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Abstract People detection is a key capacity for robotics Detector

systems that have to interact with humans. This paper ad- Layer 1

dresses the problem of detecting people using multiple lay- Detector

ers of 2D range scans. Each layer contains a classifier which Layer 2

detects a particular body part. The classifiers are learaed u

ing a supervised approach based on boosting. The final d| Combined .

tector is composed of a probabilistic combination of the dif | Detector y

ferent classifiers. Experimental results with real dataatem '

strate the effectiveness of our approach to detect persons i

indoor environments, and its ability to deal with occlusion E:;gft’\“’r A LA

Keywords Laser-Based People DetectioMultiple Cue
Classification Sensor Fusion

1 Introduction

Fig. 1 The left image shows the configuration for the complete multi-
layer system with 2D range scans situated at different layersagskl
fier is learned for the body part found in each layer. These ¢iassi
are then combined to create a final person detector. The rigiyeinhe:
picts examples of segments representing body parts at threeediff
layers: legs, upper body, and head (bird’s eye view).

Detecting people is a key capacity for service robots that
have to interact with humans [3,16,21]. A robust detection

of persons in the environment will improve the ability of
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these systems to communicate with people and to take de-
cisions. Additional applications of people detection can b
found in autonomous vehicles [9,15]. In this case the main
objective is to detect pedestrians to change the behavior of
the vehicle accordingly.

In this paper we address the problem of detecting people
in indoor environments using 2D laser range finders. These
kind of proximity sensors are often used in robotic applica-
tions since they provide a wide field of view and a high data
rate. In addition, their measurements are invariant tonitu
nation changes. Previous works have used 2D laser range
finders to detect people in the environment. Typically, the
lasers are located at a height which permits the detection
of legs [2-5,7,13-16]. Although good classifications rates
have been obtained using machine learning techniques [2,
15], there is still the need to improve the robustness of the
final detectors. One of the main problems is the little infor-
mation about legs that is provided by the range scans. An ex-



ample is shown in the bottom right of Fig. 1. Here, the legdeg patterns from scan data is extended by Topp and Chris-
of a person are represented by short segments composedtensen [16]. Finally, Xavier et al [20] detect legs as aras co
few points. In cluttered environments, like homes or officestaining some geometrical restrictions. The features used t
these segments can be easily misclassified with other sbjealetect legs in the previous works are selected by hand. In
in the environment such as tables, chairs or other furniturecomparison, our work automatically selects the best featur
Moreover, occlusions often occur and make the detection dbr the detection and creates a classifier with them.
people quite difficult, or even impossible when the legs are  The multi-part detection of people has been mainly stud-
hidden. ied in vision. For example, Leibe et al [8] use a voting ap-
The key idea of this work is to improve the robustnessproach to detect people in images with a previous learned
of people detection systems by taking into account differencodebook. Moreover, the works by loffe and Forsyth [6] and
body parts. Our approach uses 2D laser range scans whi&onfard et al [12] incrementally assemble body parts de-
are situated at different heights. Each laser is respansibtected in a picture. Also Mikolajczyk et al. [10] use a prob-
for detecting a different body part, like the legs, the uppembilistic assembly of different body part detectors. Wu and
body or the head. The output of the different detectors ifNevatia [19] apply a Bayesian combination of body parts
then combined in a probabilistic framework to obtain a ro-detected using edgelet features.
bust final classifier. The complete system is shown in the Other works combine different sensors to detect peo-
left image of Fig. 1. The method presented in this paper iple. Spinello et al. [15] use laser and vision sensors to de-
based on the classification of segments that represent eatdtt people from a car. Also Zivkovic and &se [22] com-
body part (right image of Fig. 1). For each layer, a classibine panoramic images with laser scans. In contrast to these
fier is trained using a supervised learning approach baseaslorks we use only laser range finders.
on boosting [2]. The training data for each classifier is com- AdaBoost has been successfully used as a boosting algo-
posed of the segments that represent the body part of thighm in different applications for object recognition.ola
corresponding layer. In the classification step, each ngw seand Jones [18] boost simple features based on grey level dif-
ment accumulates evidence for its final classification uging ferences to create a fast face classifier using images.olvept
probabilistic voting approach [8]. In this way, the finalsla etal. [17] use the AdaBoost algorithm to track a ball without
sification of a specific segment takes into account the elasscolor information in the context of RoboCup. Further, Mo-
fication of all segments in the scene. zos et al. [11] apply AdaBoost to create a classifier able to
Experimental results shown in this paper illustrate thatecognize places in 2D maps.
the resulting classification system can detect personsiin cl The approach presented in this paper is based on the
tered environment with high recognition rates. Moreover, w work by Arras et al [2], which uses boosting to learn a classi-
present results illustrating that the multi-layer classifim-  fier for the detection of leg segments. However, we addition-
proves the detection over single-layer ones. Finally, voswsh ally learn classifiers for other body parts, and we introduce
the robustness of the classifier under occlusions. a method to combine the resulting classifications.

2 Related Work 3 Single Layer Classification

Inthe past, several researchers focused on the problem of dg,, system is composed of several laser range finders lo-
tecting/tracking people in range scans. One of the most poRyted at different heights (cf. Fig 1). Each laser scan is seg
ular approaches in this context is to extract legs by detgcti mented and a set of features is calculated for each segment.
moving blobs that appear as local minima in the range imysing this data we learn a classifier to detect the correspond
age. For example, Fod et al [5] use a combination of backing hody part of a person, like the legs, the upper body or the

ground and foreground models to extract and track blobfeaq. Each classifier is trained using a supervised approach
in an indoor environment using multiple laser range find35ed on boosting.

ers. Kleinhagenbrock et al [7] apply an anchoring processes

to link legs of persons with the rest of the body. In this

case the legs are detected applying a set of thresholds @1 Boosting

the segments obtained from a laser scan. The work by Cui

et al [4] also uses background substraction to detect tise lego create the individual classifi€; for layerL we follow

of persons in open areas. The leg detection system devehe approach introduced in [2]. This method uses the su-
oped by Scheutz et al [13] searches for legs of an apprgervised generalized AdaBoost algorithm to create a final
priate width and a possible gap between legs scaled by ttstrong classifier by combining several weak classifiers. The
distance. Schulz et al [14] detect people in laser scans as loequirement to each weak classifier is that its accuracy is
cal minima in the distance histograms. The set of possibleetter than a random guessing. The input to the algorithm



is a set of training examples,yn),n = 1,...,N, where
eachx, is an example ang, € {+1,—1} is a label indi-
cating whethek, is a positive exampleyf = +1) or a neg-
ative one Y, = —1). In a series of rounds=1,...,T, the
AdaBoost algorithm selects the weak classifiers that have|a
small classification error in the weighted training example

The weight distributiorD; is changed on each iteration to | -

give more importance to the most difficult examples. The fi
nal strong classifier is composed of a weighted majority sum
of the selected weak hypotheses.

Each weak classifidr; is based on a single-valued fea-
ture f; and has the form

o

whereg; is a threshold, ang; is either+1 or —1 and thus
represents the direction of the inequality. In each rouofl
the algorithm, the values fd¥; and p; are learned so that
the misclassification in the training data is minimized as

+1if pjfj(e) < p;6;

hj( —1 otherwise (1)

N
(pj,6;) = argmin De(n)[hi(%n) — Y| -
(6,p1) n=1

()

The final strong classifier is a weighted combination of
the bestT weak classifiers. The output of the final binary
classifierC, has two value§+1,—1} representing the pos-
itive and negative classification respectively. The final Ad
aBoost algorithm modified for the concrete task of this work
is shown in Fig. 2.

— Fort=1,....T
1. Normalize the weightBx(n)
Dt(n
Di(n) = Nt# )
Yi-1Dt(i)

— The final strong classifier is given by

Input:

— Set ofN labeled example§a, i), ..., (X, YN)
with y, = +1 if the examplex, is positive,
andy, = —1 if the examplex, is negative

— IntegerT specifying the number of iterations

Initialize weightsD1(n) = 2—l| for positive examples,
andDq(n) = %1 for negative examples,
wherel is the number of positive examples amdthe number of
negative ones.

2. For each featuré; train a weak classifiel; using the distri
butionDy.
3. For each classifigr; calculate

N
fi= 3 Dahy ).

where_h,- (Xn) € {+1,—1}.

4. Choose the classifiéy that maximizegr;| and set
(he,re) = (hy,rj).

5. Update the weights

Dt,1(n) = Dy (n) exp(—atynht (Xa)) ,
wherea = 3 log(1t).

H(x) = sign(F (x)) ,

where
T

F(X) :t;atht(x) .

Fig. 2 The generalized version of the AdaBoost algorithm for people
detection.

3.2 Geometrical Features

Each layer in our system is equipped with a range SensQf segments that correspond to body parts of persons. The

that deliver scan observations. The observatidrom one
laser sensor is composed of a set of beams{bs,...,b_}.

Each beant; corresponds to a tupleg;, pj), whereg; is the
angle of the beam relative to the sensor gnds the length

negatives examples are represented by segments that corre-
spond to other objects in the environment. The dimendion
of the feature vectof; depends on the number of single fea-
tures extracted from each segment. In our case we calculate

of the beam. Following the approach in [2], each observatioréleven features selected from the list given in [2]:

zis split into an ordered partition of segmefits, s, ..., Su }
using a jumping distance condition. The elements of each

segmentsy = {X1,X2,...,Xn} are represented by Cartesian 1.

coordinatex = (x,Yy), wherex = p cog @) andy = psin(@), 2

beam.

The set of training examples for the AdaBoost algorithm
is then composed of the segments together with their labelg
and their pre-calculated single-valued features 6

7.

X={(s,yi,fi)llie{+1,—1},fieRd}- @) g
Herey; = +1 indicates that the segmestis a positive ex- 9.
_ 10.

ample andy; = —1 indicates that the segmestis a neg-

ative example. The set of positives examples is composéd-

Number of points in the segment.

F _ 2. Standard deviation of the beams length.
and (¢,p) are the polar coordinates of the correspondings

Mean average deviation from median.

4. Euclidean distance between the first and last point of a

segment.

. Linearity of the segment.
. Circularity of the segment.

Radius of the circle fit in the segment.
Boundary length.

Boundary regularity.

Mean curvature.

Mean angular difference.



head 4.2 Probabilistic Voting

rel(upper_body, head) In the detection step, each range sensor delivers an observa

tion z which corresponds to the scan taken at ldyerThis

upper bod
PP y layer may correspond to the legs, upper body, head, or other
rel(upper_body, leg) bod_y part (cf. Fig. 1). After segmenting the observation fol
leg lowing the approach of Sect. 3.2, each segment accumulates

evidence of being a positive example of the body part corre-

Fig 3 This i llustrates & e of rical relati | sponding to the layer in which it is located.

ig. is figure illustrates two examples of geometrical relations. \ . B
particular, the relations between an upper body segment edpect Lets be fa_ Segme”t in the scene, andde{ {,+:,I" 1}
a head segment, and with respect a leg segment. Segments were pR& the classification of segmest Following a similar ap-
jected to the 2D horizontal plane. The distance between theeseg  proach to [8], we calculate the scovéc;") for a positive

has been increased by hand for a better visualization. classificationc; = +1 of segment by marginalizing over
all segments found in the scene
4 Multi-Layer Detection V(ch) =Y P(c",s) = P(c" | s))P(s)) - (6)
J J

After training the individual classifiers for each body part Herec' is equivalent tacy = +1. The last term in (6) rep-

our system is able to detect the segments corresponding {gsents the probability of a positive classification for-seg
a person in each layer. In this section we explain how tgnents given all segments found in the scene. We further
combined the output of the different classifiers to obtain anarginalize over the classification of all segments

more robust final people detector.
P(c [ s) = Y P(c".ci | 5) ©)
Cj

=Y P(¢" | ¢j,8))P(c | 5y). (8)
4.1 Shape Model G
~Inour system, the are two possible values for a segment
Based on [8], we learn a_shape model of aperson that SPeEassificationcj € {+1,—1}. These values would indicate
fies the geometrical relations among the different bodyspart \yhether the segmes} corresponds to a persan= +1 or

Fig. 3 shows an example of a shape model for the segmen,t,%tcj — —1. Instantiating the variablg in (8) we obtain
corresponding to the three layers shown in the right image .
of Fig. 1. To calculate the geometrical relations in our shap z P(c" [ cj,8)P(cj | 5) = (9)

model, we first project all the segments corresponding to a - . o B
person into the 2D horizontal plane (bird’s eye view). We P(C" | ¢j,8j)P(c; | sj) +P(¢” [ cj,5))P(c | s)).

then calculate the maximum distance of a segment corrgyerec: is equivalent ta; = —1. Substituting in (6), we get
sponding to a concrete body part with respect to the segpe final expression for the score of a positive classificatio
ments corresponding to the other body parts as as

V(") =3;( PG |cf.sj)P(c] | s))
+P(ct [ ¢ ,s)P(c; |s)) )-P(s)) -

whereSindicates the set of segments corresponding to the |t Fémains to explain how to calculate each term in (10).

observations obtained in all layers; indicates the layer 1he termP(c]" | sj) indicates the probability of a positive

corresponding to body pait(for example the head), and classification of segmerst. 'I_'hls value is obtained directly

s indicates a positive segment of that body part, Finally,from the output of the classifi€y, at the layel, wheres;

dist(, ) is a function which calculates the Euclidean distancéV@s found

between the centers of two segments. These relations 315?& Is) = { 1if CLk(sj) =+1 (11)

learned from a set of positive training examples. The pro- * ' 0 otherwise.

cess for obtaining positive examples is explained in Sect. 5thys the probability for a negative classification is ofai
Finally, for each relation we create a test functidn  gs

Sx S— {0,1} which indicates whether two new segments

s ands; satisfy the relation in the form

rel(Li,L;) = rvnsgédist(qﬁsj*) |s"eli,sf €Ly, (4) (10)

P(cj |'sj) =1—P(cj |sj). (12)

o The termP(c" | cf,sj) indicates the probability of a
5(s.5)) = {1 if d'St(S}SJ') <rel(Li,L)) (5) positive classification for segmestgiven there is another
0 otherwise segment; in the scene which corresponds to a person, i.e.,



¢j = +1. This value is obtained using the test function of the
shape model introduced in Sect. 4.1 as

P(c’ | cf.s) = 8(s.s)) - (13) 160cm

Moreover, the expressioR(c" | ¢ ,sj), indicates the
probability for a positive classification of segmeqnigiven
there is another segment in the scene which corresponds to
an entity which is not a person. In this work, we apply the
following model

F)(CiJr | CI’SJ) = {

This expression indicates that whenever we find a segment
in the scene corresponding to an object other than a person,
this object can not fulfill the shape model of a person.

Finally, we need to obtain a value for the teR{s;). In 30cm
our case we used a uniform distribution over the segments
in the scene as

140cm
0if o6(s,sj) =0

0 otherwise. (14)

Fig. 4 The image shows the 3-layer system used in the experiments.
1 15 Each laser is located at a different height to detect a diftdvedy part:
E ) (15) head (160 cm), upper body (140 cm), legs (30 cm).

P(sj) =

where |§| indicates the total number of segments that we

obtained from all scans in the scene. detect legs. The complete system is shown in Fig. 4. The ex-
periments were carried out in the Laboratory for Intelligen
Robots and Vision Systems at the University of Kyushu in

4.3 Person Detection Japan. Although we use three layers in our experiments, the

reader should note the approach introduced in Sect. 4 can be
After accumulating evidences for all segments found in allpplied to any number of layers.

layers, we have a distribution of probabilistic votes among During the experiments the sensors were kept station-
the different hypotheses. To detect a person in the envi- 5y However, the system can be used in a mobile platform,
ronment, we look for the hypothesig which maximum  gjnce it does not apply any background substraction. More-
positive score over, we do not accumulate information over time, because
c-‘; — argmaX\/(ci*). (16) we classify a single multi-layer observation at each paint i
G time. In addition, the lasers do not need to be calibrated,
The segmens, corresponding t@g is then selected as &5 the possible errors in the alignments are included in the
the representative for the person in the scene. To detect Ser\:;latlons of the shape model. These relations are leamed au

eral persons one can look for different local maxima in thetom"’lt'c‘?IIIy d”””g the training proces.s.'
We first explain how to obtain a training set for the learn-

hypotheses space. In our experiments we try to detect one

person only, and for this reason we apply (16) for selectind? step. We th_en de_monstrate_ how a multi-layer classifier
the final hypothesis that represents the person can be learned in an indoor environment to detect people. In

addition we show the robustness of this classifier under oc-

clusions and in cluttered environments. Finally, we shasv th
5 Experiments improvements of the detection rates when using our multi-

layer detector in comparison to a single-layer system.
The approach presented above was implemented using a sys- One important parameter of the AdaBoost algorithm is
tem composed of three layers as shown in Fig. 1. At eacthe number of weak classifieis used to form each final
layer, we located a URG-04LX laser range finder with astrong classifier. We performed several experiments with di
field of view of 240 degree. The resolution of the lasers waderent values fol and we found thal = 200 weak classi-
of 0.36 degree. Each laser was situated at a different heigfiers provide the best trade-off between the error rate of the
and its goal was to detect a different body part. The uppetlassifier and the computational cost of the algorithm. An-
laser was located 160 cm above the floor, and its functiowther parameter that has to be sé.ign our experiments we
was to detect heads. The middle one was located 140 cfound that a value of 05 gives good results under occlusion
above the floor. This laser detected upper bodies. The finaltuations. Finally, we selected a jump distance of 15 cm for
one was located 30 cm above the floor, and its task was tsegmenting the scans.



0.25m

Fig. 6 First scenario for the experiments. The pictures were taken from
the position were the sensors were located. The blue trash bthe in
right image (marked with a white circle) are used for the occlusio
experiments.

~. ~ \
~iulon | N T

Fig. 5 The image depicts the process for obtaining positive training ) Vo~ ' - {

data. A free space (Sm 1.5m) is left empty in front of the lasers. A Fig. 7 The images show examples of scans taken at the different lay-

person walks inside this space and the corresponding segments are @s. The left image corresponds to the lower layer (legs), the lenidd

tomatically labeled as positive examples. The segments fallitgid®s  jnage to the middle layer (upper body), and the right image tadpe

the rectangle are automatically labeled as negative examples layer (head). Blue points indicate segments classified as poitddy
parts). Black points correspond to segments classified as nefative
body parts

5.1 Training Data

The first step in the experiments was to train the classifier
for each layer. As explained in Sect. 3, we used the supe
vised algorithm AdaBoost to create each classifier. Thetinpt a \
to the algorithm is composed of positive and negative exam
ples. The set of positive examples contains segments corr st ﬁﬂ'-—— 24
sponding to the different body parts: legs, upper body, an 3 N . a\
head. The set of negative examples is composed of segmel 2l -
corresponding to other objects in the environment suchas ti
bles, chairs, walls, etc. We used the same training algurith @
for the three layers, with the only difference being thertrai
ing data used as input. ’ )

To obtain the positive and negative examples we left ¢ | ~4
free space of 5nx 1.5m in front of the lasers. This space ‘ o
did not contain furniture or other objects. We then startec B I T e
.rec.ordlng laser scans while a.person was walking randoml¥ig. 8 The image shows an example of a detection for the experiment
inside the rectangle. The obtained scans were segmenied fQ| the first scenario. Different colors indicate differentssiications.
lowing the approach in Sect. 3.2. The segments were theBiue segments are classified as body parts, the red segment is the one

automatically labeled as positive examples of a body pantith best evidence of been a person. Black segments are classified as

if they were inside the rectangle, and as negative exampl&d!e" Obiects. The segments corresponding to the person (grouini t
. are marked with a green ellipse. The lasers are locatéd] @

if they fell outside the rectangle. This process is shown in
Fig. 4. This is a straightforward method to obtain training
data without the need of hand-labeling.

depicts scans taken at the different layers when a person was
situated in front of the lasers.

5.2 Multi-Layer Classification In a first experiment, the same person walked in front
of the lasers following different trajectories from theitra
In the following experiments we tested our multi-layer ap-ing data. In this way we obtained a different test set. We
proach in an indoor environment. We first obtained the trainthen applied our multi-layer detector to this test. An exam-
ing data following the procedure explained above. The datale of observation with its corresponding detection is sow
was obtained in a location of the laboratory shown in the imin Fig. 8. The results of the detections are shown in Table 1,
ages of Fig. 6. The training data was composed of 344 multin the row corresponding to the scenario 1. The detection
layer observations containing 17286 segments. Examples ddite of 92% indicates that we can use our method to detect
training scans are shown in the images of Fig. 7. This figur@eople with high accuracy in indoor environments.



Table 1 Multi-layer detection rates

True detection| False detection Total observations
Scenario 1| 92.0% (149) 8.0% (13) 162 @ £
Scenario 2| 85.8% (272) 14.2% (45) 317 | > p
Scenario 3| 75.2%(161) 24.8 % (53) 214 e o A2 ol F
Fig. 10 Third scenario for the experiments. The pictures were taken
5 ‘ . . . ‘ ; ; from the position were the sensors were located. As we can see the

place is very cluttered.
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Fig. 11 The image shows an example of a detection for the third ex-
periment. The meaning of the colors are the same as in Figure 8. The
lasers are located @@, 0).

*ur

-1

Fig. 9 The image shows an example of a detection for the experimer
in the second scenario. The meaning of the colors are the same as o
Fig. 8. The position of the bins are pointed with light greyoars. The
person is behind one of the bins with his legs occluded. Thedase
located af0,0).

=4 =3 -2 -1 a 1

In a second experiment we tested the performance of oyt . » Single-layer detection rates
method with partially occluded bodies. In this experiment,

person walked in front of the lasers and, at same point i
time, he took two trash bins and put them in front of the|

True detection

False detection

Total observations

-
Scenario 1
Scenario 2

lasers. The bins are shown in the top right image of Fig. §. Scenario 3

92.6% (150)
73.2% (232)
41.1% (88)

7.4% (12)
26.8% (85)
58.9% (126)

162
317
214

Following, the person walked around them, and finally put
the bins back in their initial position. In this situatiorvse
eral occlusion situations appear. First, while the persas w Still a good result for such a challenging scenario. Figure 1
walking around the bins his legs remained occluded. Seghows a snapshot of this experiment. Videos for the three
ond, while the person was bending down to take/leave thexperiments are available in [1].
bins his upper body and his head disappeared.

We applied our detector to this sequence of observations
and obtained the results shown in the row corresponding t8.3 Comparison with Single-Layer Detection
the second scenario in Table 1. The false positives often oc-
curred when the person was in contact with the bins: takingn these experiments we analyze the improvement of our
them, moving them or leaving them. In these situations iulti-layer system in comparison to a single-layer detecto
was difficult to detect all body parts. However, a detectionTo do this, we apply our probabilistic model (cf. Sect 4.2)
rate of 858% indicates that we still can use our approach tao the layer corresponding to the legs. We repeat the detec-
detect partially occluded persons. An example observatiotion in the three scenarios from the previous section. Re-
taken while the person was behind a bin is shown in Fig. 9.sults are shown in Table 2. In the first scenario the results

In a third experiment, we tested the performance of ouare quite similar, since there are no occlusions and the legs
learned multi-layer detector in a new cluttered environmen are correctly detected. We can see the improvement of our
Figure 10 shows images of this third scenario. In this exmethod in the experiments in the second scenario, in which
periment, a person walked around and the obtained observire multi-layer obtains a detection rate of 8% in compar-
tions where classified. Results of the detections are shown ison to 732% obtained with the single-layer. Finally, in the
the row corresponding to the third scenario in Table 1. Thehird scenario the single-layer obtained a detection rate o
detection rate decreased to.Z5however we think this is 41.1%, while our multi-layer approach got a rate of 7%.



Table 3 Confusion matrices for single layers 4,

5.4 Individual Classification Rates

8.

In this last experiment we show the classification rates for
each individual layer. In this experiment we used the tdst se

in the first scenario and analyzed the performance of eachg'

layer when classifying segments corresponding to people.
Results are summarized in Table 3. We can appreciate that
the classification rate for the legs.8% is higher than the
classification for the other levels. One reason for thisas th
the person has two legs, and thus we obtain double num-

ber of positive training examples. In the upper levels (updl.

per body and head) the classifications decrease to 84%-86%,
however they maintain at acceptable levels.

12.

6 Conclusion

13.

This paper presented a novel approach for people detection
using multiple layers of 2D range scans. Each laser is de-

tects a different body part of a person, like the legs, theupp 14

body or the head. For each body part, we learned a classifier
using boosting. The output of the different classifiers was

combined in a probabilistic framework to obtain a more ro-15.

bust final classifier. In practical experiments carried out i
different environments we obtained encouraging detectiogg
rates even in very cluttered ones. Moreover, the compari-
son of our multi-layer method with a single-layer procedure

clearly demonstrated the improvement obtained when de-"

tecting people using different body parts simultaneousty.

nally, although we use three layers in our experiments, thes.

approach presented in this paper is easily extensible to any
number of layers.
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