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Abstract—In this article, we address the problem of exploiting
the structure in today’s workplace interiors in order for service
robots to add semantics to their sensor readings and to build
models of their environment by learning generic descriptors from
online object databases. These world models include information
about the location, the shape and the pose of furniture pieces
(chairs, armchairs, tables and sideboards), which allow robots to
perform their tasks more flexibly and efficiently.

To recognize the different objects in real environments,
where high clutter and occlusions are common, our method
automatically learns a vocabulary of object parts from CAD
models downloaded from the Web. After a segmentation and
a probabilistic Hough voting step, likely object locations and a
list of its assumed parts can be obtained without full visibility
and without any prior about their locations. These detections are
then verified by finding the best fitting object model, filtering out
false positives and enabling interaction with the objects.

In the experimental section, we evaluate our method on real
3D scans of indoor scenes and present our insights on what would
be required from a WWW for robots in order to support the
generalization of this approach.

I. INTRODUCTION

WE expect the future World Wide Web to include a
shared web for robots, in which they can retrieve

data and information needed for accomplishing their tasks.
Among many other information, this web will contain models
of robots’ environments and the objects therein. Today’s web
already contains such 3D object models on websites such as
Google 3D Warehouse or catalogs of online furniture stores.

In this article, we investigate how autonomous robots can
exploit the high quality information already available from the
WWW concerning 3D models of office furniture. Apart from
the hobbyist effort in Google 3D Warehouse, many companies
providing office furnishing have already modeled considerable
portions of the objects found in our workplaces and homes.
In particular, we present an approach that allows a robot to
learn generic models of typical office furniture using examples
found in the Web. These generic models are then used by the
robot to locate and categorize unknown furniture in real indoor
environments as shown in Fig. 1.
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Fig. 1. Using furniture models from the WWW together with a segmented
scan of its real environment, the robots create a world model. See the color
legend in Fig. 4 (different parts are indicated by random colors).

Furniture pieces share many common parts, especially if
their purpose is similar. For example, most chairs have an
approximately horizontal and vertical part, and rectangular
planar patches are quite common. Thus the key idea of this
article is to represent the object models learned by the robot
using a vocabulary of these common parts, together with their
specific spatial distributions in the training objects.

During the training process the CAD (Computer Aided
Design) models from furniture Web catalogs are converted into
point clouds using a realistic simulation of laser scans. These
point clouds are segmented and the resulting parts from the
different training objects are clustered to create a vocabulary of
parts. In the detection step, we match similar parts and apply
probabilistic Hough voting to get initial estimates about the
location and categories of objects found in the scene. Finally,
these detections are verified by finding the CAD model that
best fits to the measurements. This last step allows the robot
to reject false positive detections.

Using larger regions (instead of points) as basic units for
learning offers many advantages. As was already shown in [1],
the knowledge about different functional units of objects can
contribute significantly to a correct detection. Moreover, we
use training examples that are similar but not necessarily the
same as the objects encountered during the operation of the



robot, thus improving the generalization of the final classifier.

II. RELATED WORK

Although appearance-based object identification works rea-
sonably well using a variety of techniques, the robustness and
scalability of many perception systems remains an open issue,
as identified by Kragic and Vincze [2]. Ideally, a robot should
be able to recognize thousands of objects in a large variety of
situations and additionally detect their poses. We will review
some of the steps taken in this direction and contrast them to
the method proposed in this article.

A widely used technique to recognize objects in point
clouds involves local descriptors around individual points. For
example, the spin image descriptor [3] is used by Triebel et
al. [4] to recognize objects in laser scans, and it is also used
by de Alarcon et al. [5] to retrieve 3D objects in databases.
More recently, Steder et al. [6] presented the NARF descriptor
which is well-suited for detecting objects in range images.
Other works apply relational learning to infer the possible
classification of each individual point by collecting informa-
tion from neighboring points. In this sense, Angelov et al. [7]
introduce associative Markov networks to segment and classify
3D points in laser scan data. This method is also applied by
Triebel et al. [8] to recognize objects in indoor environments.
All previous methods utilize individual 3D points as primitives
for the classification, whereas we use complete 3D segments
or “parts” represented by feature vectors. We believe that parts
are more expressive when explaining objects.

For the detection of complete objects, for example 3D
shape contexts and harmonic shape contexts, descriptors are
presented in the work by Frome et al. [9] to recognize cars in
3D range scans. In the work by Wu et al. [10], shape maps
are used for 3D face recognition. Haar features are used in
depth and reflectance images to train a classifier in the work
by Nüchter et al. [11]. In these works, objects are detected
as a whole, whereas we are able to detect objects by locating
only some of their parts, which results in better detections
under occlusions and when using different viewpoints. Our
work shares several ideas with the approach by Klasing [12],
which also detects objects using a vocabulary of segmented
parts. However, we apply the classifier directly to the point
cloud without looking for isolated objects first.

Part-based object classification in 3D point clouds has also
been addressed by Huber et al. [13], using point clouds
partitioned by hand. In contrast, we partition the objects in
an unsupervised manner. Ruiz-Correa et al. [14] introduce an
abstract representation of shape classes that encode the spatial
relationships between object parts. The method applies point
signatures, whereas we use descriptors for complete segments.

Many of the techniques in our approach come from the
vision community. The creation of a vocabulary is based on
the work by Agarwal and Roth [15], and its extension with a
probabilistic Hough voting approach is taken from Leibe et
al. [16]. Voting is also used by Sun et al. [17] to detect
objects by relating image patches to depth information. Basing
our approach on geometrical information allows us to have a

single 3D CAD model of an example object in the WWW
database, since the different views can be generated by the
robot. Combinations of 3D and 2D features for part-based
detection would definitely improve the results [18].

For matching problems, RANSAC and its variations are
widely used due to the flexibility and robustness of the
algorithm [19], [20]. To register different views of an object,
local tensors are applied by Mian et al. [21]. Moreover, Rusu et
al. [22] limit the point correspondences by using local features.

Finally, using synthetic data for training data is an idea
that appears in several works [23], [24]. Lai and Fox [25]
combine scans from real objects with models from Google 3D
Warehouse to create an initial training set. In our approach, we
solely base our classifier on synthetic models, and use those
for getting object poses and to verify detection. Additionally,
we show how our classification results can be combined from
multiple scans to improve the results.

III. 3D POINT CLOUD SEGMENTATION

Our classification of objects is based on the detection of
the different parts that compose them. To determine these
parts, we segment the 3D point clouds representing the ob-
jects and scenes. A segmentation defines a disjunct partition
P = {S1, . . . , SM} of the 3D point cloud. Our segmentation
method follows a criterion based on a maximum angle dif-
ference between the surface normals. This condition is easily
checked and can be applied to any type of surface. For each
point, we calculate its normal by robustly identifying a tangent
plane at the selected point and approximating the point’s
neighborhood (inside a radius of 3 cm) using a height function
relative to this plane, in the form of a 2nd order bi-variate
polynomial defined in a local coordinate system [26]:

h(u,v) = c0 + c1u+ c2v + c3uv + c4u
2 + c5v

2, (1)

where u and v are coordinates in the local coordinate system
lying on the tangent plane. To obtain the unknown coefficients
ci, we perform a direct weighted least squares minimization
and project the point onto the obtained surface. By choosing
the query point to be at the origin of the local coordinate
system (~U ⊥ ~V ⊥ ~N , with ~U and ~V in the plane, and ~N
parallel to its normal), we can easily compute the normal ~n of
the estimated surface by computing the two partial derivatives
at (0, 0) and the cross product ~n = (~U+c1 ~N)×(~V+c2 ~N). The
surface normals get more and more accurate as the order of the
fitted polynomial increases, but in our experiments we found
an order of 2 to give sufficiently good results for segmentation
while keeping the computational costs low.

Using the obtained normals for each point in the cloud, we
apply a region growing algorithm where we mark a point p
as belonging to a part S if the distance between the point p
and some point in S is closer than δ = 5 cm, and if the angle
formed by the normal of p and the seed normal of S is less
than α = 40◦. Seed points are iteratively selected as points
with the lowest curvature that do not belong to any part yet.
This ensures that flat parts are identified first and makes the
identification process more robust. The parts that have less



Fig. 2. Left: Example point cloud acquisition and segmentation of a chair.
Right: Example shape model for a partial view. Please note that one of the
legs and the extensible beam of the chair were occluded in the scan.

than 10 points are considered to be too small, and are most
probably produced in regions with high normal variations or
by spurious points. Thus we perform a simple distance-based
region growing to group them together and the resulting parts
that are still too small are discarded. The parameters were
selected because they provide good partitions in our setup
(see Sect. VII). An example segmentation of an object is
depicted in Fig. 2, and segmentations of point clouds in indoor
environments are shown in Fig. 4.

Finally, our segmentation method produces parts with only
slight curves. As explained in the introduction, the reason is
that this kind of surface is very common in furniture objects
in indoor environments. However, cylindrical objects would
be broken up into parts covering at most 2α degrees, and the
extracted features account for the curvature of the part.

IV. TRAINING OBJECTS FROM WEB CATALOGS

As explained in the introduction, the goal of this work is to
develop a system that allows robots to query object databases
in the Web to obtain information about typical objects found
in indoor environments. In this work we use established
Web databases of objects. In particular, we download CAD
models from Google 3D Warehouse [27], Vitra’s Furnish.net
database for office equipment [28], and EasternGraphics’ web
catalogs [29].

To obtain realistic point cloud representations for these
objects, we simulated our laser scanner’s sweeping motion on
the robot, intersected each beam with the CAD model of the
object, and added realistic noise to the depth measurements.
Each obtained scan was additionally segmented using the
algorithm described in Sect. III. An example process for
obtaining training data for a chair is shown in Fig. 2. The
whole process takes, on average, 4.67s per view on a single
core using a good graphics card.

V. VOCABULARY OF PARTS

We build a common vocabulary of parts for all the classes
in the training data, since most of the objects contain similar
parts. The vocabulary is constructed by segmenting the training
objects using the algorithm from Sect. III. Each part is
then represented by a feature vector encoding its geometrical
properties. Finally, the feature vectors are clustered.

A. Feature Vectors for Parts

For each part S obtained in the segmentation from Sect. III,
we calculate the following set of geometrical features:

1) Proportion of boundary points in S computed as in [30].

Fig. 3. Example word activation and corresponding 2D voting space.

2) Average curvature of S computed as the smallest eigen-
value’s proportion to the sum of eigenvalues in the local
neighborhoods of all points.

3) Volume occupied by the voxelized points in S.
4) We calculate three eigenvalues, e1, e2, e3, of S and

calculate six proportions: e1/e2, e2/e3, e1/e3, e1/sum,
e2/sum, e3/sum, where sum = e1 + e2 + e3.

5) We obatin three eigenvectors, ~e1, ~e1, ~e1, of S, project
the points onto each of them, and calculate three metric
variances v1, v2, v3 (which we used instead of e1, e2, e3).

6) Orientation of the eigenvector corresponding to the
smallest eigenvalue, indicating the orientation of S.

7) We project the points onto each eigenvector and get the
distance to the farthest point from the medium in both
directions l1~e1 , l2~e1 , l1~e2 , l2~e2 , l1~e3 , l2~e3 . We then calculate
the following values: (l1~e1 + l2~e1), (l

1
~e2
+ l2~e2), (l

1
~e3
+ l2~e3),

(l1~e1/l
2
~e1
), (l1~e2/l

2
~e2
), (l1~e3/l

2
~e3
), (l1~e1 + l2~e1)/(l

1
~e2
+ l2~e2).

8) Three proportions between features 5 and 7: v1/(l1~e1 +
l2~e1), v2/(l

1
~e2
+ l2~e2), v3/(l

1
~e3
+ l2~e3).

9) Proportion between the occupied volume (feature 3) and
the volume of the oriented bounding box of the part.

Each part S is finally represented by a vector containing 24
features normalized to the range [0,1].

B. Words and Shape Models

The resulting set of training feature vectors is clustered
to obtain the words forming the vocabulary of parts. In our
approach, we apply k-means, since it has given good results in
previous works [31], [32]. After applying k-means to the train-
ing feature space, we obtained a clustering C = {C1, . . . , CV },
which represents our vocabulary of parts. Each cluster Ci is
called a word. An example word is shown in the center of
Fig. 3 representing the back of a chair from different views.

In addition, and following [16], we learn a shape model for
each training object view. This model specifies the distance
relations among the different parts that compose the object.
We extract the center of mass s ∈ <3 of each part S, and
the center of mass p ∈ <3 of the complete point cloud. We
then calculate each relation as the 3D vector ~d = p − s. An
example is shown in the right image of Fig. 2.

VI. OBJECT RECOGNITION

In contrast to previous works [11], [12], we do not isolate
possible objects in the scene before the classification. In our
approach, we detect the objects by simultaneously collecting
the information provided by all the parts in the scene.

Our object recognition process is composed of three main
steps: i) a set of hypotheses is generated which indicate



possible locations for objects in the point cloud, ii) a selection
of the best hypotheses is done following a set of criteria, iii)
model fitting and verification is applied.

A. Hypotheses Generation
Given an initial partition P = {S1, . . . , SM} of a 3D point

cloud representing an indoor environment, we first obtain the
corresponding feature vector fi for each part Si. Each feature
vector is then matched to a subset of words A ⊂ C from
the learned vocabulary (activation), which constitute possible
interpretations of the part S. Each element of an activated
word casts a vote for a possible object location. This scheme
is known as probabilistic Hough voting [16], and an example
is shown in Fig. 3. In this case, a part in the scene activates
a word representing backs of chairs. Each element in A casts
a vote for the center of the chair inside the point cloud.

Formally, and following [16], given a feature vector f
representing a part S located at position l in a 3D point cloud,
the probability of finding an object of class o at position x is

p(o, x | f, l) =
∑
i

p(o, x | Ai, f, l)p(Ai | f, l). (2)

The term p(o, x | Ai, f, l) represents the probability of finding
object o at location x given that feature f at position l activated
the word Ai. The term p(Ai | f, l) indicates the probability
that the feature vector f matches the word Ai.

Based on [16] we make two further assumptions. First, the
probability of finding an object given an activated word Ai is
independent of the feature vector f . Second, the activation of
a word Ai by feature vector f is independent of the location
of the corresponding part S. Thus,

p(o, x | f, l) =
∑
i

p(o, x | Ai, l)p(Ai | f). (3)

It remains to describe each term in (3). The term p(Ai | f)
represents the activation of Ai by f . Following [16] we do
not activate just one vocabulary word, but several of them.
Each activation is assigned a probability indicating how well
the feature vector f matches the codebook entry Ai as

p(Ai | f) =
w(f,Ai)∑
j w(f,Aj)

(4)

where w(f,Ai) is a distance function proportional to the
inverse of the Euclidean distance between vector f and the
mean vector of cluster Ai.

The term p(o, x | Ai, l) represents the probability of finding
object o at position x given the activated word Ai at location
l. Once a word is activated, each of its elements a casts a vote
to the position xv = l + ~d. Here l is the position of the part
S found in the point cloud, and ~d is the relation vector of the
element’s shape model (see Sect. V-B). Finally the probability
p(o, x | Ai, l) is given by

p(o, x | Ai, l) =

{ 1
#(Ai,o)

if x = xv ;

0.0 otherwise,
(5)

where #(Ai, o) indicates the number of elements a in word
Ai that pertain to object o.

B. Hypotheses Selection

According to [16], the final score V (o, x) of a hypothesis
representing an object and its position can be obtained by
marginalizing over all the parts found in the scene,

V (o, x) =
∑
k

p(o, x | fk, lk)p(fk | lk) . (6)

The first term in this expression is calculated as in (3), and the
second term p(fk | lk) is assumed to be a uniform distribution.

Following the approach in [16], the different object hypothe-
ses are found as local maxima in the voting space using a
search window whose size corresponds to the width of the
particular object class we are looking for. We project the
votes onto the (x,y)-plane in order to simplify this search
(see Fig. 3). After obtaining the local maxima, we apply a
threshold to select the best hypotheses. Moreover, hypotheses
are checked for inconsistencies in the space. In our case,
two hypotheses for the same type of object at two different
locations xi and xj are inconsistent if the 2D-convex hulls
of the objects centered at xi and xj overlap. This condition
assumes that all objects are lying on the floor.

C. Model Fitting and Verification

Having detected positions where a certain object type is
likely to be found, we verify the detection and select the best
model for the object, along with its pose. To be able to do this,
we first need to retrieve the most important parts that voted
for the location. Some of these parts are incorrect but their
weights are low.

Our task is now to select the model and its pose from a 3D
model database that explains most of the detected object parts.
We employ a more detailed model database for this, in order
to be able to account for the variations in shapes and sizes
of the different objects. To fit these models to our 3D scans
robustly and efficiently, we transform them to noiseless point
clouds by filling the outer triangle faces with points, and use a
RANSAC-based algorithm to select the best pose and the best
model for each detected object. Since we take the complete
model into account at once instead of each view separately,
we can reduce the number of trials considerably and we do
not require the point cloud to come from a single scan. This
can become important later, as detailed in Sect. VII-C. The
search time is further reduced by assuming that objects are
upright, thus only the location in 2D and the rotation around
the up axis is required to be found.

In a regular RANSAC algorithm, one can estimate the
number of required iterations T to find the best model with
probability psuccess as

1− psuccess = (1− pgood)T ⇒ T =
log(1− psuccess)
log(1− pgood)

. (7)

The value of pgood = wn is the probability of randomly
selecting the best model, and can be estimated after each fit
(that is better than the best one found so far) as the probability
w of selecting a good sample to the power of the number of
samples n. As the algorithm finds models that are increasingly



better, the value of w can be updated as #inliers/#points,
resulting in a decrease in the number of iterations needed.
Thus the number of iterations adapts to the estimated number
of matches, starting at infinity when no inliers are known and
decreasing to a number that ensures that the chance of finding
a better model than the current one drops below 1− psuccess.

As the runtime depends on the number of samples, it is
advisable to keep it as low as possible. If we were to pick both
the model and the scan points at random, we would have had
to use pgood = (#correct matches/#possible matches)2 a
very small number that is also hard to estimate. However, if we
assume that by selecting a random point from the scan, we can
find the corresponding model point. This simplifies the equa-
tion to pgood = #covered scan points/#all scan points.
The number of covered scan points can be found by nearest
neighbor searches with a maximum distance in a search tree.

We found that selecting the corresponding model point
to a scan point can be done by iterating over the possible
matches (points at similar height), and selecting the one that
would result in a transformation that covers most scan points.
Significant speedups can be achieved by selecting only a
subset of the possible correspondences and scan points. Our
experiments provided good results with around 50% of the
points checked. Additionally, by keeping track of the best
score found, subsequent searches can be stopped early if it
becomes clear that they can not produce better scores. The
same principle can be applied over multiple models as well.

Using these techniques, we were able to identify the best
pose of the good model in around 15s on a standard dual-
core laptop, without parallelization or other optimizations. Our
models contain between 5000-15000 points, while the iden-
tified object parts around 2500. For non-optimally matching
models, the verification takes around 60s, while non-matching
models are rejected in under a second. After each object model
from the identified category is fitted to the object parts, we
select the one that explains the most model points.

Before this model and its pose can be used for various
applications, it first needs to be checked in order to filter out
false positives. We first check if the model covers less than
50% of the points of the parts, and reject such detections (e.g.
the chair in column two of Fig. 8). The threshold of 50% is tied
to how well the CAD models and the real objects match. The
real chair and the best fitting model are not identical; however,
all CAD models we used cover much more than 50% of the
points if a good match is found.

We then check if the identified pose contradicts the mea-
surements, i.e. if it has faces that should have been visible
while scanning, but the laser returned points behind them.
This can be done efficiently by building one occupancy grid
per scan, in which each voxel is labeled as free, occupied or
unknown [33]. We reject models that have large parts in free
space, e.g. the sideboard in the first column of Fig. 8. Such
a grid is needed for the operation of the robot for tasks like
collision avoidance and path planning. Thus it is natural to use
it for the verification of model fittings attempts, as we did in
our experiments involving smaller objects as well [20].

Finally, when the scan point has a normal vector which
is close to being parallel to the upright axis, the rotation of
the model can not be accurately estimated. In these cases, we
use a random rotation and since we check a high percentage
of points, the models are correctly identified. Tables are
especially affected by this, and we see larger fitting errors
in finding them but the best models get identified correctly
and a subsequent fine registration using ICP [34] or one of its
many variants can be used to correct the pose.

VII. EXPERIMENTS

The goal of the experiments is to demonstrate that a robot
can learn models for 3D office objects found on the Web, and
using these models, is able to locate and categorize pieces of
furniture in 3D point clouds representing indoor environments.

To carry out the experiments, we first downloaded the CAD
models of a chair, a table and a sideboard (colored as blue,
red and yellow in Fig. 1). These objects were obtained from
different Web catalogs. Following the procedure of Sect. IV,
we placed the objects in front of the simulated laser and
rotated them around the up axis, obtaining 16 scans of each
object which were segmented using our algorithm. A final
common vocabulary of parts was created with k = 40.
These values provide a good balance between performance
and computational costs (see Fig. 6).

To obtain point clouds from real scenes, we used a Hokuyo
laser mounted on a pan tilt on a robot approximately 1.5m
above the floor (see Fig. 1). Service robots working in human
environments typically have their 3D sensor at that height such
that its perspective is similar to that of a person. Both of
the robots we used had such a setup, and since they both
ran ROS (www.ros.org), changing the robot was transparent
to our algorithm. However, different robots or sensors at
different heights can be used if the scanning of the training
data is adapted accordingly. Finally, the point clouds were
segmented using the same algorithm as for the training data.
Each obtained part activated the best two vocabulary entries.

A. Recognition of Objects in Real Environments

The first experiment was carried out in an office of our
floor at TUM. The corresponding segmented 3D point cloud
is shown in Fig. 4. This office contained two tables, different
armchairs and a sideboard. We would like to point out that the
objects located in the office were similar to but not the same
as the 3D models we downloaded from the Web. In particular,
the table in the middle of the chairs was round and we did
not have any round table in our training set, and the chairs
around the table were different from the training models. This
setting aimed to demonstrate that our approach is well-suited
for detecting categories of objects instead of concrete instances
only.

We set the thresholds for the final hypotheses to 1.0 for
tables, 0.6 for chairs, and 1.4 for sideboards. These values
were selected as desired working points in classification per-
formance plots (Fig. 5). The result of applying our detector is
shown in Fig 4. The two tables were correctly detected and the



(a) Segmented scan (b) Detected object parts (c) Segmented scan (d) Detected object parts

(e) Ground truth (f) Detected centers (g) Ground truth (h) Detected centers

Table Chair Sideboard

Fig. 4. The segmented scans of an office and a seminar room are depicted in (a) and (c) respectively. The detections of the objects’ parts for the office are
shown in (b), and for the seminar in (d). In (e) and (g) we can see the ground truth of the positions for the objects’ centers in the office and seminar room
(bird’s eye view). The detected centers obtained by our method are shown in (f) and (h), where bigger circles indicate a bigger weight. Best viewed in color.
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Fig. 5. Classification results for the office (left) and seminar (right) using
our approach (Vo), nearest neighbor (NN), and a reduced set of features (Re).
More details are given in the main text. Best viewed in color.

system was able to detect 5 chairs out of 7, although including
one false positive. An additional experiment was carried out
in a seminar room containing a big table and 15 chairs around
it. The resulting classifications are also shown in Fig. 4.

Data acquisition using our laser takes 10 s. Smoothing,
segmenting and extracting the features takes another 7.12
s on average using C++ code on a single core. The time
needed to select the final hypotheses for an object center
mainly depends upon the total number of parts in the scene
and the number of clusters in the vocabulary (since each of
the parts should activate the closest clusters). It also depends
on the number of final selected hypotheses because they are
checked for inconsistencies (see Sect. VI-B). Using our current
configuration, and without any optimization, our approach
took 0.20 s for the office, and 0.24 s for the seminar using
Matlab on an Intel Core i5.

To quantitatively evaluate the performance of our approach,
we generated recall vs (1-precision) plots for the two previous
scenes. Different false positive values were obtained by in-
creasing the threshold for the final hypotheses selection. A true
positive is obtained when the distance between the detected
center and the original center is less than half of the width of
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Fig. 6. Left: Classification performance using different number clusters k and
a fixed number of 16 views. Right: Classification performance using different
number of views and fixed number of clusters k=40. Best viewed in color.

the object. The test set included two scans of the office and two
scans of the seminar obtained from different viewpoints. The
resulting plots are shown in Fig. 5. In each plot we additionally
compare our approach based on a vocabulary of parts (Vo) with
two simplified versions: a version in which only the nearest
neighboring part in the training data is used for voting (NN);
and a version with a reduced number of features (ignoring
features 4, 7 and 8) (Re). This last version aims to show the
importance of all the features in the final classification. In both
scenes our approach outperforms the simplified ones.

We also analyzed the influence of the vocabulary size in the
classification performance. Results are shown in the left image
of Fig. 6. Finally, in the right image of Fig. 6 we analyzed
the performance of the classifier when increasing the number
of training views. Interestingly, using 16 views for training
gives slightly better results than using more. This could
be because the segmentation and features produce similar
patches. Improving the feature extraction is on our agenda,
thus exploiting our classification to the fullest. However, the
results are quite similar for the different parameters.



B. Model Fitting and Verification

In this section we present results on applying model fitting
for the final verification of the detected objects. In the first
experiment we used the classification results obtained in the
previous section for the office and seminar environments. The
classification outputs consist of the center of the detected
objects together with the parts that contributed to its detection
(see Fig. 4). Using these outputs we fitted the best original
CAD model for each final hypothesis using the correspond-
ing retrieved parts and verifying the fitting as described in
Sect. VI-C. The results are shown in Fig. 7.

Fig. 7. Model fitting in the scenes from Fig. 4.

The poses are good for most of the objects and a subsequent
ICP step would improve them further. However, here we focus
on the possibility of using it to reject false positives. The two
false positives in the right side of the seminar room were
indeed removed, but the four chairs in the walls of the office
and seminar room could not be filtered, as they covered the
parts (which were quite small) well and were in occluded
space. These could be filtered for example by having a 2D
floor map available, as they are outside the boundaries of the
rooms. False positive rejection is also shown in Fig. 8.

There were four occasions where the fitted models were
incorrect. One chair in the office and one in the seminar room
are oriented backwards because their seats were occluded and
the best matching CAD model that was available fits the data
best when it is rotated in the wrong direction. Because of the
large occlusions, these orientations could not be filtered. Two
other chairs in the left part of the scans had very small parts
(31 and 32 points), rendering correct matching impossible. In
the office the bad orientation was preserved due to the high
occlusion, but in the seminar room it was rejected.

C. Recognition Using Multiple Views

In the following experiment we showed how to take ad-
vantage of multiple views of the same scene to alternatively
improve the final detection of objects. We used the two scenes
of Fig. 8 and applied the voting approach on each of the
scenes as in the previous experiment. We then translated the
resulting voting spaces into a common coordinate system.
This process is equivalent to the alignment of the two scenes
and the simultaneous voting in both of them. As shown
in Fig. 9, after merging both voting spaces the system is
able to reject both false positives detections: the sideboard
sharing place with the chair in the first scene; and the shadow
of the man in the second scene (see previous experiment).
The improvement in the recognition is a consequence of

Fig. 8. Two examples of the whole process (see legend in Fig. 4).

Fig. 9. The two scenes from Fig. 8 are shown in a common coordinate system,
along with the detected object centers after merging the corresponding voting
spaces (see legend in Fig. 4 for center colors).

the simultaneous accumulation of evidence from both views.
Correct detected objects received a much higher weight since
they are detected twice, whereas false positives objects get
evidence from only one view.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an approach that allows a
robot to learn models of office objects downloaded from the
Web and to use them to detect and localize instances of these
types of objects in new scenes represented by 3D point clouds.

We believe that our method is a step in the right direction –
a step towards using a WWW for robots in a scalable way. In
addition, the set of possible models can be limited in multiple
ways, even obtaining a list of furniture pieces for a given
environment is conceivable. Our next steps will be to extend
the method for more object types, and to take advantage of the
possibility of multiple segmentations per scan to increase the
accuracy. Applying this approach to smaller objects with six
degrees of freedom is possible, as the parts can be learned in a
rotationally invariant manner. However, the effectiveness of the
probabilistic voting in 3D and the computational complexity
of precise model fitting remains to be tested.



Nowadays, typical indoor objects like chairs, tables or
sideboards are found all over the world and globalization
makes it likely to find the same objects in different places.
The ultimate goal would be to enable a robot to download
3D models of objects from the WWW and to learn general
representations of them in order to be able to recognize similar
objects in a new environment somewhere else in the world.
Taking the idea one step further, robots could also map their
environments, and the point clouds corresponding to high-
scoring detections could be used for training and verification or
could even be shared with other robots, thus enriching existing
databases by distributed world modeling.

What is needed, however, is the initial set of training
examples, in an easily accessible way. As previously pointed
out by other authors [25], one of the main problems when
working with 3D point clouds is the availability of labeled
training data. Model representation needs to be enriched as
well, to account for different measurement units and orienta-
tions. Not to mention the problems arising from different data
formats. Fortunately, there are efforts to solve these issues, and
additional data can be obtained by shape morphing – e.g. using
techniques such as the one from Hillenbrand [35].

In conclusion, by taking advantage of the explosion in the
number of WWW resources that is driven by industry, we can
avoid instrumentation to a large degree and allow robots to act
successfully in unknown environments.
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