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Abstract People detection is a key capacity for robotics
systems that have to interact with humans. This paper ad-
dresses the problem of detecting people using multiple lay-
ers of 2D range scans. Each layer contains a classifier which
detects a particular body part. The classifiers are learned us-
ing a supervised approach based on boosting. The final de-
tector is composed of a probabilistic combination of the dif-
ferent classifiers. Experimental results with real data demon-
strate the effectiveness of our approach to detect persons in
indoor environments, and its ability to deal with occlusions.

Keywords Laser-Based People Detection· Multiple Cue
Classification· Sensor Fusion

1 Introduction

Detecting people is a key capacity for service robots that
have to interact with humans [3,16,21]. A robust detection
of persons in the environment will improve the ability of

This work was supported by the Canon Foundation in Europe.

Oscar Martinez Mozos
Dept. of Computer Science and System Engineering,
University of Zaragoza, Spain.
Tel.: +34-976762472
Fax: +34-976761914
E-mail: ommozos@unizar.es

Ryo Kurazume
Graduate School of Information Science and Electrical Engineering,
Kyushu University, Japan.
Fax: +81-92-802-3607
E-mail: kurazume@is.kyushu-u.ac.jp

Tsutomu Hasegawa
Graduate School of Information Science and Electrical Engineering,
Kyushu University, Japan.
Tel.: +81-92-802-3610
Fax: +81-92-802-3607
E-mail: hasegawa@irvs.is.kyushu-u.ac.jp

Fig. 1 The left image shows the configuration for the complete multi-
layer system with 2D range scans situated at different layers. A classi-
fier is learned for the body part found in each layer. These classifiers
are then combined to create a final person detector. The right image de-
picts examples of segments representing body parts at three different
layers: legs, upper body, and head (bird’s eye view).

these systems to communicate with people and to take de-
cisions. Additional applications of people detection can be
found in autonomous vehicles [9,15]. In this case the main
objective is to detect pedestrians to change the behavior of
the vehicle accordingly.

In this paper we address the problem of detecting people
in indoor environments using 2D laser range finders. These
kind of proximity sensors are often used in robotic applica-
tions since they provide a wide field of view and a high data
rate. In addition, their measurements are invariant to illumi-
nation changes. Previous works have used 2D laser range
finders to detect people in the environment. Typically, the
lasers are located at a height which permits the detection
of legs [2–5,7,13–16]. Although good classifications rates
have been obtained using machine learning techniques [2,
15], there is still the need to improve the robustness of the
final detectors. One of the main problems is the little infor-
mation about legs that is provided by the range scans. An ex-
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ample is shown in the bottom right of Fig. 1. Here, the legs
of a person are represented by short segments composed of
few points. In cluttered environments, like homes or offices,
these segments can be easily misclassified with other objects
in the environment such as tables, chairs or other furniture.
Moreover, occlusions often occur and make the detection of
people quite difficult, or even impossible when the legs are
hidden.

The key idea of this work is to improve the robustness
of people detection systems by taking into account different
body parts. Our approach uses 2D laser range scans which
are situated at different heights. Each laser is responsible
for detecting a different body part, like the legs, the upper
body or the head. The output of the different detectors is
then combined in a probabilistic framework to obtain a ro-
bust final classifier. The complete system is shown in the
left image of Fig. 1. The method presented in this paper is
based on the classification of segments that represent each
body part (right image of Fig. 1). For each layer, a classi-
fier is trained using a supervised learning approach based
on boosting [2]. The training data for each classifier is com-
posed of the segments that represent the body part of the
corresponding layer. In the classification step, each new seg-
ment accumulates evidence for its final classification usinga
probabilistic voting approach [8]. In this way, the final clas-
sification of a specific segment takes into account the classi-
fication of all segments in the scene.

Experimental results shown in this paper illustrate that
the resulting classification system can detect persons in clut-
tered environment with high recognition rates. Moreover, we
present results illustrating that the multi-layer classifier im-
proves the detection over single-layer ones. Finally, we show
the robustness of the classifier under occlusions.

2 Related Work

In the past, several researchers focused on the problem of de-
tecting/tracking people in range scans. One of the most pop-
ular approaches in this context is to extract legs by detecting
moving blobs that appear as local minima in the range im-
age. For example, Fod et al [5] use a combination of back-
ground and foreground models to extract and track blobs
in an indoor environment using multiple laser range find-
ers. Kleinhagenbrock et al [7] apply an anchoring processes
to link legs of persons with the rest of the body. In this
case the legs are detected applying a set of thresholds on
the segments obtained from a laser scan. The work by Cui
et al [4] also uses background substraction to detect the legs
of persons in open areas. The leg detection system devel-
oped by Scheutz et al [13] searches for legs of an appro-
priate width and a possible gap between legs scaled by the
distance. Schulz et al [14] detect people in laser scans as lo-
cal minima in the distance histograms. The set of possible

leg patterns from scan data is extended by Topp and Chris-
tensen [16]. Finally, Xavier et al [20] detect legs as arcs con-
taining some geometrical restrictions. The features used to
detect legs in the previous works are selected by hand. In
comparison, our work automatically selects the best features
for the detection and creates a classifier with them.

The multi-part detection of people has been mainly stud-
ied in vision. For example, Leibe et al [8] use a voting ap-
proach to detect people in images with a previous learned
codebook. Moreover, the works by Ioffe and Forsyth [6] and
Ronfard et al [12] incrementally assemble body parts de-
tected in a picture. Also Mikolajczyk et al. [10] use a prob-
abilistic assembly of different body part detectors. Wu and
Nevatia [19] apply a Bayesian combination of body parts
detected using edgelet features.

Other works combine different sensors to detect peo-
ple. Spinello et al. [15] use laser and vision sensors to de-
tect people from a car. Also Zivkovic and Kröse [22] com-
bine panoramic images with laser scans. In contrast to these
works we use only laser range finders.

AdaBoost has been successfully used as a boosting algo-
rithm in different applications for object recognition. Viola
and Jones [18] boost simple features based on grey level dif-
ferences to create a fast face classifier using images. Treptow
et al. [17] use the AdaBoost algorithm to track a ball without
color information in the context of RoboCup. Further, Mo-
zos et al. [11] apply AdaBoost to create a classifier able to
recognize places in 2D maps.

The approach presented in this paper is based on the
work by Arras et al [2], which uses boosting to learn a classi-
fier for the detection of leg segments. However, we addition-
ally learn classifiers for other body parts, and we introduce
a method to combine the resulting classifications.

3 Single Layer Classification

Our system is composed of several laser range finders lo-
cated at different heights (cf. Fig 1). Each laser scan is seg-
mented and a set of features is calculated for each segment.
Using this data we learn a classifier to detect the correspond-
ing body part of a person, like the legs, the upper body or the
head. Each classifier is trained using a supervised approach
based on boosting.

3.1 Boosting

To create the individual classifierCL for layer L we follow
the approach introduced in [2]. This method uses the su-
pervised generalized AdaBoost algorithm to create a final
strong classifier by combining several weak classifiers. The
requirement to each weak classifier is that its accuracy is
better than a random guessing. The input to the algorithm
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is a set of training examples(xn,yn),n = 1, . . . ,N, where
eachxn is an example andyn ∈ {+1,−1} is a label indi-
cating whetherxn is a positive example (yn = +1) or a neg-
ative one (yn = −1). In a series of roundst = 1, . . . ,T , the
AdaBoost algorithm selects the weak classifiers that have a
small classification error in the weighted training examples.
The weight distributionDt is changed on each iteration to
give more importance to the most difficult examples. The fi-
nal strong classifier is composed of a weighted majority sum
of the selected weak hypotheses.

Each weak classifierh j is based on a single-valued fea-
ture f j and has the form

h j(e) =

{

+1 if p j f j(e) < p jθ j

−1 otherwise,
(1)

whereθ j is a threshold, andp j is either+1 or−1 and thus
represents the direction of the inequality. In each roundt of
the algorithm, the values forθ j and p j are learned so that
the misclassification in the training data is minimized as

(p j,θ j) = argmin
(θi,pi)

N

∑
n=1

Dt(n) |hi(xn)− yn| . (2)

The final strong classifier is a weighted combination of
the bestT weak classifiers. The output of the final binary
classifierCn has two values{+1,−1} representing the pos-
itive and negative classification respectively. The final Ad-
aBoost algorithm modified for the concrete task of this work
is shown in Fig. 2.

3.2 Geometrical Features

Each layer in our system is equipped with a range sensor
that deliver scan observations. The observationz from one
laser sensor is composed of a set of beamsz = {b1, ...,bL}.
Each beamb j corresponds to a tuple(φ j,ρ j), whereφ j is the
angle of the beam relative to the sensor andρ j is the length
of the beam. Following the approach in [2], each observation
z is split into an ordered partition of segments{s1,s2, ...,sM}

using a jumping distance condition. The elements of each
segmentsm = {x1,x2, ...,xn} are represented by Cartesian
coordinatesx = (x,y), wherex = ρ cos(φ) andy = ρ sin(φ),
and (φ ,ρ) are the polar coordinates of the corresponding
beam.

The set of training examples for the AdaBoost algorithm
is then composed of the segments together with their label,
and their pre-calculated single-valued features

X =
{

(si,yi, fi) | li ∈ {+1,−1}, fi ∈ R
d
}

. (3)

Hereyi = +1 indicates that the segmentsi is a positive ex-
ample andyi = −1 indicates that the segmentsi is a neg-
ative example. The set of positives examples is composed

– Input:

– Set ofN labeled examples(x1,y1), . . . ,(xN ,yN)
with yn = +1 if the examplexn is positive,
andyn = −1 if the examplexn is negative

– IntegerT specifying the number of iterations

– Initialize weightsD1(n) = 1
2l for positive examples,

andD1(n) = 1
2m for negative examples,

wherel is the number of positive examples andm the number of
negative ones.

– For t = 1, . . . ,T

1. Normalize the weightsDt(n)

Dt(n) =
Dt(n)

∑N
i=1 Dt(i)

.

2. For each featuref j train a weak classifierh j using the distri-
butionDt .

3. For each classifierh j calculate

r j =
N

∑
n=1

Dt(n)ynh j(xn) ,

whereh j(xn) ∈ {+1,−1}.
4. Choose the classifierh j that maximizes|r j| and set

(ht ,rt) = (h j,r j).
5. Update the weights

Dt+1(n) = Dt(n)exp(−αtynht(xn)) ,

whereαt = 1
2 log( 1+rt

1−rt
).

– The final strong classifier is given by

H(x) = sign(F(x)) ,

where

F(x) =
T

∑
t=1

αtht(x) .

Fig. 2 The generalized version of the AdaBoost algorithm for people
detection.

of segments that correspond to body parts of persons. The
negatives examples are represented by segments that corre-
spond to other objects in the environment. The dimensiond
of the feature vectorfi depends on the number of single fea-
tures extracted from each segment. In our case we calculate
eleven features selected from the list given in [2]:

1. Number of points in the segment.
2. Standard deviation of the beams length.
3. Mean average deviation from median.
4. Euclidean distance between the first and last point of a

segment.
5. Linearity of the segment.
6. Circularity of the segment.
7. Radius of the circle fit in the segment.
8. Boundary length.
9. Boundary regularity.

10. Mean curvature.
11. Mean angular difference.
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Fig. 3 This figure illustrates two examples of geometrical relations. In
particular, the relations between an upper body segment with respect
a head segment, and with respect a leg segment. Segments were pro-
jected to the 2D horizontal plane. The distance between the segments
has been increased by hand for a better visualization.

4 Multi-Layer Detection

After training the individual classifiers for each body part,
our system is able to detect the segments corresponding to
a person in each layer. In this section we explain how to
combined the output of the different classifiers to obtain a
more robust final people detector.

4.1 Shape Model

Based on [8], we learn a shape model of a person that speci-
fies the geometrical relations among the different body parts.
Fig. 3 shows an example of a shape model for the segments
corresponding to the three layers shown in the right image
of Fig. 1. To calculate the geometrical relations in our shape
model, we first project all the segments corresponding to a
person into the 2D horizontal plane (bird’s eye view). We
then calculate the maximum distance of a segment corre-
sponding to a concrete body part with respect to the seg-
ments corresponding to the other body parts as

rel(Li,L j) = max
∀s∈S

dist(s+
i ,s+

j ) | s+
i ∈ Li,s

+
j ∈ L j , (4)

whereS indicates the set of segments corresponding to the
observations obtained in all layers.Li indicates the layer
corresponding to body parti (for example the head), and
s+

i indicates a positive segment of that body part. Finally,
dist(,) is a function which calculates the Euclidean distance
between the centers of two segments. These relations are
learned from a set of positive training examples. The pro-
cess for obtaining positive examples is explained in Sect. 5.

Finally, for each relation we create a test functionδ :
S× S → {0,1} which indicates whether two new segments
si ands j satisfy the relation in the form

δ (si,s j) =

{

1 if dist(si,s j) ≤ rel(Li,L j)

0 otherwise
(5)

4.2 Probabilistic Voting

In the detection step, each range sensor delivers an observa-
tion zk which corresponds to the scan taken at layerLk. This
layer may correspond to the legs, upper body, head, or other
body part (cf. Fig. 1). After segmenting the observation fol-
lowing the approach of Sect. 3.2, each segment accumulates
evidence of being a positive example of the body part corre-
sponding to the layer in which it is located.

Let si be a segment in the scene, and letci ∈ {+1,−1}
be the classification of segmentsi. Following a similar ap-
proach to [8], we calculate the scoreV (c+

i ) for a positive
classificationci = +1 of segmentsi by marginalizing over
all segments found in the scene

V (c+
i ) = ∑

j
P(c+

i ,s j) = ∑
j

P(c+
i | s j)P(s j) . (6)

Herec+
i is equivalent toci = +1. The last term in (6) rep-

resents the probability of a positive classification for seg-
ment si given all segments found in the scene. We further
marginalize over the classification of all segments

P(c+
i | s j) = ∑

c j

P(c+
i ,c j | s j) (7)

= ∑
c j

P(c+
i | c j,s j)P(c j | s j). (8)

In our system, the are two possible values for a segment
classificationc j ∈ {+1,−1}. These values would indicate
whether the segments j corresponds to a personc j = +1 or
not c j = −1. Instantiating the variablec j in (8) we obtain

∑
c j

P(c+
i | c j,s j)P(c j | s j) = (9)

P(c+
i | c+

j ,s j)P(c+
j | s j)+P(c+

i | c−j ,s j)P(c−j | s j).

Herec−j is equivalent toc j =−1. Substituting in (6), we get
the final expression for the score of a positive classification
as

V (c+
i ) = ∑ j( P(c+

i | c+
j ,s j)P(c+

j | s j)

+P(c+
i | c−j ,s j)P(c−j | s j) ) ·P(s j) .

(10)

It remains to explain how to calculate each term in (10).
The termP(c+

j | s j) indicates the probability of a positive
classification of segments j. This value is obtained directly
from the output of the classifierCLk at the layerLk wheres j

was found

P(c+
j | s j) =

{

1 if CLk(s j) = +1
0 otherwise.

(11)

Thus, the probability for a negative classification is obtained
as

P(c−j | s j) = 1−P(c+
j | s j) . (12)

The termP(c+
i | c+

j ,s j) indicates the probability of a
positive classification for segmentsi given there is another
segments j in the scene which corresponds to a person, i.e.,
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c j = +1. This value is obtained using the test function of the
shape model introduced in Sect. 4.1 as

P(c+
i | c+

j ,s j) = δ (si,s j) . (13)

Moreover, the expressionP(c+
i | c−j ,s j), indicates the

probability for a positive classification of segmentsi given
there is another segment in the scene which corresponds to
an entity which is not a person. In this work, we apply the
following model

P(c+
i | c−j ,s j) =

{

θ if δ (si,s j) = 0
0 otherwise.

(14)

This expression indicates that whenever we find a segment
in the scene corresponding to an object other than a person,
this object can not fulfill the shape model of a person.

Finally, we need to obtain a value for the termP(s j). In
our case we used a uniform distribution over the segments
in the scene as

P(s j) =
1
|S|

, (15)

where |S| indicates the total number of segments that we
obtained from all scans in the scene.

4.3 Person Detection

After accumulating evidences for all segments found in all
layers, we have a distribution of probabilistic votes among
the different hypothesesci. To detect a person in the envi-
ronment, we look for the hypothesisc+

p which maximum
positive score

c+
p = argmax

c+
i

V (c+
i ). (16)

The segmentsp corresponding toc+
p is then selected as

the representative for the person in the scene. To detect sev-
eral persons one can look for different local maxima in the
hypotheses space. In our experiments we try to detect one
person only, and for this reason we apply (16) for selecting
the final hypothesis that represents the person.

5 Experiments

The approach presented above was implemented using a sys-
tem composed of three layers as shown in Fig. 1. At each
layer, we located a URG-04LX laser range finder with a
field of view of 240 degree. The resolution of the lasers was
of 0.36 degree. Each laser was situated at a different height
and its goal was to detect a different body part. The upper
laser was located 160 cm above the floor, and its function
was to detect heads. The middle one was located 140 cm
above the floor. This laser detected upper bodies. The final
one was located 30 cm above the floor, and its task was to

Fig. 4 The image shows the 3-layer system used in the experiments.
Each laser is located at a different height to detect a different body part:
head (160 cm), upper body (140 cm), legs (30 cm).

detect legs. The complete system is shown in Fig. 4. The ex-
periments were carried out in the Laboratory for Intelligent
Robots and Vision Systems at the University of Kyushu in
Japan. Although we use three layers in our experiments, the
reader should note the approach introduced in Sect. 4 can be
applied to any number of layers.

During the experiments the sensors were kept station-
ary. However, the system can be used in a mobile platform,
since it does not apply any background substraction. More-
over, we do not accumulate information over time, because
we classify a single multi-layer observation at each point in
time. In addition, the lasers do not need to be calibrated,
as the possible errors in the alignments are included in the
relations of the shape model. These relations are learned au-
tomatically during the training process.

We first explain how to obtain a training set for the learn-
ing step. We then demonstrate how a multi-layer classifier
can be learned in an indoor environment to detect people. In
addition we show the robustness of this classifier under oc-
clusions and in cluttered environments. Finally, we show the
improvements of the detection rates when using our multi-
layer detector in comparison to a single-layer system.

One important parameter of the AdaBoost algorithm is
the number of weak classifiersT used to form each final
strong classifier. We performed several experiments with dif-
ferent values forT and we found thatT = 200 weak classi-
fiers provide the best trade-off between the error rate of the
classifier and the computational cost of the algorithm. An-
other parameter that has to be set isθ . In our experiments we
found that a value of 0.05 gives good results under occlusion
situations. Finally, we selected a jump distance of 15 cm for
segmenting the scans.
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Fig. 5 The image depicts the process for obtaining positive training
data. A free space (5 m× 1.5 m) is left empty in front of the lasers. A
person walks inside this space and the corresponding segments are au-
tomatically labeled as positive examples. The segments falling outside
the rectangle are automatically labeled as negative examples

5.1 Training Data

The first step in the experiments was to train the classifiers
for each layer. As explained in Sect. 3, we used the super-
vised algorithm AdaBoost to create each classifier. The input
to the algorithm is composed of positive and negative exam-
ples. The set of positive examples contains segments corre-
sponding to the different body parts: legs, upper body, and
head. The set of negative examples is composed of segments
corresponding to other objects in the environment such as ta-
bles, chairs, walls, etc. We used the same training algorithm
for the three layers, with the only difference being the train-
ing data used as input.

To obtain the positive and negative examples we left a
free space of 5 m× 1.5 m in front of the lasers. This space
did not contain furniture or other objects. We then started
recording laser scans while a person was walking randomly
inside the rectangle. The obtained scans were segmented fol-
lowing the approach in Sect. 3.2. The segments were then
automatically labeled as positive examples of a body part
if they were inside the rectangle, and as negative examples
if they fell outside the rectangle. This process is shown in
Fig. 4. This is a straightforward method to obtain training
data without the need of hand-labeling.

5.2 Multi-Layer Classification

In the following experiments we tested our multi-layer ap-
proach in an indoor environment. We first obtained the train-
ing data following the procedure explained above. The data
was obtained in a location of the laboratory shown in the im-
ages of Fig. 6. The training data was composed of 344 multi-
layer observations containing 17286 segments. Examples of
training scans are shown in the images of Fig. 7. This figure

Fig. 6 First scenario for the experiments. The pictures were taken from
the position were the sensors were located. The blue trash bins inthe
right image (marked with a white circle) are used for the occlusion
experiments.

Fig. 7 The images show examples of scans taken at the different lay-
ers. The left image corresponds to the lower layer (legs), the middle
image to the middle layer (upper body), and the right image to thetop
layer (head). Blue points indicate segments classified as positive (body
parts). Black points correspond to segments classified as negative(non
body parts

Fig. 8 The image shows an example of a detection for the experiment
in the first scenario. Different colors indicate different classifications.
Blue segments are classified as body parts, the red segment is the one
with best evidence of been a person. Black segments are classified as
other objects. The segments corresponding to the person (ground truth)
are marked with a green ellipse. The lasers are located at(0,0).

depicts scans taken at the different layers when a person was
situated in front of the lasers.

In a first experiment, the same person walked in front
of the lasers following different trajectories from the train-
ing data. In this way we obtained a different test set. We
then applied our multi-layer detector to this test. An exam-
ple of observation with its corresponding detection is shown
in Fig. 8. The results of the detections are shown in Table 1,
in the row corresponding to the scenario 1. The detection
rate of 92% indicates that we can use our method to detect
people with high accuracy in indoor environments.
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Table 1 Multi-layer detection rates

True detection False detection Total observations
Scenario 1 92.0% (149) 8.0% (13) 162
Scenario 2 85.8% (272) 14.2% (45) 317
Scenario 3 75.2% (161) 24.8 % (53) 214

Fig. 9 The image shows an example of a detection for the experiment
in the second scenario. The meaning of the colors are the same as in
Fig. 8. The position of the bins are pointed with light grey arrows. The
person is behind one of the bins with his legs occluded. The lasers are
located at(0,0).

In a second experiment we tested the performance of our
method with partially occluded bodies. In this experiment,a
person walked in front of the lasers and, at same point in
time, he took two trash bins and put them in front of the
lasers. The bins are shown in the top right image of Fig. 6.
Following, the person walked around them, and finally put
the bins back in their initial position. In this situation sev-
eral occlusion situations appear. First, while the person was
walking around the bins his legs remained occluded. Sec-
ond, while the person was bending down to take/leave the
bins his upper body and his head disappeared.

We applied our detector to this sequence of observations
and obtained the results shown in the row corresponding to
the second scenario in Table 1. The false positives often oc-
curred when the person was in contact with the bins: taking
them, moving them or leaving them. In these situations it
was difficult to detect all body parts. However, a detection
rate of 85.8% indicates that we still can use our approach to
detect partially occluded persons. An example observation
taken while the person was behind a bin is shown in Fig. 9.

In a third experiment, we tested the performance of our
learned multi-layer detector in a new cluttered environment.
Figure 10 shows images of this third scenario. In this ex-
periment, a person walked around and the obtained observa-
tions where classified. Results of the detections are shown in
the row corresponding to the third scenario in Table 1. The
detection rate decreased to 75.2, however we think this is

Fig. 10 Third scenario for the experiments. The pictures were taken
from the position were the sensors were located. As we can see the
place is very cluttered.

Fig. 11 The image shows an example of a detection for the third ex-
periment. The meaning of the colors are the same as in Figure 8. The
lasers are located at(0,0).

Table 2 Single-layer detection rates

True detection False detection Total observations
Scenario 1 92.6% (150) 7.4% (12) 162
Scenario 2 73.2% (232) 26.8% (85) 317
Scenario 3 41.1% (88) 58.9% (126) 214

still a good result for such a challenging scenario. Figure 11
shows a snapshot of this experiment. Videos for the three
experiments are available in [1].

5.3 Comparison with Single-Layer Detection

In these experiments we analyze the improvement of our
multi-layer system in comparison to a single-layer detector.
To do this, we apply our probabilistic model (cf. Sect 4.2)
to the layer corresponding to the legs. We repeat the detec-
tion in the three scenarios from the previous section. Re-
sults are shown in Table 2. In the first scenario the results
are quite similar, since there are no occlusions and the legs
are correctly detected. We can see the improvement of our
method in the experiments in the second scenario, in which
the multi-layer obtains a detection rate of 85.8% in compar-
ison to 73.2% obtained with the single-layer. Finally, in the
third scenario the single-layer obtained a detection rate of
41.1%, while our multi-layer approach got a rate of 75.2%.
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Table 3 Confusion matrices for single layers

Classification
True Label Person Not Person

Legs Person 94.3% 5.7%
No Person 7.8% 92.2%

Upper body Person 84.4% 15.6%
No Person 11.2 % 88.8%

Head Person 86.2% 13.8% (26)
No Person 12.5% 87.5%

5.4 Individual Classification Rates

In this last experiment we show the classification rates for
each individual layer. In this experiment we used the test set
in the first scenario and analyzed the performance of each
layer when classifying segments corresponding to people.
Results are summarized in Table 3. We can appreciate that
the classification rate for the legs 94.3% is higher than the
classification for the other levels. One reason for this is that
the person has two legs, and thus we obtain double num-
ber of positive training examples. In the upper levels (up-
per body and head) the classifications decrease to 84%-86%,
however they maintain at acceptable levels.

6 Conclusion

This paper presented a novel approach for people detection
using multiple layers of 2D range scans. Each laser is de-
tects a different body part of a person, like the legs, the upper
body or the head. For each body part, we learned a classifier
using boosting. The output of the different classifiers was
combined in a probabilistic framework to obtain a more ro-
bust final classifier. In practical experiments carried out in
different environments we obtained encouraging detection
rates even in very cluttered ones. Moreover, the compari-
son of our multi-layer method with a single-layer procedure
clearly demonstrated the improvement obtained when de-
tecting people using different body parts simultaneously.Fi-
nally, although we use three layers in our experiments, the
approach presented in this paper is easily extensible to any
number of layers.
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