
Cascading Map-Side Joins over
HBase for Scalable Join Processing

Joint Workshop on Scalable and High-Performance Semantic Web Systems

(SSWS + HPCSW 2012)

Collocated with the 11th International Semantic Web Conference (ISWC 2012)

Alexander Schätzle
Martin Przyjaciel-Zablocki
Christopher Dorner
Thomas Hornung
Georg Lausen

University of Freiburg
Databases & Information Systems

11 November 2012

 RDF datasets are growing constantly (e.g. LOD)

 Querying RDF datasets at web-scale is challenging

 Our Approach
◦ Distributed scalable RDF engine for processing very large

datasets (RDF + SPARQL)

◦ Build on common & widely-used frameworks
(Hadoop MapReduce, HBase, Pig, Cassandra, …)

Cascading Map-Side Joins over HBase for Scalable Join Processing 2

Motivation

3

MapReduce

 Automatic parallelization of computations

 Distributed File System
◦ Commodity hardware  Fault tolerance by replication
◦ Very large files / write-once, read-many pattern

 Apache Hadoop
◦ Well-known open-source implementation

split 1

split 0 Map

Map

Map

Reduce

Reduce

output 0

output 1

Map phase Shuffle & Sort Reduce phase

split 2

split 3

split 4

split 5

Input

(DFS)

Intermediate Results

(Local)

Output

(DFS)

Cascading Map-Side Joins over HBase for Scalable Join Processing

Cascading Map-Side Joins over HBase for Scalable Join Processing 4

Previous Work – PigSPARQL [1]

[1] Alexander Schätzle, Martin Przyjaciel-Zablocki, Georg Lausen:
 PigSPARQL: Mapping SPARQL to Pig Latin, SWIM 2011.

 SPARQL on top of Pig Latin

 Advantages

◦ All operators of SPARQL 1.0

◦ Benefits from Pig optimizations

◦ Runs "out-of-the-box" on Hadoop

◦ Portable on other platforms

 Performance

◦ Good scalability and performance for
complex analytical queries

◦ Performance not satisfying for more
selective queries

 Reasons

◦ Reduce-Side Join ( Data shuffling)

◦ No built-in index structures

Query Processor

RDF

Graph

Query Engine (Pig)

MapReduce

HDFS

Triple Loader

RDF Management System

SPARQL 1.0

Cascading Map-Side Joins over HBase for Scalable Join Processing 5

New Approach

 Store input dataset in HBase instead of
plain HDFS

 Process the join in the Map phase to
avoid unnecessary data shuffling

 Expected benefit

◦ No costly Shuffle & Sort phase

◦ I/O reduction due to HBase indexes

 Expected drawbacks

◦ Communication overhead

◦ Significantly higher RAM consumption

◦ Not ideal for high-output queries

Query Processor

RDF

Graph

Native Query Engine

MapReduce

HDFS

Triple Loader

RDF Management System

SPARQL BGP

HBase

RDF Storage in HBase
Store RDF in a NoSQL data store

Cascading Map-Side Joins over HBase for Scalable Join Processing 6

 Clone of Google's Bigtable

◦ Column-oriented, semi-structured NoSQL data store

◦ Distributed over many machines

◦ Layered on top of HDFS (Hadoop Distributed File System)
 Files split into blocks (e.g. 64MB) and replicated across machines
 Tolerant of machine failure

◦ Adds random data access to HDFS in "close to real-time"

◦ Strictly consistent!

 Not a relational query engine

◦ Not designed for normalized schemas

◦ No join operators

◦ No expressive query language like SQL

7

What is HBase (Not)?

Cascading Map-Side Joins over HBase for Scalable Join Processing

 Sparse, distributed, sorted, multidimensional map
◦ Indexed by row key

◦ Values can have multiple versions, identified via timestamps

◦ Columns are grouped into column families

◦ Tables are dynamically split into regions

◦ Every region is assigned to exactly one Region Server

 Access Pattern:
(Table,RowKey,Family,Column,Timestamp)  Value

HBase Data Model

Cascading Map-Side Joins over HBase for Scalable Join Processing 8

9

RDF Storage by Example (1)

Cascading Map-Side Joins over HBase for Scalable Join Processing

rowkey family:column  value

Article1 p:title  {"PigSPARQL"} p:year  {"2011"} p:author  {Alex, Martin}

Article2 p:title  {"RDFPath"} p:year  {"2011"} p:author  {Martin, Alex} p:cite  {Article1}

Ts_po:

rowkey family:column  value

Alex p:author  {Article1, Article2}

Article1 p:cite  {Article2}

To_ps:

10

Triple Pattern Matching

Cascading Map-Side Joins over HBase for Scalable Join Processing

pattern table filter

(s, p, o) Ts_po or To_ps column & value

(?s, p, o) To_ps column

(s, ?p, o) Ts_po or To_ps value

(s, p, ?o) Ts_po column

(?s, ?p, o) To_ps

(?s, p, ?o) Ts_po or To_ps (SCAN) column

(s, ?p, ?o) Ts_po

(?s, ?p, ?o) Ts_po or To_ps (SCAN)

server side filters

MAPSIN Join
Map-Side Index Nested Loop Join

Cascading Map-Side Joins over HBase for Scalable Join Processing 11

 Map-Side (Merge) Join
◦ Input datasets must be:

1. divided into same number of partitions

2. Sorted by the same key (the join key)

3. All records of a particular key must reside in the same
partition

◦ Problem: Fulfill requirements for subsequent iterations

 Broadcast Join
◦ One dataset small enough to be distributed to each node

◦ Problem: Not feasible for big datasets

Cascading Map-Side Joins over HBase for Scalable Join Processing 12

Map-Side Joins in MapReduce

13

MAPSIN Join

SELECT *

WHERE {

 ?article title ?title .

 ?article author ?author .

 ?article year ?year

}

Cascading Map-Side Joins over HBase for Scalable Join Processing

14

Multiway Join Optimization

?article title ?title

?article author ?author

?article year ?year

Cascading Map-Side Joins over HBase for Scalable Join Processing

(Ts_po, article1, column=author)
(Ts_po, article2, column=author)

(Ts_po, article1, column=year)
(Ts_po, article2, column=year)

1. iteration

2. iteration

Query pattern Corresponding HBase requests

rowkey filter

15

Multiway Join Optimization

?article title ?title

?article author ?author

?article year ?year

Cascading Map-Side Joins over HBase for Scalable Join Processing

(Ts_po, article1, column=author)
(Ts_po, article2, column=author)

(Ts_po, article1, column=year)
(Ts_po, article2, column=year)

1. iteration

2. iteration

Query pattern Corresponding HBase requests

16

Multiway Join Optimization

?article title ?title

?article author ?author

?article year ?year

Cascading Map-Side Joins over HBase for Scalable Join Processing

(Ts_po, article1, column=author)
(Ts_po, article2, column=author)

(Ts_po, article1, column=year)
(Ts_po, article2, column=year)

1. iteration

2. iteration

?article title ?title

?article author ?author

?article year ?year

(Ts_po, article1, column=author)
(Ts_po, article1, column=year)

(Ts_po, article2, column=author)
(Ts_po, article2, column=year)

1. iteration

Query pattern Corresponding HBase requests

17

Multiway Join Optimization

?article title ?title

?article author ?author

?article year ?year

Cascading Map-Side Joins over HBase for Scalable Join Processing

(Ts_po, article1, column=author)
(Ts_po, article2, column=author)

(Ts_po, article1, column=year)
(Ts_po, article2, column=year)

1. iteration

2. iteration

?article title ?title

?article author ?author

?article year ?year

(Ts_po, article1, column=author)
(Ts_po, article1, column=year)

(Ts_po, article2, column=author)
(Ts_po, article2, column=year)

1. iteration

Query pattern Corresponding HBase requests

4 requests!

18

Multiway Join Optimization

?article title ?title

?article author ?author

?article year ?year

Cascading Map-Side Joins over HBase for Scalable Join Processing

(Ts_po, article1, column=author)
(Ts_po, article2, column=author)

(Ts_po, article1, column=year)
(Ts_po, article2, column=year)

1. iteration

2. iteration

?article title ?title

?article author ?author

?article year ?year

(Ts_po, article1, column=author)
(Ts_po, article1, column=year)

(Ts_po, article2, column=author)
(Ts_po, article2, column=year)

1. iteration

?article title ?title

?article author ?author

?article year ?year

(Ts_po, article1, column=author & column=year)

(Ts_po, article2, column=author & column=year)

1. iteration

Query pattern Corresponding HBase requests

2
 re

q
u
e
s
ts

!

Evaluation
Lehigh University Benchmark
(LUBM)

Cascading Map-Side Joins over HBase for Scalable Join Processing 19

 Cluster Hardware
◦ 10 Dell PowerEdge R200 servers

◦ Dual Core 3.16 GHz CPU

◦ 8 GB RAM

◦ 3 TB hard disk

◦ Gigabit Network

 Frameworks

◦ Hadoop 0.20.2 (CDH3)

◦ HBase 0.90.4

 Datasets

◦ 1000 – 3000 LUBM universities

◦ ~ 210 – 630 million triples
(after reasoning)

Cascading Map-Side Joins over HBase for Scalable Join Processing 20

Evaluation Setup

Master deamons
(JobTracker, NameNode, HBase Master, Zookeeper)

Slave deamons
(TaskTracker, DataNode, HBase Regionserver)

 Base Case (single join)

 Linear Scaling behavior for both approaches

 MAPSIN performs 8 – 13 times faster than PigSPARQL

Cascading Map-Side Joins over HBase for Scalable Join Processing 21

LUBM Q1

1

10

100

1000

1000 1500 2000 2500 3000

tim
e

 in
 s

e
co

n
d
s

LUBM (# universities)

0

200

400

600

800

1000

1000 1500 2000 2500 3000

tim
e

 in
 s

e
co

n
d
s

LUBM (# universities)

SELECT ?X

WHERE {

 ?X rdf:type ub:GraduateStudent .

 ?X ub:takesCourse <...GraduateCourse0>

}

PigSPARQL MAPSIN

 General Case (sequence of joins), Multiway Join Optimization applicable

 Linear Scaling behavior for both approaches

 MAPSIN performs up to 28 times faster than PigSPARQL

 MAPSIN multiway join ~ 3 times faster than standard MAPSIN

Cascading Map-Side Joins over HBase for Scalable Join Processing 22

LUBM Q4
SELECT ?X ?Y1 ?Y2 ?Y3

WHERE {

 ?X rdf:type ub:Professor .

 ?X ub:worksFor <...Department0.University0.edu> .

 ?X ub:name ?Y1 .

 ?X ub:emailAddress ?Y2 .

 ?X ub:telephone ?Y3

}

1

10

100

1000

10000

1000 1500 2000 2500 3000

tim
e

 in
 s

e
co

n
d
s

LUBM (# universities)

0

500

1000

1500

2000

2500

3000

3500

1000 1500 2000 2500 3000

tim
e

 in
 s

e
co

n
d
s

LUBM (# universities)

PigSPARQL MAPSIN

PigSPARQL Multiway Join MAPSIN Multiway Join

 Conclusion
◦ MAPSIN joins are processed completely in Map phase

◦ MAPSIN joins are easily iterable in a sequence of joins
(without auxiliary Shuffle & Reduce Phases)

◦ Multiway join optimization reduces the number of iterations and
HBase requests

◦ Outperforms reduce-side joins (PigSPARQL) by an order of
magnitude (depending on the query selectivity)

◦ Performance degrades with increasing query output

 Future Work
◦ Improvements of the RDF storage schema

◦ Incorporate MAPSIN joins into PigSPARQL

Cascading Map-Side Joins over HBase for Scalable Join Processing 23

Conclusion & Future Work

[http://www.superscholar.org]

Cascading Map-Side Joins over HBase for Scalable Join Processing 24

Thank you for your attention!

