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Abstract—1In this paper, we present an approach that ap-
plies the reinforcement learning principle based on Gaussian
processes (GPs) to the problem of learning control policies
for robotic blimps. In contrast to previous approaches, which
often require specific and manually tuned a priori models,
our method rather learns the policy online. Furthermore,
we introduce efficient GP regression models which can deal
with non-stationary underlying functions. This allows us to be
highly adaptive to changing characteristics of the system during
operation. In practical experiments carried out on a real robot
we demonstrate that the system is able to learn a policy for
height control online in less than one minute.

I. INTRODUCTION

Compared to other flying vehicles, aerial blimps have the
advantage that they operate at relatively low speed, that
they do not need to move in order to keep their altitude,
and additionally that they are not overly sensitive to control
errors like, e.g., helicopters. In this paper, we investigate
the problem of learning to control an autonomous blimp
online without predefined physical models and under the
assumption that the behavior of the system may change
during runtime. Our approach is based on reinforcement
learning and able to represent the system dynamics in a
highly adaptive fashion to quickly react to situations when
the behavior of the system changes. Furthermore, we contin-
uously learn the value function according to this dynamics
model to always obtain the optimal policy.

II. ONLINE LEARNING

Reinforcement learning is based on the idea that an agent
interacts with a potentially unknown environment and gets
rewarded or penalized according to the actions it performs.
Once we know the system dynamics of the blimp, the
expected long term reward for each state and consequently
the optimal policy can be learned using value evaluation.
Therefore, our method learns both, the system dynamics and
the value function.

A. System Dynamics

We learn the system dynamics iteratively by gathering
transitions from state-action pairs while the blimp is in
operation. This function is modeled with GPs, which are
a powerful, non-parametric framework for regression [2].
Beside a predictive mean they also provide a predictive vari-
ance function. To be adaptive to a non-stationary behavior of
the system, we present an extension to previous GP models
that can appropriately handle outdated training samples by
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Fig. 1. Top: Altitude progress of the blimp while it learns to stabilize at

2m and the corresponding error to a base-line policy. Bottom: Prediction
accuracies of the system dynamics using different regression models when
the behavior of the system has changed after 60 seconds.

decreasing their influence on the predictive distribution [3].
The resulting model estimates for each sample of the training
set an individual noise level and thereby detects outliers
which will finally be removed.

B. Value Function

While learning the system dynamics, we constantly update
the value function. As both functions are modeled with GPs,
the uncertainty of the prediction of the behavior can be
mapped efficiently onto the expected long term reward [1].

We performed several experiments on a real blimp to
demonstrate the performance of our approach. A control
policy to stabilize the altitude of the blimp was learned online
in less than one minute (upper plot Fig. 1). Furthermore, as
the system dynamics are modeled separately, our approach is
able to quickly adapt the system dynamics and correspond-
ingly the control policy to changed environmental conditions.
In such situations, the presented GP extension outperforms
previous regression models (lower plot Fig. 1).
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