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Summary. In probabilistic mobile robot localization, the developmef the sensor model
plays a crucial role as it directly influences tH&aency and the robustness of the localization
process. Sensor models developed for particle filters cterthe likelihood of a sensor mea-
surement by assuming that one of the particles accuratphgsents the true location of the
robot. In practice, however, this assumption is often gfipriolated, especially when using
small sample sets or during global localization. In thisgrape introduce a novel, adaptive
sensor model that explicitly takes the limited represéomal power of particle filters into ac-
count. As a result, our approach uses smooth likelihoodtifoime during global localization
and more peaked functions during position tracking. Experits show that our technique
significantly outperforms existing, static sensor models.

1 Introduction

Probabilistic mobile robot localization estimates a r&bpbse using a map of the
environment, information about the robot's motion, andssermeasurements that
relate the robot’s pose to objects in the map. The sensor Imptades a crucial role
as it directly influences thefléciency and the robustness of the localization process.
It specifies how to compute the likelihoguz | x, m) or shortp(z | x) of a measure-
mentz given the vehicle is at positiorin the environmenin. A proper likelihood
function has to take various sources of noise into acconolyding sensor uncer-
tainty, inaccuracy of the map, and uncertainty in the rablottation. An improperly
designed likelihood function can make the vehicle overlgfment in its position
and in this way might lead to a divergence of the filter. On ttieohand, the model
might be defined in a too conservative fashion and this waygmtethe robot from
localizing as the sensor information cannot compensatericertainty introduced
by the motion of the vehicle.

Monte Carlo localization (MCL) is a particle-filter basedglementation of re-
cursive Bayesian filtering for robot localization [2, 6]. &ach iteration of MCL,
the likelihood functionp(z | X) is evaluated at sample points that are randomly dis-
tributed according to the posterior estimate of the robcation. Sensor models de-
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veloped for MCL typically assume that the vehicle locatiois known exactly; that
is, they assume that one of the sampling points corresporitis true location of the
robot. However, this assumption is only valid in the limitiofinitely many particles.
Otherwise, the probability that the pose of a particle dyaxirresponds to the true
location of the robot is virtually zero. As a consequencesthlikelihood functions
do not adequately model the uncertainty due to the finite ptaimased representa-
tion of the posterior. In practice, a typical solution tostiproblem is to artificially
inflate the noise of the sensor model. Such a solution is rnatfwag, however,
since the additional uncertainty due to the sample-bag@dsentation is not known
in advance; it strongly varies with the number of samplestaeduncertainty in the
location estimate.

In this paper we introduce a novel, adaptive sensor modelketkalicitly takes
location uncertainty due to the sample-based representatio account. In order to
compute an estimate of this uncertainty, our approach barideas from techniques
developed for density estimation. The goal of density ediiom is to extract an
estimate of the probability density underlying a set of skmpViost approaches to
density estimation estimate the density at a pgiby considering aegionaround
X, where the size of the region typically depends on the nurabéidocal density of
the samples (for instance, see Parzen window or k-nearigétyar approaches [4]).

The density estimation view suggests a way for computingtttitional uncer-
tainty that is due to the sample-based representation: \Mednating the likelihood
function at a sample location, we consider the region a theastimation technique
would take into account when estimating the density at thadtion. The likelihood
function applied to the sample is then computed by integgatie point-wise like-
lihood over the corresponding region. As a result, the ililcd function automati-
cally adapts to the local density of samples, being smootimgglobal localization
and highly “peaked” during position tracking. Our approa&ises two questions.

1. How large should the region considered for a sample be?
2. How can we #iciently determine this region and integrate the obserudii@-
lihood over it?

While our idea can be applied to arbitrary particle filter mggzhes, this paper fo-
cuses on how to address these questions in the context ofemobot localization.
In particular, we estimate the region associated to a paxiging a measure applied
in k-nearest neighbor density estimation, in which the regfanmoint grows until a
suficient number of particles lies within it. We show that by ddesing the simple
case ofk = 1 and learning the appropriate smoothness of the likeliffaadtion,
we can &ectively improve the speed required for global localizatmd at the same
time achieve high accuracy during position tracking.

This paper is organized as follows. After discussing relaterk in the next sec-
tion, we briefly describe Monte Carlo localization in Sentl® Our approach to dy-
namically adapt the likelihood model is presented in SectioFinally, in Section 5,
we present experimental results illustrating the advaagad our model.
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2 Related Work

In the literature, various techniques for computing thelltkood function for Monte
Carlo localization can be found. They depend mainly on thes@es used for lo-
calization and the underlying representation of the mag-or example, several
authors used features extracted from camera images tolat@ldhe likelihood of
observations. Typical features are average grey valuec@®r values [8], color
transitions [10], feature histograms [17], or specific abgén the environment of the
robot [9, 12, 13]. Additionally, several likelihood moddts Monte-Carlo localiza-
tion with proximity sensors have been introduced [1, 15]eShapproaches either
approximate the physical behavior of the sensor [7] or trpriovide smooth like-
lihood models to increase the robustness of the localizgiiocess [14]. Whereas
these likelihood functions allow to reliably localize a nilelvobot in its environment,
they have the major disadvantage that they are static amchigéndependent of the
state the localization process has.

In the past, is has been observed that the likelihood funatam have a major
influence on the performance of Monte-Carlo Localizatioor E&xample, Pitt and
Shepard [11] as well as Thruet al. [16] observed that more particles are required if
the likelihood function is peaked. In the limit, i.e., for arfect sensor, the number of
required particles becomes infinite. To deal with this peaflLenser and Veloso [9]
and Thruret al.[16] introduced techniques to directly sample from the obesion
model and in this way ensure that there is a critical massroptes at the important
parts of the state space. Unfortunately, this approachrikpen the ability to sam-
ple from observations, which can often only be done in an@yprate, inaccurate
way. Alternatively, Pitt and Shepard [11] apply a Kalmarefiltookahead step for
each particle in order to generate a better proposal disiito. While this technique
yields superior results for highly accurate sensors, itiislinited in that the par-
ticles are updated independently of each other. Henceikibléghbod function does
not consider the number and density of particles. Another efalealing with the
limitations of the sample-based representation is to dycaliy adapt the number
of particles, as done in KLD sampling [5]. However, for higldccurate sensors,
even such an adaptive technique might require a huge nurhbanmples in order to
achieve a sfliciently high particle density during global localization.

The reader may notice that Kalman filter based techniquesdsiader the loca-
tion uncertainty when integrating a sensor measuremeis.i$tdone by mapping
the state uncertainty into observation space via a lineprasgmation. However,
Kalman filters have limitations in highly non-linear and timmhodal systems, and
the focus of this paper is to add such a capability to parfitters. More specifi-
cally, in this paper we propose an approach that dynamiealapts the likelihood
function during localization. We dynamically calculate &ach particle the variance
of the Gaussian governing the likelihood function depegdin the area covered by
that particle.



4 Patrick Pf&, Wolfram Burgard, and Dieter Fox

3 Monte Carlo Localization

To estimate the pose of the robot in its environment, we consider probabilistic
localization, which follows the recursive Bayesian filterischeme. The key idea of
this approach is to maintain a probability dengix) of the robot’s own location,
which is updated according to the following rule:

P(Xt | Z1t, Uot-1) = @ - p(z | %) - f P(Xe | U1, Xe-1) - P(%-1) d%-1 1)

Herea is a normalization constant ensuring thak; | z;¢, Upt—1) Sums up to one
over all x.. The termp(X | U1, X_1) describes the probability that the robot is at
position x; given it executed the movement ; at positionx._;. Furthermore, the
quantityp(z | x;) denotes the probability of making observatmgiven the robot's
current location is¢. The appropriate computation of this quantity is the suixgéc
this paper.

Throughout this paper we use a sample-based implementaititris filtering
scheme also denoted as Monte Carlo localization [2, 6]. InfédCarlo localization,
which is a variant of particle filtering [3], the update of thelief generally is realized
by the following two alternating steps:

1. In theprediction step, we draw for each sample a new sample according to the
weight of the sample and according to the maopled | u;_1, %_1) of the robot’s
dynamics given the actiom_; executed since the previous update.

2. In thecorrection step, the new observation is integrated into the sample set.
This is done by bootstrap re-sampling, where each sampleighted according
to the likelihoodp(z | x;) of sensingz given by its position;.

4 Dynamic Sensor Models

The likelihood modep(z | x) plays a crucial role in the correction step of the particle
filter. Typically, very peaked models require a huge numligrasticles. This is be-
cause even when the particles populate the state spaceesesgly, the likelihoods
of an observation might ffer by several orders of magnitude. As the particles are
drawn proportional to the importance weights, which thdweseare calculated as
the likelihood ofz given the pose of the corresponding particle, a minorfieir-
ence inx; will result in a diference of one order of magnitude in the likelihood and
thus will result in a depletion of such a particle in the reagéing step. Accordingly,
an extremely high density of particles is needed when themas highly accurate.
On the other hand, the sheer size of the state space prewefituusing a sfii-
ciently large number particles during global localizatinithe case that the sensor is
highly accurate. Accordingly the sensor model needs togsegeaked in the case of
global localization, when the particles are sparsely ithisted over the state space.
This is essentially the idea of the approach proposed irptger.
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Fig. 1. Sensor model given by a mixture offéirent distributions (left image) and piecewise
linear function used to calculate the standard deviatigethan the distancg = 2r to the
closest particle.

4.1 Likelihood Model for Range Sensors

The likelihood model used throughout this paper calculgies| x) based on the
distanced to the closest obstacle in the direction of the measurenieen g (and
the mapm). Accordingly,p(z| x) is calculated as

Pzl x) = p(z| d). )

To determine this quantity, we follow the approach desctibel hrunet al.[15] and
Chosett al.[1]. The key idea of this sensor model is to use a mixture of fiierent
distributions to capture the noise and error charactesisif range sensors. It uses
a Gaussiampnit(z | d) to model the likelihood in situations in which the beam hits
the next object in the direction of the measurement. Addéily, it uses a uniform
distribution prang(z | d) to represent random measurements. It furthermore models
objects not contained in the map as well as tfieats of cross-talk betweenttérent
sensors by an exponential distributipgo(z | d). Finally, it deals with detection
errors, in which the sensor reports a maximum range measmtesing a uniform
distribution pmax(z | d). These four dierent distributions are mixed by a weighted
average, defined by the paramet@s, @shor, ¥max, aNd@rang:

p(z]d)
= (a'hit, @shors Xmaxs a’rand) : (phit(z| d), pshorl(z| d), pmax(z| d), prano(z| d))T . (3)

Note that these parameters need to satisfy the constrhatteaone of them should
be smaller than zero and thafz | d) integrates to 1 over a#ifor a fixedd. A plot of
this sensor model for a given set of parameters is shown ur€&ig). Also note that
the exponential distribution is only used to model measergsithat are shorter than
expected, i.e., for measurementwith z < d. Therefore, there is a discontinuity at
z=d (see Thruret al.[15] for details).

4.2 Adapting the Variance

As already mentioned above, the particle set should apmatei the true posterior
as closely as possible. Since we only have a limited humbpedfcles, which in
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Fig. 2. Fraction of a particle set consisting of 10,000 particlesrdpa global localization run.
The circles around the individual particles represent #udusr = %d(x, x') calculated from
the distance to the partiché closest tox.

practice is often chosen as small as possible to minimizedhgputational demands,
we need to take into account potential approximation errors

The key idea of our approach is to adjust the variance of thes§an governing
phit(z | d), which models the likelihood of measurizgyiven that the sensor detects
the closest obstacle in the map, such that the particle sketsyan accurate approx-
imation of the true posterior. To achieve this, we approxinedy calculate for each
particlei the space it covers by adopting the measure used in k-neaigsbor den-
sity estimation [4]. For fiiciency reasons we rely on the casekaf 1, in which the
spatial region covered by a particle is given by the miniminclethat is centered at
the particle and contains at least one neighboring paiticlee current set. To cal-
culate the radius of this circle, we have to take both, the Euclidean distarf¢ben
positions and the angularftérence in orientation, into account. In our current im-
plementation we calculatg based on a weighted mixture of the Euclidean distance
and the angular éierence

d(x X) = (1= (04 — %)% + (X = X)) +£6(xs = ;)2 (4)

wherex; andx; are thex-coordinatesy, andx; are they-coordinates, anéi(xs — x;)
is the diferences in the angle afandx’. Additionally,& is a weighing factor that was
set to 0.8 in all our experiments. Figure 2 shows the fraatioemmap and a particle
distribution. The circle around each particle represdrgsadiug = %d(x, X') to the
closest particle'.

The next step is to adjust for each particle the standarcatiemio- of the Gaus-
sian inpyit(z| d) based on the distance= %d(x, X*), wherex* is the particle closest
to x with respect to Equation 4. In our current implementationuse a piecewise
linear functiono(r) to compute the standard deviationmf(z | d):

o1 if ar < o
or)=qo02 ifar>o (5)
ar otherwise
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Fig. 3. Distribution of 1,000,000 particles after 0, 1 and 2 intéigirzss of measurements with
the sensor model according to the specifications of the SIS Isensor.

To learn the values of the parametets o, anda of this function, we performed a
series of localization experiments on recorded data, irchvirvie determined the op-
timal values by minimizing the average distance of the olg@idistributions from
the true posterior. Since the true posterior is unknown, eterdhined a close ap-
proximation of it by increasing the number of particles Ltite entropy of a three-
dimensional histogram calculated from the particles didahange anymore. In our
experiment this turned out to be the case for 1,000,000qbesti Throughout this
experiment, the sensor model corresponded to the errcevalovided in the spec-
ifications of the laser range finder used for localizationtHa remainder of this
section, we will denote the particle set representing tine posterior bys*. Figure 3
shows the seB* at different points in time for the data set considered in this paper
To calculate the deviation of the current particle Sefrom the true posterior
represented b$*, we evaluate the KL-distance between the distributionsiobtl
by computing a histogram fror8 and S*. Whereas the spatial resolution of this
histogram is 40cm, the angular resolution is 5 degrees. iSorate probability dis-
tributions,p = py,..., ph andq = q, ..., gn, the KL-distance is defined as

KL(p.0) = ] plog, 6)

Whenever we choose a new standard deviatiorpfefz | d), we adapt the weights
Qhit, Ashort ¥max, @Ndarang 10 ensure that the integral of the resulting density is 1.

Note that in principlepyit(z | d) should encode also several other aspects to allow
for a robust localization. One such aspect, for exampléyésdependency between
the individual measurements. For example, a SICK LMS lasege scanner typi-
cally provides 361 individual distance measurements.esmparticle never corre-
sponds to the true location of the vehicle, the error in theepaf the particle renders
the individual measurements as dependent. This dependen@xample, should
also be encoded in a sensor model to avoid the filter becomiagyoconfident
about the pose of the robot. To reduce potentitdats of the dependency between
the individual beams of a scan, we only used 10 beams at argjgfdacements of
18 degrees from each scan.
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5 Experimental Results

The sensor model described above has been implemented @odted using real
data acquired with a Pioneer Pl DX8obot equipped with a laser range scanner in
a typical dfice environment. The experiments described in this sect®designed

to investigate if our dynamic sensor model outperformdcstabdels. Throughout
the experiments we compared alynamic sensor modelith different types of al-
ternative sensor models:

1. Best static sensor moddlhis model has been obtained by evaluating a series of
global localization experiments, in which we determinezldptimal variance of
the Gaussian by maximizing the utility function

|
U@L, N) = > (I —i+1)%, )
i=1

wherel is the number of integrations of measurements into the fbeliang
the individual experimentyl is the number of particles, ari®} is the number of
particles lying in a inrange around the true position of the robot.

2. Best tracking modelWe determined this model in the same way as the best static
sensor model. The only flierence is that we have learned it from situations in
which the filter was tracking the pose of the vehicle.

3. SICK LMS modelThis model has been obtained from the hardware specifica-
tions of the laser range scanner.

4. Uniform dynamic modelln our dynamic sensor model the standard deviation
of the likelihood function is computed on a per-particleibad/e also analyzed
the performance of a model in which a uniform standard dmvrids used for
all particles. The corresponding value is computed by @kire average of the
individual standard deviations.

5.1 Global Localization Experiments

The first set of experiments is designed to evaluate the pedioce of our dynamic
sensor model in the context of a global localization taskhin particular data set
used to carry out the experiment, the robot started in trehé&it of our laboratory
environment (lower left room in the maps depicted in FigureThe evolution of
a set of 10,000 particles during a typical global localizatrun with our dynami-
cally adapted likelihood model and with the best static sensodel is depicted in
Figure 4. As can be seen, our dynamic model improves the cgewee rate as the
particles quickly focus on the true pose of the robot. Duehto dynamic adapta-
tion of the variance, the likelihood function becomes magaked so that unlikely
particles are depleted earlier.

Figure 5 shows the evolution of the distardfe, x') introduced in Equation (4).
The individual images illustrate the distribution of 10008articles after 1, 2, 3, and 5
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Fig. 4. Distribution of 10,000 particles after 1, 2, 3, 5, and 11 gnétions of measurements

with our dynamic sensor model (left column) and with the keatic sensor model (right
column).

integrations of measurements with our dynamic sensor mdtelcircle around each
particle represents the distarrce %d(x, X') to the next particle('.
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Fig. 5. Evolution of the distancél(x, X') introduced in Equation (4). Distribution of 10,000
particles after 1, 3, 4 and 5 integrations of measurementsaur dynamic sensor model.

dynamic sensor model
uniform dynamic sensor model
100 | best static sensor model

dynamic sensor model
uniform dynamic sensor model

100 |
80 - 80 -
60 - 60 -
40 + 40

20 -

particles closer than 1m to ground thruth [%]
particles closer than 1m to ground thruth [%]

0 5 10 15 20 2 0 5 10 15 20 2
iteration iteration

Fig. 6. Percentage of particles within a 1m circle around the trgétiom of the robot with our

dynamic sensor model, the uniform dynamic model, and thedtesc model. The left image

shows the evolution depending on the number of iteration$@@00 particles. The right plot

was obtained with 2,500 patrticles.

Figure 6 shows the convergence of the particles to the tragipo of the robot.
Whereas the x-axis corresponds to the time step, the y-hAriwssthe number of
particles in percent that are closer than 1m to the trueipasi&hown are the evolu-
tions of these numbers for our dynamic sensor model, a umiftynamic model, and
the best fixed model for 10,000 and 2,500 particles. Notettieabest static model
does not reach 100%. This is due to the fact that the statensenodel relies on a
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Fig. 7. Success rates forfiierent types of sensor models and sizes of particle sets.hthens
results are computed in extensive global localization Brpents.

0.45 T T - T
10000 particles  +
7500 particles ~ x
5000 particles ~ *
2500 particles =

04 k..

0.35

average standard deviation

0.3

0.25 1 . .
iteration

Fig. 8. Evolution of the average standard deviation during globahlization with dfferent
numbers of particles and our dynamic sensor model.

highly smoothed likelihood function, which is good for ghdlbocalization but does
not achieve maximal accuracy during tracking. In the cas&0g®00 particles, the
variances in the distance between the individual partategypically so small, that
the uniform model achieves a similar performance. Stilktast showed that both
models are significantly better than the best fixed modelhéncase of 2,500 par-
ticles, however, the model that adjusts the variance on-p@eicle basis performs
better than the uniform model. Here, theéfediences are significant whenever they
exceed 20.
Figure 7 shows the number of successful localizations &Beintegrations of

measurements for a variety of sensor models and féeréint numbers of particles.



12 Patrick Pfé, Wolfram Burgard, and Dieter Fox

dynamic sensor model  +
018 F static sensor model  x

dynamic sensor model  +
static sensor model ~ x

Pidy b bR

localization error
o
a
%
x
[a—
——
=]
——
[——
—_—t
[—
==}
localization error
o
a

5 10 15 20 2 5 10 15 20 2

iterations iterations
Fig. 9. Average localization error of 10,000 (left image) and 2,%09ht image) particles
during a position tracking task. Our dynamic sensor modelvsha similar performance as
the best tracking model.

Here, we assumed that the localization was achieved whanea@ of the particles
differed by at most 30cm from the true location of the robot. Firshows that our
dynamic model achieves the same performance as the beéstrstatel for global
localization. Additionally, the figure shows that the statiodel that yields the best
tracking performance has a substantially smaller sucegssAdditionally, we eval-
uated a model, denoted as the SICK LMS model, in which thedstahdeviation
was chosen according to the specifications of the SICK LMSa@emne., under the
assumption that the particles in fact represent the trugipo®sf the vehicle. As can
be seen, this model yields the worst performance. Furthernwee evaluated, how
the models perform when only one beam is used per range santii¢ experi-
ment we wanted to analyze whether the dynamic model alsdsytedtter results in
situations in which there is no dependency between theiohai beams of a scan.
Again, the plots show that our sensor model outperforms tbéat for which the
standard deviation corresponds to the measuring accufétoy 8ICK LMS scanner.

Finally, Figure 8 plots the evolution of the average staddkaviations of several
global localization experiments withfierent numbers of particles. As can be seen
from the figure, our approach uses more smoothed likelihaodtions when oper-
ating with few particles (2,500). The more particles aredusethe filter, the faster
the standard deviation converges to the minimum value.

5.2 Tracking Performance

We also carried out experiments, in which we analyzed tharacy of our model
when the system is tracking the pose of the vehicle. We coedgair dynamic sensor
model to the best tracking model and evaluated the averagé4ation error of the
individual particles. Figure 9 depicts the average loedian error for two tracking
experiments with 10,000 and 2,500 particles. As can be seenthe figure, our dy-
namic model shows the same performance as the tracking mbdsle parameters
have been optimized for minimum localization error. Thiswh, that our dynamic
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sensor model yields faster convergence rates in the carftgldabal localization and
at the same time achieves the best possible tracking peafaren

6 Conclusions

In this paper we presented a new approach for dynamicallytadgthe sensor model
for particle filter based implementations of probabilidticalization. Our approach
learns a function that outputs the appropriate variancedch particle based on the
estimated area in the state space represented by thidg@artestimate the size of
this area, we adopt a measure developed for density estimati

The approach has been implemented and evaluated in exdengieriments us-
ing laser range data acquired with a real robot in a typiat® environment. The
results demonstrate that our sensor model significantlyestdarms static and opti-
mized sensor models with respect to robustness firwieaicy of the global localiza-
tion process.
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