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Abstract— Range sensors are popular for localization since
they directly measure the geometry of the local environment.
Another distinct benefit is their typically high accuracy and
spatial resolution. It is a well-known problem, however, that
the high precision of these sensors leads to practical problems
in probabilistic localization approaches such as Monte Carlo
localization (MCL), because the likelihood function becomes
extremely peaked if no means of regularization are applied. In
practice, one therefore artificially smoothes the likelihood func-
tion or only integrates a small fraction of the measurements. In
this paper we present a more fundamental and robust approach,
that provides a smooth likelihood model for entire range scans.
Additionally, it is location-dependent. In practical experiments
we compare our approach to previous methods and demonstrate
that it leads to a more robust localization.

I. INTRODUCTION

In the past, probabilistic approaches to mobile robot local-

ization have been proven to have several desirable properties

including accuracy and robustness. One of the key problems

in such approaches is the design of the likelihood function

or observation model p(z | x,m) which defines how to

compute the likelihood of an observation or measurement z

given the robot is at pose x in a given map m. Monte Carlo

localization (MCL) is a particle-filter based implementation

of recursive Bayesian filtering for robot localization [3], [7].

In each iteration of MCL, the likelihood function p(z | x)
is evaluated at sample points that are randomly distributed

according to a prior estimate of the location of the robot.

Sensor models developed for probabilistic approaches to

robot localization typically take various aspects including

sensor uncertainty and the inaccuracy of the map into ac-

count. They, however, assume that the vehicle location x is

known exactly; that is, they assume that one of the sampling

points corresponds to the true location of the robot. In the

context of MCL this assumption is only valid in the limit of

infinitely many particles. Otherwise, the probability that the

pose of a particle exactly corresponds to the true location

of the robot is virtually zero. As a consequence, these

likelihood functions do not adequately model the uncertainty

due to the finite, sample-based representation of the posterior.

A solution frequently applied in practice is to artificially

inflate the noise of the sensor model. Such a solution is not

satisfying, since the additional uncertainty due to the sample-

based representation is not known in advance and strongly

varies with the number of samples. Note that an improperly

designed likelihood function can make the vehicle overly

confident in its position, which might lead to a divergence of

the filter. On the other hand, the model might be defined in a

too conservative fashion, which would prevent the robot from

localizing itself as the sensor information cannot compensate

for the uncertainty introduced by the motion of the vehicle.

In this paper we introduce a novel location-dependent

sensor model that explicitly takes the approximation error

from the sample-based representation into account. Addition-

ally, it allows to directly calculate the likelihood of entire

scans. In order to compute an estimate of this uncertainty,

our approach borrows ideas from techniques developed for

density estimation. The goal of density estimation is to

extract an estimate of the probability density underlying a set

of samples. Most approaches to density estimation estimate

the density at a point x by considering a region around

x, where the size of the region typically depends on the

number and local density of the samples (for instance, see

Parzen window or k-nearest neighbor approaches [5]). In

this spirit, our approach estimates the observation likelihood

p(z | x) based on a local region around the pose x whose

extent is determined by the sampling density of the particle

filter. In an extensive set of experiments, we show that this

approach significantly outperforms others that are based on

point estimates of the likelihood function only.

This paper is organized as follows. After discussing related

work in the next section, we briefly describe Monte Carlo

localization in Section III and the principle of beam-based

likelihood models. Our approach to calculate the location-

dependent likelihood models for complete laser range scans

is presented in Section IV. Finally, in Section V, we present

experimental results illustrating that our sensor model out-

performs popular beam-based models especially, when the

entire scan is used.

II. RELATED WORK

In the literature, various techniques for computing the

likelihood function for probabilistic localization methods

such as Monte Carlo localization have been proposed. These

techniques can first be classified according to the type of

sensor used for localization and the underlying represen-

tation of the map m. For example, several authors used

features extracted from camera images to calculate the like-

lihood of observations. Typical features are average grey



values [3], color values [10], color transitions [12], feature

histograms [22], or specific objects in the environment of the

robot [11], [17], [18]. Additionally, several likelihood models

for Monte-Carlo localization with proximity sensors have

been introduced [2], [8], [19], [20]. These approaches either

approximate the physical characteristics of the sensor directly

or try to provide smooth likelihood models to increase the

robustness of the localization process. Whereas these likeli-

hood functions have free parameters for regularization, i.e.,

the beam-based noise level and the smoothing kernel applied

to the map respectively, they do not provide a principled way

of adapting these to the varying sampling density of the filter.

In the past, is has been observed that the likelihood

function can have a major influence on the performance of

Monte Carlo Localization. Pitt and Shepard [15] for example,

as well as Thrun et al. [21] observed that more particles are

required if the likelihood function is peaked. In the limit,

i.e., for a perfect sensor, the number of required particles

becomes infinite. To deal with this problem, Lenser and

Veloso [11] and Thrun et al. [21] introduced techniques to

directly sample from the observation model and in this way

ensure that there is a critical mass of samples at the important

parts of the state space. Unfortunately, this approach depends

on the ability to sample from observations, which can often

only be done in an approximate, inaccurate way. Another

way of dealing with the limitations of the sample-based rep-

resentation is to dynamically adapt the number of particles,

as done in KLD sampling [6]. However, for highly accurate

sensors, even such an adaptive technique might require a

huge number of samples in order to achieve a sufficiently

high particle density during global localization. Alternatively,

one can artificially inflate the measurement uncertainty to

achieve a regularization of the likelihood function, e.g.,

see the Scaling Series approach presented by Petrovskaya

et al. [13].

The reader may notice that Kalman filter based techniques

do consider the location uncertainty when integrating a

sensor measurement. This is done by mapping the state

uncertainty into the observation space via a linear function.

However, Kalman filters have limitations in highly non-

linear and multi-modal systems. The focus of this paper

is on particle filters and in particular on the question of

how to dynamically adapt the likelihood function during

localization. In each step, we estimate for each particle

the joint Gaussian distribution of the range measurements

respecting the local characteristics of the environment around

that particle.

III. MONTE CARLO LOCALIZATION USING RANGE

SENSORS

Throughout this paper we consider the problem of esti-

mating the pose x = (x, y, θ) of a robot relative to a given

map m using a particle filter. The key idea of this approach

is to maintain a probability density p(xt | z1:t,u0:t−1) of

the location xt of the robot at time t given all observations

z1:t up to time t and all control inputs u0:t−1 up to time

t − 1. This probability is calculated recursively as

p(xt | z1:t,u0:t−1) =

α · p(zt | xt)

∫

p(xt | ut−1,xt−1) · p(xt−1) dxt−1 .(1)

Here, α is a normalizing constant ensuring that p(xt |
z1:t,u0:t−1) sums up to one over all xt. The terms

to be described in Eqn. (1) are the prediction model

p(xt | ut−1,xt−1) and the sensor model p(zt | xt) respec-

tively.

For the implementation of the described filtering scheme,

we use a sample-based approach which is commonly known

as Monte Carlo localization (MCL) [3]. Monte Carlo local-

ization is a variant of particle filtering [4] where each particle

corresponds to a possible robot pose and has an assigned

weight wi. The belief update from Eqn. (1) is performed by

the following two alternating steps:

1) In the prediction step, we draw for each particle with

weight wi a new particle according to wi and to the

prediction model p(xt | ut−1,xt−1).
2) In the correction step, a new observation zt is inte-

grated. This is done by assigning a new weight wi to

each particle according to the sensor model p(zt | xt).

The likelihood model p(z | x) plays a crucial role in

the correction step of the particle filter. Typically, very

peaked models require a huge number of particles. This is

because even when the particles populate the state space

densely, the likelihoods of an observation might differ by

several orders of magnitude. As the particles are drawn

proportional to the importance weights, which themselves

are calculated as the likelihood of zt given the pose xt

of the corresponding particle, a minor difference in xt will

result in a large difference of the likelihoods and thus will

result in a depletion of such particles in the re-sampling

step. Accordingly, an extremely high density of particles is

needed when the sensor is highly accurate. On the other hand,

the sheer size of the state space prevents us from using a

sufficiently large number particles during global localization

in the case that the sensor is highly accurate. Accordingly the

sensor model needs to be less peaked in the case of global

localization, when the particles are distributed sparsely over

the state space.

In general, a measurement (scan) zt of a laser range finder

consists of N single beams. A laser scan can be denoted

as a vector of beams zt = (z1
t , ..., zN

t )T . Beam-based

models, originally introduced by Fox et al. [9], consider each

value zi
t of the measurement vector z as a separate range

measurement and represent its one-dimensional distribution

by a parametric function depending on the expected range

measurement in the respective beam direction. It is closely

linked to geometry and the physics involved in the measure-

ment process. This model is sometimes called ray cast model

because it relies on ray casting operations within an envi-

ronmental model, e.g., an occupancy grid map, to calculate

the expected beam lengths. Another popular measurement

model for range finder sensors is termed likelihood fields



model (aka end point model) [19]. This correlation-based

method measures the correlation between the measurement

and the map. Here, the likelihood of a range measurement

is a function of the distance of the respective end point

of the beam to the closest obstacle in the environment.

This model lacks physical explanation as it can basically

“see through walls”, but it is efficient and works well in

practice. In all above mentioned approaches, the individual

beams are treated independently. Due to that the likelihood

p(zt | xt,m) of the scan zt given the position xt and the

map m can be calculated by

p(zt | xt,m) =

N
∏

i=1

p(zi
t | xt,m). (2)

Given that usual laser range finders provide between 181
and 540 measurements with a resolution from 0.25 to 1.0
degrees, the independence assumption leads to overly peaked

likelihoods. In practice, this problem is dealt with by sub-

sampling of measurements [20], by introducing minimal

likelihoods for beams, or by other means of regularization of

the resulting likelihoods, see e.g. [1]. In a previous work [14]

we tried to overcome this problem to achieve a more robust

and efficient localization by adapting the “peakedness” of the

beam model using learned heuristics.

IV. A PLACE-DEPENDENT SCAN-BASED LIKELIHOOD

MODEL

To achieve the appropriate regularization of the likelihood

function for the entire range scans, we introduce a novel

model that has two distinct advantages over existing ones.

First, we explicitly include the sampling density of the

particle filter to find the optimal level of regularization. Thus,

the observation likelihood for each particle is estimated for

a local region around its pose. Second, given this region

we learn the distribution of possible range measurements

also taking correlations between the individual beams into

account.

A. Regularizing the Likelihood Function

Laser range finders are extremely accurate sensors with a

low level of measurement noise. If one learns p(z | x) di-

rectly for exact sensor poses x, e.g., with a mobile robot that

is not moved during training, one gets an extremely peaked

model, with p(z | x + δ) ≪ p(z | x) already for small pose

perturbations δ. In particle filter based approaches, this high

precision can lead to serious problems, since the number

of pose hypotheses (aka particles) and thus also the pose

sampling density is limited. We therefore propose to estimate

p(z | x) based on the local environment U(x) of the exact

pose x:

p(z | x) ≈
∫

U(x)

p(x̃) p(z | x̃) dx̃ . (3)

As in our previous work [14], in which we considered

individual measurements instead of entire scans, we model

U(x) as a circular region around x. From Equation (3) it

can easily be seen, that the individual components zi of a

measurement vector z = (z1, . . . , zN )T are in general not

independent, since the sensor location is marginalized over

U(x). Depending on the geometry of the environment as

well as on the size and location of U(x), the individual range

measurements can become statistically dependent. We cap-

ture this by estimating the joint distribution of measurements

zi, i.e.,

p(z | x) ∼ N (µ,Σ) , (4)

with µ ∈ R
N and Σ ∈ R

N×N . Note that this is a generalized

version of existing beam-based models that assume indepen-

dent, normally distributed zi, which corresponds to setting

Σ = diag(σ2
z) with a constant, real-valued measurement

noise parameter σ2
z in Equation (4). By also taking the co-

variances outside the diagonal into account and by estimating

these parameters depending on the actual locations x, we

achieve a more robust likelihood model for a given sampling

density of locations x.

B. Place-Dependent Covariance Estimation

The mean beam lengths µ and the covariance matrix Σ are

estimated online for each pose hypothesis xt by simulating

L complete range scans D = {d1, . . . ,dL} at locations

drawn uniformly from U(xt) using the given map m of the

environment:

µ =
1

L

L
∑

i=1

di (5)

Σ =
1

L

L
∑

i=1

(di − µ) (di − µ)
T

(6)

The simulation of the laser range scans D = {d1, ...,dL}
takes into account the geometry and the physics involved in

the measurement process. It relies on ray casting operations

within an occupancy grid map to calculate the expected beam

lengths.

An alternative approach to estimating the covariance ma-

trix is to represent it compactly by Σij := k(i, j) using

a parameterized covariance function k. The parameters of

k can then be optimized using the simulated scans D as

training data and the observation likelihood, as defined by the

Gaussian density function of Equation (4), as optimization

criterion. This approach is in fact equivalent to density esti-

mation in the well known Gaussian process (GP) framework.

As a benefit, the GP model has substantially less parameters

to optimize and there is a large range of tools available

to support learning and model selection. As a drawback,

however, the GP model is more restrictive by assuming

a certain (typically localized or ”stationary”) covariance

function that can be defined by only few parameters. We

compare these two alternative representations of Σ in the

experimental results section.

C. Likelihood Evaluation

Given the estimated model parameters µ and Σ for a

specific robot pose hypothesis xt, the observation likelihood

p(zt | xt,m) for an observed scan zt at time t can be



calculated using the standard multivariate Gaussian density

function

p(zt | xt,m) =
1

(2π)
N

2 |Σ| 12
e−

1

2
(zt−µ)T Σ−1(zt−µ) , (7)

where |Σ| denotes the determinant of the covariance matrix.

The main diagonal d = {Σ11, ...,ΣNN} of Σ characterizes

the uncertainty of the N beams in this model. The values

besides the main diagonal describe the correlations between

the individual beams.

V. EXPERIMENTS

To evaluate our approach we performed extensive ex-

periments and compared our scan-based sensor model to

various other sensor models. Concretely, we compared the

performance of the following sensor models:

IB: The standard beam-based sensor model that as-

sumes independent beams with an additive white

noise component.

EP: The end-point sensor model [19] that calculates the

likelihood of a range measurement as a function of

the distance of the end point of the respective beam

to the closest obstacle in the environment.

EC: Our enhanced model with learned covariance ma-

trix as detailed in the previous sections.

DC: Our model with cross-correlation components ig-

nored. That is, only the diagonal entries of the

covariance matrix are learned.

PC: An alternative model [16], where the covariance

matrix is represented by a parameterized covari-

ance function k which parameters are learned from

data. Here, we used the popular squared expo-

nential covariance function kSE(x,y) = σ2
f ·

exp
(

−((xi − yi)
2)/(2ℓ2)

)

that is frequently used

for such tasks.

We optimized the free parameters of all models empir-

ically to ensure fair comparison. The computational com-

plexity of (EC) and (DC) is dominated by the number L
of simulated robot locations to estimate Σ as well as the

dimension of Σ, i.e. the number N of measured laser beams

per scan. Concretely, we have to simulate LN beams, with

L ≈ 150, and invert the N ×N covariance matrix Σ, which

is an operation in O(N3). For (PC), we require only about

L = 3 simulated locations in practice, but have to invert a

matrix of dimension LN × LN [16].

The experiments show that in contrast to the optimized

sensor models our sensor model performs better with 31 of

181 beams and that it also allows us to scale the number

of used beams up to 181. To analyze this, we first compare

the likelihood depending on the distance to the true position

using our proposed model (EC) and the standard beam-

based model (IB) for different locations in our environment.

In Subsection V-B we compare our approach to optimized

sensor models which do not model the dependencies between

the laser beams. Additionally in Subsection V-C we evaluate

how our sensor model performs in the task of position

tracking.

Fig. 1. Typical laser range scan at a position where subsets of the 181

beams partially are highly correlated.

Fig. 2. Visualization of the correlation matrixes R calculated for different
beam numbers in an 180

◦ field of view and corresponding to the robot
position depicted in Figure 1: 181 beams (upper left), 91 beams (upper
right), 61 beams (lower left), and 31 beams (lower right).

A. Likelihood Evaluation

To evaluate the effects of modeling the dependencies

between the laser beams one can calculated the matrix R
of the correlation coefficients. This matrix can be derived as

follows from the covariance matrix C:

rij =

∣

∣

∣

∣

cij√
ciicjj

∣

∣

∣

∣

. (8)

Figure 1 shows an example of a robot position where 181 of

the laser beams partially are highly correlated. The sample

scans to calculate the correlation matrix R have been sam-

pled from the space which is visualized by the circle in the

map. The blue/dark grey parts of the orange/light grey beams

illustrate the standard deviation. The standard deviation σi

of the i-th beam is characterized by σi =
√

cii. Figure 2

shows the correlation matrixes R obtained for different beam

numbers. The upper left image shows a visualization of R
for 181 laser beams in an 180◦ field of view. The upper

right image visualizes R for 91 laser beams, the lower left

for 61 laser beams, and the lower right image for 31 laser

beams. The grey scale indicates the value of each correlation

coefficient cij between the i-th and the j-th laser beam.

Whereas white corresponds to a value of 1, black corresponds

to 0. The images show that beams around doorways, for

example, are less correlated than neighboring beams which



Fig. 3. Scan obtained in an office of our environment (left) and corre-
sponding correlation matrix (right).
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Fig. 4. Likelihood function for a varying deviation from the true robot pose
(x-axis) at a corridor pose (left) and in an office room containing clutter
(right).

hit the wall in the corridor. They also show, that beams which

hit the walls on the opposite site of the corridor are also

correlated. Figure 3 shows an example in a room of our

office environment. While the center beams in front of the

robot are more or less uncorrelated because of clutter, the

beams on the side show high correlations due to the nearby

walls.

To evaluate the properties of our likelihood function we

analyzed the evolution of the likelihood depending on the

deviation from the true robot pose. Figure 4 shows a plot

of the likelihood function for a varying deviation (x-axis)

at the position depicted in Figure 2 (left) and in an office

room containing clutter depicted in Figure 3 (right). Note

that the likelihood function of our proposed model (EC) has

the same shape (or peakedness) in both environments. The

standard beam-based model (IB), in contrast, is significantly

more peaked in the corridor environment, although the same

noise parameters have been used. This demonstrates that

our model successfully adapts to the local characteristics of

the environment. Additionally, the variance of our proposed

model is relatively low.

B. Global Localization

The second set of experiments has been designed to

evaluate the performance of our scan-based sensor model

(EC) in the context of a global localization task. In these

experiments, we assumed that the localization was achieved

when the mean of the particles differed by at most 50 cm

from the true location of the robot. Figure 5 shows the

number of successful localizations after eight integrations

of 31 measurements of each scan for different models (a).

Additionally, it shows the localization performance depend-

ing on different numbers of particles for the EC model (b)

and the DC model (c) and for different numbers of beams.

As can be seen from the leftmost image, our scan-based

model (EC), which also addresses the correlation between

beams achieves the best performance for the task of global

localization. The other two images (b) and (c) illustrate that

our sensor model (EC) outperforms the beam-based place

specific sensor model (DC) also for different numbers of

beams. Note that Figure 5(c) also shows that the performance

decreases as the number of beams integrated increases for the

EC model. Also note that in these experiments we used only

31 of 181 beams, because the beam-based sensor models

become too peaked if more beams are used. To substantiate

this statement, we present the tracking experiment in the

following section during which the beam-based sensor model

(IB) diverged for higher numbers of beams. We further

analyzed this and found that it is due to the fact that

the independence assumption leads to extremely small scan

likelihoods and therefore to an extremely peaked likelihood

function in the case of the DC model.

C. Tracking

We also carried out experiments, in which we analyzed

the accuracy of our model (EC) when the system is tracking

the pose of the vehicle. We compared our sensor model to

various other models and evaluated the average localization

error of the individual particles. The left part of Figure 6

shows the mean of the translational errors for the different

sensor models and for 31 and 61 beams over a tracked trajec-

tory driven in our office environment. As can be seen from

the figure, our likelihood model (EC), the (PC) model, and

the end point model (EP) show a similar, good localization

performance and outperform the two beam-based approaches

(IB) and (DC) adapted from ray-casting operations. The right

part of Figure 6 depicts the average localization error for this

experiment with 61 laser beams. It can be seen that the two

beam-based ray cast sensor models (IB) and (DC) diverge.

Since (IB) and (DC) are unable to deal with dependencies

between beams, the risk of filter divergence increases with

the number of beams used. In another experiment, in which

we used all 181 beams, the two beam-based models and

the end point model showed a similar behavior as before.

The classical ray cast model (IB) and the beam-based place

specific model (DC), however, diverged even earlier than

with 61 beams.

VI. CONCLUSION

In this paper we presented a novel location-dependent

sensor model for Monte Carlo localization. This new sen-

sor model takes the approximation error of the sample-

based representation into account and explicitely models

the dependencies of the individual beams introduced by the

pose uncertainty. The approach has been implemented and

evaluated in extensive experiments using laser range data

acquired with a real robot in a typical office environment.

The results demonstrate that our sensor model outperforms
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popular beam-based models especially, when the entire scan

is used.
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