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Summary. In probabilistic mobile robot localization, the development of the sensor model
plays a crucial role as it directly influences the efficiency and the robustness of the localization
process. Sensor models developed for particle filters compute the likelihood of a sensor mea-
surement by assuming that one of the particles accurately represents the true location of the
robot. In practice, however, this assumption is often strongly violated, especially when using
small sample sets or during global localization. In this paper we introduce a novel, adaptive
sensor model that explicitly takes the limited representational power of particle filters into ac-
count. As a result, our approach uses smooth likelihood functions during global localization
and more peaked functions during position tracking. Experiments show that our technique
significantly outperforms existing, static sensor models.

1 Introduction

Probabilistic mobile robot localization estimates a robot’s pose using a map of the
environment, information about the robot’s motion, and sensor measurements that
relate the robot’s pose to objects in the map. The sensor model plays a crucial role
as it directly influences the efficiency and the robustness of the localization process.
It specifies how to compute the likelihoodp(z | x,m) or shortp(z | x) of a measure-
mentz given the vehicle is at positionx in the environmentm. A proper likelihood
function has to take various sources of noise into account, including sensor uncer-
tainty, inaccuracy of the map, and uncertainty in the robot’s location. An improperly
designed likelihood function can make the vehicle overly confident in its position
and in this way might lead to a divergence of the filter. On the other hand, the model
might be defined in a too conservative fashion and this way prevent the robot from
localizing as the sensor information cannot compensate theuncertainty introduced
by the motion of the vehicle.

Monte Carlo localization (MCL) is a particle-filter based implementation of re-
cursive Bayesian filtering for robot localization [2, 6]. Ineach iteration of MCL,
the likelihood functionp(z | x) is evaluated at sample points that are randomly dis-
tributed according to the posterior estimate of the robot location. Sensor models de-
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veloped for MCL typically assume that the vehicle locationx is known exactly; that
is, they assume that one of the sampling points corresponds to the true location of the
robot. However, this assumption is only valid in the limit ofinfinitely many particles.
Otherwise, the probability that the pose of a particle exactly corresponds to the true
location of the robot is virtually zero. As a consequence, these likelihood functions
do not adequately model the uncertainty due to the finite, sample-based representa-
tion of the posterior. In practice, a typical solution to this problem is to artificially
inflate the noise of the sensor model. Such a solution is not satisfying, however,
since the additional uncertainty due to the sample-based representation is not known
in advance; it strongly varies with the number of samples andthe uncertainty in the
location estimate.

In this paper we introduce a novel, adaptive sensor model that explicitly takes
location uncertainty due to the sample-based representation into account. In order to
compute an estimate of this uncertainty, our approach borrows ideas from techniques
developed for density estimation. The goal of density estimation is to extract an
estimate of the probability density underlying a set of samples. Most approaches to
density estimation estimate the density at a pointx by considering aregionaround
x, where the size of the region typically depends on the numberand local density of
the samples (for instance, see Parzen window or k-nearest neighbor approaches [4]).

The density estimation view suggests a way for computing theadditional uncer-
tainty that is due to the sample-based representation: Whenevaluating the likelihood
function at a sample location, we consider the region a density estimation technique
would take into account when estimating the density at that location. The likelihood
function applied to the sample is then computed by integrating the point-wise like-
lihood over the corresponding region. As a result, the likelihood function automati-
cally adapts to the local density of samples, being smooth during global localization
and highly “peaked” during position tracking. Our approachraises two questions.

1. How large should the region considered for a sample be?
2. How can we efficiently determine this region and integrate the observation like-

lihood over it?

While our idea can be applied to arbitrary particle filter approaches, this paper fo-
cuses on how to address these questions in the context of mobile robot localization.
In particular, we estimate the region associated to a particle using a measure applied
in k-nearest neighbor density estimation, in which the region of a point grows until a
sufficient number of particles lies within it. We show that by considering the simple
case ofk = 1 and learning the appropriate smoothness of the likelihoodfunction,
we can effectively improve the speed required for global localization and at the same
time achieve high accuracy during position tracking.

This paper is organized as follows. After discussing related work in the next sec-
tion, we briefly describe Monte Carlo localization in Section 3. Our approach to dy-
namically adapt the likelihood model is presented in Section 4. Finally, in Section 5,
we present experimental results illustrating the advantages of our model.
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2 Related Work

In the literature, various techniques for computing the likelihood function for Monte
Carlo localization can be found. They depend mainly on the sensors used for lo-
calization and the underlying representation of the mapm. For example, several
authors used features extracted from camera images to calculate the likelihood of
observations. Typical features are average grey values [2], color values [8], color
transitions [10], feature histograms [17], or specific objects in the environment of the
robot [9, 12, 13]. Additionally, several likelihood modelsfor Monte-Carlo localiza-
tion with proximity sensors have been introduced [1, 15]. These approaches either
approximate the physical behavior of the sensor [7] or try toprovide smooth like-
lihood models to increase the robustness of the localization process [14]. Whereas
these likelihood functions allow to reliably localize a mobile robot in its environment,
they have the major disadvantage that they are static and basically independent of the
state the localization process has.

In the past, is has been observed that the likelihood function can have a major
influence on the performance of Monte-Carlo Localization. For example, Pitt and
Shepard [11] as well as Thrunet al. [16] observed that more particles are required if
the likelihood function is peaked. In the limit, i.e., for a perfect sensor, the number of
required particles becomes infinite. To deal with this problem, Lenser and Veloso [9]
and Thrunet al. [16] introduced techniques to directly sample from the observation
model and in this way ensure that there is a critical mass of samples at the important
parts of the state space. Unfortunately, this approach depends on the ability to sam-
ple from observations, which can often only be done in an approximate, inaccurate
way. Alternatively, Pitt and Shepard [11] apply a Kalman filter lookahead step for
each particle in order to generate a better proposal distribution. While this technique
yields superior results for highly accurate sensors, it is still limited in that the par-
ticles are updated independently of each other. Hence, the likelihood function does
not consider the number and density of particles. Another way of dealing with the
limitations of the sample-based representation is to dynamically adapt the number
of particles, as done in KLD sampling [5]. However, for highly accurate sensors,
even such an adaptive technique might require a huge number of samples in order to
achieve a sufficiently high particle density during global localization.

The reader may notice that Kalman filter based techniques do consider the loca-
tion uncertainty when integrating a sensor measurement. This is done by mapping
the state uncertainty into observation space via a linear approximation. However,
Kalman filters have limitations in highly non-linear and multi-modal systems, and
the focus of this paper is to add such a capability to particlefilters. More specifi-
cally, in this paper we propose an approach that dynamicallyadapts the likelihood
function during localization. We dynamically calculate for each particle the variance
of the Gaussian governing the likelihood function depending on the area covered by
that particle.
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3 Monte Carlo Localization

To estimate the posex of the robot in its environment, we consider probabilistic
localization, which follows the recursive Bayesian filtering scheme. The key idea of
this approach is to maintain a probability densityp(x) of the robot’s own location,
which is updated according to the following rule:

p(xt | z1:t, u0:t−1) = α · p(zt | xt) ·
∫

p(xt | ut−1, xt−1) · p(xt−1) dxt−1 (1)

Hereα is a normalization constant ensuring thatp(xt | z1:t, u0:t−1) sums up to one
over all xt. The termp(xt | ut−1, xt−1) describes the probability that the robot is at
position xt given it executed the movementut−1 at positionxt−1. Furthermore, the
quantityp(zt | xt) denotes the probability of making observationzt given the robot’s
current location isxt. The appropriate computation of this quantity is the subject of
this paper.

Throughout this paper we use a sample-based implementationof this filtering
scheme also denoted as Monte Carlo localization [2, 6]. In Monte-Carlo localization,
which is a variant of particle filtering [3], the update of thebelief generally is realized
by the following two alternating steps:

1. In theprediction step, we draw for each sample a new sample according to the
weight of the sample and according to the modelp(xt | ut−1, xt−1) of the robot’s
dynamics given the actionut−1 executed since the previous update.

2. In thecorrection step, the new observationzt is integrated into the sample set.
This is done by bootstrap re-sampling, where each sample is weighted according
to the likelihoodp(zt | xt) of sensingzt given by its positionxt.

4 Dynamic Sensor Models

The likelihood modelp(z | x) plays a crucial role in the correction step of the particle
filter. Typically, very peaked models require a huge number of particles. This is be-
cause even when the particles populate the state space very densely, the likelihoods
of an observation might differ by several orders of magnitude. As the particles are
drawn proportional to the importance weights, which themselves are calculated as
the likelihood ofzt given the posext of the corresponding particle, a minor differ-
ence inxt will result in a difference of one order of magnitude in the likelihood and
thus will result in a depletion of such a particle in the re-sampling step. Accordingly,
an extremely high density of particles is needed when the sensor is highly accurate.
On the other hand, the sheer size of the state space prevents us from using a suffi-
ciently large number particles during global localizationin the case that the sensor is
highly accurate. Accordingly the sensor model needs to be less peaked in the case of
global localization, when the particles are sparsely distributed over the state space.
This is essentially the idea of the approach proposed in thispaper.
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Fig. 1. Sensor model given by a mixture of different distributions (left image) and piecewise
linear function used to calculate the standard deviation based on the distanced = 2r to the
closest particle.

4.1 Likelihood Model for Range Sensors

The likelihood model used throughout this paper calculatesp(z | x) based on the
distanced to the closest obstacle in the direction of the measurement given x (and
the mapm). Accordingly,p(z | x) is calculated as

p(z | x) = p(z | d). (2)

To determine this quantity, we follow the approach described in Thrunet al.[15] and
Chosetet al.[1]. The key idea of this sensor model is to use a mixture of four different
distributions to capture the noise and error characteristics of range sensors. It uses
a Gaussianphit(z | d) to model the likelihood in situations in which the beam hits
the next object in the direction of the measurement. Additionally, it uses a uniform
distribution prand(z | d) to represent random measurements. It furthermore models
objects not contained in the map as well as the effects of cross-talk between different
sensors by an exponential distributionpshort(z | d). Finally, it deals with detection
errors, in which the sensor reports a maximum range measurement, using a uniform
distribution pmax(z | d). These four different distributions are mixed by a weighted
average, defined by the parametersαhit, αshort, αmax, andαrand.

p(z | d)

= (αhit, αshort, αmax, αrand) · (phit(z | d), pshort(z | d), pmax(z | d), prand(z | d))T . (3)

Note that these parameters need to satisfy the constraints that none of them should
be smaller than zero and thatp(z | d) integrates to 1 over allz for a fixedd. A plot of
this sensor model for a given set of parameters is shown in Figure 1. Also note that
the exponential distribution is only used to model measurements that are shorter than
expected, i.e., for measurementsz with z < d. Therefore, there is a discontinuity at
z= d (see Thrunet al. [15] for details).

4.2 Adapting the Variance

As already mentioned above, the particle set should approximate the true posterior
as closely as possible. Since we only have a limited number ofparticles, which in
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Fig. 2. Fraction of a particle set consisting of 10,000 particles during a global localization run.
The circles around the individual particles represent the radiusr = 1

2d(x, x′) calculated from
the distance to the particlex′ closest tox.

practice is often chosen as small as possible to minimize thecomputational demands,
we need to take into account potential approximation errors.

The key idea of our approach is to adjust the variance of the Gaussian governing
phit(z | d), which models the likelihood of measuringz given that the sensor detects
the closest obstacle in the map, such that the particle set yields an accurate approx-
imation of the true posterior. To achieve this, we approximatively calculate for each
particlei the space it covers by adopting the measure used in k-nearestneighbor den-
sity estimation [4]. For efficiency reasons we rely on the case ofk = 1, in which the
spatial region covered by a particle is given by the minimum circle that is centered at
the particle and contains at least one neighboring particlein the current set. To cal-
culate the radiusr i of this circle, we have to take both, the Euclidean distance of the
positions and the angular difference in orientation, into account. In our current im-
plementation we calculater i based on a weighted mixture of the Euclidean distance
and the angular difference

d(x, x′) =
√

(1− ξ)((x1 − x′1)2 + (x2 − x′2)2) + ξ δ(x3 − x′3)2, (4)

wherex1 andx′1 are thex-coordinates,x2 andx′2 are they-coordinates, andδ(x3− x′3)
is the differences in the angle ofx andx′. Additionally,ξ is a weighing factor that was
set to 0.8 in all our experiments. Figure 2 shows the fractionof a map and a particle
distribution. The circle around each particle represents the radiusr = 1

2d(x, x′) to the
closest particlex′.

The next step is to adjust for each particle the standard deviationσ of the Gaus-
sian inphit(z | d) based on the distancer = 1

2d(x, x∗), wherex∗ is the particle closest
to x with respect to Equation 4. In our current implementation weuse a piecewise
linear functionσ(r) to compute the standard deviation ofphit(z | d):

σ(r) =



















σ1 if αr < σ1

σ2 if αr > σ2

αr otherwise.
(5)
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Fig. 3. Distribution of 1,000,000 particles after 0, 1 and 2 integrations of measurements with
the sensor model according to the specifications of the SICK LMS sensor.

To learn the values of the parametersσ1, σ2, andα of this function, we performed a
series of localization experiments on recorded data, in which we determined the op-
timal values by minimizing the average distance of the obtained distributions from
the true posterior. Since the true posterior is unknown, we determined a close ap-
proximation of it by increasing the number of particles until the entropy of a three-
dimensional histogram calculated from the particles did not change anymore. In our
experiment this turned out to be the case for 1,000,000 particles. Throughout this
experiment, the sensor model corresponded to the error values provided in the spec-
ifications of the laser range finder used for localization. Inthe remainder of this
section, we will denote the particle set representing the true posterior byS∗. Figure 3
shows the setS∗ at different points in time for the data set considered in this paper.

To calculate the deviation of the current particle setS from the true posterior
represented byS∗, we evaluate the KL-distance between the distributions obtained
by computing a histogram fromS and S∗. Whereas the spatial resolution of this
histogram is 40cm, the angular resolution is 5 degrees. For discrete probability dis-
tributions,p = p1, . . . , pn andq = q1, . . . , qn, the KL-distance is defined as

KL(p, q) =
∑

i

pi log2
pi

qi
. (6)

Whenever we choose a new standard deviation forphit(z | d), we adapt the weights
αhit, αshort, αmax, andαrand to ensure that the integral of the resulting density is 1.

Note that in principlephit(z | d) should encode also several other aspects to allow
for a robust localization. One such aspect, for example, is the dependency between
the individual measurements. For example, a SICK LMS laser range scanner typi-
cally provides 361 individual distance measurements. Since a particle never corre-
sponds to the true location of the vehicle, the error in the pose of the particle renders
the individual measurements as dependent. This dependency, for example, should
also be encoded in a sensor model to avoid the filter becoming overly confident
about the pose of the robot. To reduce potential effects of the dependency between
the individual beams of a scan, we only used 10 beams at angular displacements of
18 degrees from each scan.
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5 Experimental Results

The sensor model described above has been implemented and evaluated using real
data acquired with a Pioneer PII DX8+ robot equipped with a laser range scanner in
a typical office environment. The experiments described in this section are designed
to investigate if our dynamic sensor model outperforms static models. Throughout
the experiments we compared ourdynamic sensor modelwith different types of al-
ternative sensor models:

1. Best static sensor model. This model has been obtained by evaluating a series of
global localization experiments, in which we determined the optimal variance of
the Gaussian by maximizing the utility function

U(I ,N) =
I
∑

i=1

(I − i + 1)
Pi

N
, (7)

where I is the number of integrations of measurements into the belief during
the individual experiment,N is the number of particles, andPi is the number of
particles lying in a 1m range around the true position of the robot.

2. Best tracking model. We determined this model in the same way as the best static
sensor model. The only difference is that we have learned it from situations in
which the filter was tracking the pose of the vehicle.

3. SICK LMS model. This model has been obtained from the hardware specifica-
tions of the laser range scanner.

4. Uniform dynamic model. In our dynamic sensor model the standard deviation
of the likelihood function is computed on a per-particle basis. We also analyzed
the performance of a model in which a uniform standard deviation is used for
all particles. The corresponding value is computed by taking the average of the
individual standard deviations.

5.1 Global Localization Experiments

The first set of experiments is designed to evaluate the performance of our dynamic
sensor model in the context of a global localization task. Inthe particular data set
used to carry out the experiment, the robot started in the kitchen of our laboratory
environment (lower left room in the maps depicted in Figure 3). The evolution of
a set of 10,000 particles during a typical global localization run with our dynami-
cally adapted likelihood model and with the best static sensor model is depicted in
Figure 4. As can be seen, our dynamic model improves the convergence rate as the
particles quickly focus on the true pose of the robot. Due to the dynamic adapta-
tion of the variance, the likelihood function becomes more peaked so that unlikely
particles are depleted earlier.

Figure 5 shows the evolution of the distanced(x, x′) introduced in Equation (4).
The individual images illustrate the distribution of 10,000 particles after 1, 2, 3, and 5
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Fig. 4. Distribution of 10,000 particles after 1, 2, 3, 5, and 11 integrations of measurements
with our dynamic sensor model (left column) and with the beststatic sensor model (right
column).

integrations of measurements with our dynamic sensor model. The circle around each
particle represents the distancer = 1

2d(x, x′) to the next particlex′.
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Fig. 5. Evolution of the distanced(x, x′) introduced in Equation (4). Distribution of 10,000
particles after 1, 3, 4 and 5 integrations of measurements with our dynamic sensor model.
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Fig. 6. Percentage of particles within a 1m circle around the true position of the robot with our
dynamic sensor model, the uniform dynamic model, and the best static model. The left image
shows the evolution depending on the number of iterations for 10,000 particles. The right plot
was obtained with 2,500 particles.

Figure 6 shows the convergence of the particles to the true position of the robot.
Whereas the x-axis corresponds to the time step, the y-axis shows the number of
particles in percent that are closer than 1m to the true position. Shown are the evolu-
tions of these numbers for our dynamic sensor model, a uniform dynamic model, and
the best fixed model for 10,000 and 2,500 particles. Note thatthe best static model
does not reach 100%. This is due to the fact that the static sensor model relies on a
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Fig. 7. Success rates for different types of sensor models and sizes of particle sets. The shown
results are computed in extensive global localization experiments.
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Fig. 8. Evolution of the average standard deviation during global localization with different
numbers of particles and our dynamic sensor model.

highly smoothed likelihood function, which is good for global localization but does
not achieve maximal accuracy during tracking. In the case of10,000 particles, the
variances in the distance between the individual particlesare typically so small, that
the uniform model achieves a similar performance. Still, a t-test showed that both
models are significantly better than the best fixed model. In the case of 2,500 par-
ticles, however, the model that adjusts the variance on a per-particle basis performs
better than the uniform model. Here, the differences are significant whenever they
exceed 20.

Figure 7 shows the number of successful localizations after35 integrations of
measurements for a variety of sensor models and for different numbers of particles.
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Fig. 9. Average localization error of 10,000 (left image) and 2,500(right image) particles
during a position tracking task. Our dynamic sensor model shows a similar performance as
the best tracking model.

Here, we assumed that the localization was achieved when themean of the particles
differed by at most 30cm from the true location of the robot. Firstit shows that our
dynamic model achieves the same performance as the best static model for global
localization. Additionally, the figure shows that the static model that yields the best
tracking performance has a substantially smaller success rate. Additionally, we eval-
uated a model, denoted as the SICK LMS model, in which the standard deviation
was chosen according to the specifications of the SICK LMS sensor, i.e., under the
assumption that the particles in fact represent the true position of the vehicle. As can
be seen, this model yields the worst performance. Furthermore, we evaluated, how
the models perform when only one beam is used per range scan. With this experi-
ment we wanted to analyze whether the dynamic model also yields better results in
situations in which there is no dependency between the individual beams of a scan.
Again, the plots show that our sensor model outperforms the model, for which the
standard deviation corresponds to the measuring accuracy of the SICK LMS scanner.

Finally, Figure 8 plots the evolution of the average standard deviations of several
global localization experiments with different numbers of particles. As can be seen
from the figure, our approach uses more smoothed likelihood functions when oper-
ating with few particles (2,500). The more particles are used in the filter, the faster
the standard deviation converges to the minimum value.

5.2 Tracking Performance

We also carried out experiments, in which we analyzed the accuracy of our model
when the system is tracking the pose of the vehicle. We compared our dynamic sensor
model to the best tracking model and evaluated the average localization error of the
individual particles. Figure 9 depicts the average localization error for two tracking
experiments with 10,000 and 2,500 particles. As can be seen from the figure, our dy-
namic model shows the same performance as the tracking modelwhose parameters
have been optimized for minimum localization error. This shows, that our dynamic
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sensor model yields faster convergence rates in the contextof global localization and
at the same time achieves the best possible tracking performance.

6 Conclusions

In this paper we presented a new approach for dynamically adapting the sensor model
for particle filter based implementations of probabilisticlocalization. Our approach
learns a function that outputs the appropriate variance foreach particle based on the
estimated area in the state space represented by this particle. To estimate the size of
this area, we adopt a measure developed for density estimation.

The approach has been implemented and evaluated in extensive experiments us-
ing laser range data acquired with a real robot in a typical office environment. The
results demonstrate that our sensor model significantly outperforms static and opti-
mized sensor models with respect to robustness and efficiency of the global localiza-
tion process.
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