thesegment corresponding to a concrete body part with respect
final strong classifier is a weighted combination of the begb the segments corresponding to the other body parts as
T weak classifiers. The output of the final binary classifier

_ et Vst e ot e
C, has two values{+1,—1} representing the positive and rel(Li, £;) = max dist(s7, s7) | 57 € Li, 57 € L5, (2)

J



head the segments; corresponds to a persary = +1 or not

rel(upper_body, head) ¢; = —1. Instantiating the variable; in (7) we obtain
upper body P(cf | s g) ®)
rel(upper_body, leg) P(cf | ¢f,s5)P(c] | s5) + P(c | e, 55)Pes | 5)-
o9 Herec; is equivalent ta;; = —1. Substituting in (5), we get

the final expression for the score of a positive classificatio
Fig. 2. This figure illustrates two examples of geometricahtiehs. In V(C*) as
particular, the relations between an upper body segmentresibect a head

segment, and with respect a leg segment. Segments were projectiee S Pl | cj, sj)P(c;' | s5)
2D horizontal plane. The distance between the segments kasi&eased J —|—P( + ‘ - )P( — | ) ) ) P( ) 9)
by hand for a better visualization. i 165,85 i 1 5] S5)-

It remains to explain how to calculate each term in (9).
o _ The term P(c; T | s;) indicates the probability of a positive
where,; indicates the layer corresponding to body pafor  classification” of segment;. This value can be obtained

example the head), ang" indicates a positive segment of girectly from the output of the classifieh, at the layerl;
that body part. Finallydist(, ) is a function which calculates wheres; was found

the Euclidean distance between the centers of two segments.

These relations are learned from a set of positive training Pl |s5) = { (1) gtﬁgrsif/ijge: +1 (10)

examples. The process for obtaining positive examples is :

explained in Section V. Thus, the probability for a negative classification is afeai

Finally, for each relation we create a test function: as

S x S — {0,1} which indicates whether two new segments P(cj | s) =1—=P(c) | s5)- (11)

s; ands; satisfy it The term P(cf | ¢, s;) indicates the probability of a
1 if dist(s, s5) <rel(Ly, L) positive classification for segmenf given there is another

O(si,55) = { 0 otherwise ®3) segments; in the scene which corresponds to a person, i.e.,

I . ¢; = +1. This value is obtained using the test function of
B. Probabilistic Voting trJ1e shape model (Section IV-A) ’

In the detection step, each range sensor delivers an obser- T
vation z; which corresponds to the scan taken at lager P(c | ¢ 7 85) = 0(si,55). (12)

J b

This layer may correspond to the legs, upper body, head, orFinally we need to obtain a value for the expression
other body part (Figure 1). After segmenting the observatio P(c; l o s;), which indicates the probability for a positive
(Section 11I-B), each segment accumulates evidence OU)eIImIassmcann of segmeny; given there is another segment
a positive example of the body part corresponding to thia the scene which corresponds to other object. We call this
layer it was located at. expression thecclusion modelsince it indicates the relation

Let s; be a segment in the scene, and lgtbe the of the people with other objects in the scene. In this work,
layer wheres; is located. Now letc; € {+1,—1} be the we apply the following model
classification of segment;. Following a similar approach 6 if 5(si,5,) =0
to [9], we calculate the score for a positive classification P(c | ¢f,s5) = { ol

= +1 of segments; by marginalizing over all segments o )
found in the scene This expression indicates that whenever we find a segment

N . in the scene corresponding to an object other than a person,
Vi) = ZP ;5 85) (4)  this object can not fulfill the shape model of a person.

0 otherwise. (13)

C. Person Detection

ZP [ 55)P(55)- ©) After accumulating evidences for all segments found in
all layers, we have a distribution of probabilistic votes

Here ¢ is equivalent toc; = +1. The first term in (5) among the different hypotheses To detect a person in the

represents the probability of a positive classification foenvironment, we look for the hypothesi$ which maximum

segment; given all segments found in the scene. We furthepositive score

marginalize over the classification of all segments c;' = argmax V (¢;"). (14)

e

P(c | s, P(ch,ci| s 6 ’
(e 15;) Z el i) ©) The segment, corresponding to:;; is then selected as the

representative for the person in the scene. To detect $evera
ZP [ cjsi)Plejlsp). () persons one can look for different local maximum in the
hypotheses space. In our experiments we try to detect one
In our system, the are two possible values for a segmepérson only, and for this reason we apply (14) for selecting
classificationc; € {+1,—1}. These values indicate whetherthe final hypothesis that represents the person.
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Fig. 3. The left image shows the 3-layer system used in thergmpats.
Each laser is located at a different height to detect a diffebody part:
head (60cm), upper body {40cm), legs 80cm). The right image depicts
the process for obtaining positive training data. A freecep@ém x 1.5m)
is left in front of the lasers. A person walks inside this spand the
corresponding segments are automatically labeled as mositamples. The
segments falling outside the rectangle are automaticallgi¢abas negative
examples

Fig. 4. First scenario for the experiments. The top picturesawiaken from
the position were the sensors were located. The blue rubbishe right
image (marked with a white circle) are used for the occlusiqreerments.
The bottom images show examples of scans taken at the diffiergerts.
The left image corresponds to the lower layer (legs), the midilage to
the middle layer (upper body), and the right image to the toprdkead).
Blue points indicate segments classified as positive (bodis)a Black
points correspond to segments classified as negative (nongzots).

V. EXPERIMENTS

The approach presented above was implemented using@responding to the different body parts: legs, upper body
three layer system as shown in Figure 1. At each layednd head. The set of negative examples is composed of
we located a URG-04LX laser range finder with a field osegments corresponding to other objects in the environment
view of 240 degree. The resolution of the lasers was of 0.38ich as tables, chairs, walls, etc. We used the same training
degree. Each laser is situated at a different height andtdetealgorithm for the three layers, with the only differencertggi
a different body part. The upper laser is locatédcm above the training data used as input.
the floor. This laser is thought to detect heads. The middle To obtain the positive and negative examples we left a free
one is located 40cm above the floor. This laser detects uppespace obm x 1.5m in front of the lasers. This space did not
bodies. The final one is locat&fcm above the floor, and contain furniture or other objects. We then started recaydi
its task is to detect legs. The complete system is shown laser scans while a person was walking randomly inside
the left image of Figure 3. The experiments were carried otine rectangle. The obtained scans were segmented following
in the Laboratory for Intelligent Robots and Vision Systemghe approach in Section IlI-B. The segments were then
at the University of Kyushu in Japan. The sensors were keptitomatically labeled as positive examples of a body part
stationary during the experiments. if they were inside the rectangle, and as negative examples

We first explain how to obtain a training set for the learnedf they fell outside the rectangle. This process is shown in
step. We then demonstrate how a multi-layer classifier can ilge right image in Figure 3. This is a straightforward method
learned in an indoor environment to detect people. In asitliti to obtain training data without the need of hand-labeling.
we show the robustness of this classifier under occlusio%s Multi-L Classificati
and in very cluttered environments. Finally, we show the” ult-Layer Classification
improvements of the detection rates when using our multi- In the the following experiments we tested our multi-layer
layer detector in comparison to a single-layer system. approach in an indoor environment. We first obtained the

One important parameter of the AdaBoost algorithm i&a@ining data following the procedure explained above. The
the number of weak classifiefE used to form each final data was obtained in a location of the laboratory shown in
strong classifier. We performed several experiments witfi€ top images of Figure 4. The training data was composed
different values forT” and we found thafl’ = 200 weak Of 344 multi-layer observations containing 17286 segments
classifiers provide the best trade-off between the err@ rafxamples of training scans are shown in the bottom images
of the classifier and the computational cost of the algorithn®f Figure 4.

Another parameter that has to be set for the occlusion model!n @ first experiment, the same person walked in front of
is 0. In our experiments we found that a value(ofi5 gives the lasers following different trajectories from the tiaim
good results under occlusion situations. Finally, we getbc data. In this way we obtained a different test set. We then

a jump distance of5¢m for segmenting the scans. applied our multi-layer detector to this test. An example
o of observation with its corresponding detection is shown in
A. Training Data Figure 5. The results of the detections are shown irilthe

The first step in the experiments was to train the classifiersw of Table |. The detection rate 82% indicates that we
for each layer. As explained in Section Ill, we used the&an use our method to detect people with high accuracy in
supervised algorithm AdaBoost to create each classifigr. Tindoor environments.
input to the algorithm is composed of positive and negative In a second experiment we tested the performance of our
examples. The set of positive examples contains segmemi&thod with partially occluded bodies. In this experiment,



TABLE |

MULTI-LAYER DETECTION RATES

True detection| False detection| Total observations| 4 \
Test 92.0% (149) 8.0% (13) 162
Occlusion | 85.8% (272) 14.2% (45) 317
Hard 75.2% (161) 24.8 % (53) 214 # /“""" * v { N\
-
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Fig. 6. The image shows an example of a detection for the expetime

called Occlusion in Table |. The meaning of the colors are the same as
in Figure 5. The position of the bins are pointed with ligheygrarrows.
The person is behind one of the bins with his legs occluded. |abers are
located at(0, 0).
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Fig. 5. The image shows an example of a detection for the expetime
called Test in Table I. Different colors indicate different classificats. |
Blue segments are classified as body parts, the red segmeng isnth
with best evidence of been a person. Black segments arefiddsass other
objects. The segments corresponding to the person (groutig &re marked
with a green ellipse. The lasers are located(n).
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Fig. 7. These images correspond to part of the Laboratoryrfiligent
Robots and Vision Systems which is used for experiments. Asamesee
the location is very cluttered. This scenario is callddrd in Table I.

a person walked in front of the lasers and, at same point

in time, he took two rubbish bins and put them in frontC. Comparison with Single-Layer Detection
of the lasers. The bins are shown in the top right image
of Figure 4. Following, the person walked around them
and finally put the bins back in their initial position. In
this situation several occlusion problems appear. Firktlew
the person was walking around the bins his legs remain

occluded. Secopd, vyhile the person was bending down st, Occlusion, and Hard. Results are shown in Table II.
takefleave the bins his upper body and his head d|sappear§§r theTest experiment the results are quite similar, since

We applied our detector to this sequence of observatiofgere are no occlusions and the legs are correctly detected.
and obtained the results shown in eclusion row in table  owever. we can see the improvement of our method in the
Table I. The false positives often occurred when the persQ@yperimentOcclusion, in which the multi-layer obtains a
was in contact with the bins, taking them, moving them ofetection rate of85.8% in comparison t073.2% obtained

leaving them. In these situations it was difficult to detec}itn the single-layer. Finally, in theard scenario the
all body parts. However, a detection rate85t8% indicates single-layer obtained a detection rate 4if.1%, while our

that we still can use our approqch to detect partially oadud multi-layer approach got a rate &%.2%. This is a very
persons. An example observation taken while the person WiSportant improvement.

behind a bin is shown in Figure 6.

In a third experiment, we tested the performance of od¢- Individual Classification Rates
learned multi-layer detector in a new and very cluttered In this last experiment we compare the classification rates
environment. Figure 7 shows images of this third scenaridor the different layers. In this experiment we used the test
In this experiment a person walked around and the obtaineeét from thel'est experiment, and analyzed the performance
observations where classified. Results of the detectioms af each layer when classifying segments. Results are sum-
shown in the Hard row of Table |. The detection rate marized in Table Ill. We can appreciate that the classificati
decreased t@5.2, however we think this is still a good result rate for the leg94.3% is higher than the classification for
for such an extremely challenging scenario. Figure 8 showstlae other levels. One reason for this is that the person has tw
shapshot of this experiment. Videos for the three experiseriegs, and thus we obtain double number of positive training
are available in [1]. examples. In the upper levels (upper body and head) the

In these experiments we analyze the improvement of our
multi-layer system in comparison to a single-layer detecto
To do this, we apply our probabilistic model (Section V-
B) in the layer corresponding to the legs. We repeat the
tection in the three scenarios from the previous section:
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Fig. 8. The image shows an example of a detection for the expetime
called Hard in Table I. The meaning of the colors are the same as in
Figure 5. The lasers are located(8t 0).

[l
TABLE Il
SINGLE-LAYER DETECTION RATES [10]
True detection| False detection| Total observations|
Test 92.6% (150) 7.4% (12) 162
Occlusion | 73.2% (232) 26.8% (85) 317 [11]
Hard 41.1% (88) 58.9% (126) 214

classifications decrease 84%-86%. The classification rates 12
for these body parts are a novelty in this paper.

TABLE Ill
CONFUSION MATRICES FOR SINGLE LAYERS

[13]

[14]
Classification
True Label | Person| Not Person 15
Legs Person | 94.3% 5.7% (15]
No Person| 7.8% 92.2%
Upper body Person 84.4% 15.6%
No Person| 11.2 % 88.8% [16]
Head Person 86.2% | 13.8% (26)
No Person| 12.5% 87.5%

[17]

VI. CONCLUSION [18]

This paper presented a novel approach for people detection
using multiple layers of 2D range scans. Each laser i
responsible for detecting a different body part of a perso
like the legs, the upper body or the head. For each body
part, we learned a classifier using Boosting. The outpil0]
of the different classifiers was combined in a probabilistig,y;
framework to obtain a more robust final classifier. In prac-
tical experiments carried out in different environments szz
obtained encouraging detection rates even in very clutter ]
ones. Finally, the comparison of our multi-layer methodhwit
a single-layer procedure clearly demonstrated the improv&3!
ment obtained when detecting people using different body
parts simultaneously. [24]
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