A major challenge in robotics and AI lies in creating robots that are to cooperate with people in human-populated environments, e.g., for domestic assistance or elderly care. Such robots need skills that allow them to interact with the world and the humans living and working there.

In this work we investigate the question of spatial understanding of human-made environments. The functionalities of our system comprise perception of the world, natural language, learning, and reasoning. For this purpose we integrate state-of-the-art components from different disciplines in AI, robotics, and cognitive systems into a mobile robot system.

Here we describe the principles that were used for the integration, including cross-modal ontology-based mediation, and processing of perception on multiple levels of abstraction. Finally, we present experiments with the integrated “CoSy Explorer” system and list some major lessons that were learned from its design, implementation, and evaluation.

Abstract

A major challenge in robotics and AI lies in creating robots that are to cooperate with people in human-populated environments, e.g., for domestic assistance or elderly care. Such robots need skills that allow them to interact with the world and the humans living and working there.

In this work we investigate the question of spatial understanding of human-made environments. The functionalities of our system comprise perception of the world, natural language, learning, and reasoning. For this purpose we integrate state-of-the-art components from different disciplines in AI, robotics, and cognitive systems into a mobile robot system.

Here we describe the principles that were used for the integration, including cross-modal ontology-based mediation, and processing of perception on multiple levels of abstraction. Finally, we present experiments with the integrated “CoSy Explorer” system and list some major lessons that were learned from its design, implementation, and evaluation.

Goal

- **Question:** How can a robot understand the semantic, social, and functional aspects of its (human-made) environment?
- **Method:** Create an integrated, cognitive robotic system, using
 - state-of-the-art subsystems
 - cognitive architecture framework

- **Scenario:** Robot office assistant
 - interactive, semi-supervised map acquisition (Human-Augmented Mapping, HAM)
 - situated dialogue between robot and user about their environment

The Robot Architecture

- Multi-Layered Conceptual Spatial Map
- Conceptual Map
- Topological Navigation Map
- Recognized Objects
- Metric Feature Map

Communication Subsystem
- BDI mediation
- Interpretation: dialogue planning
- Parsing: syntax realization
- Recognition: speech synthesis

Navigation Subsystem
- Object recognition
- SLAM
- Place classifier
- People tracker
- Laser readings
- Odometry
The hardware used
Five laptops interconnected via wireless network

Laptop running the place classification software
On-line viewing tool
Laptop running the natural language dialogue system and the subsystem for conceptual mapping

The robot platform
One ActivMedia PeopleBot
On-board computer for hardware access and control
Pan-tilt unit with camera
SICK laser range finder
Laptop running the software for navigation, SLAM, and people tracking
Laptop running the speech recognition software, paired with a Bluetooth headset

System integration, main components, and techniques used

Perception

Metric Mapping and Localization:
- Simultaneous Localization and Mapping (SLAM)
- Geometric features (lines) extracted from laser range scans
- Integration of feature measurements using the Extended Kalman Filter (EKF)

People Tracking & Following:
- (1) Motion detection via scan matching (violation of free space)
- (2) Tracking via Kalman Filters
- (3) Human- and situation-aware person following behaviour

Object Recognition:
- Implementation of the Scale-Invariant Feature Transform (SIFT) computer vision algorithm
- Appearance-based image recognition
- Recognition of instances rather than classes

Place Categorization:
- Based on simple geometrical features \(f_j \) extracted from laser range scans
- Features are combined using AdaBoost
- Distinguish between Room and Corridor

Language & Dialogue

Speech Recognition & Synthesis:
- Nuance v. 8.5, speaker-independent speech recognition
- Festival, FreeTTS, or MARY speech synthesis

Parsing & Generation:
- OpenCCG, combinatory categorial grammar
- Ontologically rich relational syntactic and semantic representation

Semantic Analysis:
- Hybrid Logics Dependency Semantics

Dialogue Interpretation & Management:
- Contextual reference resolution
- Basic rhetorical relation resolution
- SDRT-like dialogue context model
- SFG-like functional interpretation and production of dialogue

Cross-modal Information binding:
- Ontology-based mediation for associating linguistic interpretations with knowledge about the robot’s environment

Conceptual Spatial Mapping & Reasoning

OWL-DL commonsense ontology of an indoor office environment, encoding relations between the different areas and the objects found there

Description-Logics based A-Box and T-Box reasoning (e.g. RACER or Pellet)

Combines
- information from the robot’s sensors (laser & vision) (acquired knowledge),
- information given by the robot’s tutor (asserted knowledge),
- and conceptual knowledge (innate),
- in order to infer new knowledge.

The conceptual map is linked to the topological abstraction of the navigation map and used for resolving linguistic references to entities in the robot’s environment (e.g. objects, areas).