
Cascading Map-Side Joins over 
HBase for Scalable Join Processing 

Joint Workshop on Scalable and High-Performance Semantic Web Systems 

(SSWS + HPCSW 2012) 

Collocated with the 11th International Semantic Web Conference (ISWC 2012) 

Alexander Schätzle 
Martin Przyjaciel-Zablocki 
Christopher Dorner 
Thomas Hornung 
Georg Lausen 
 

University of Freiburg 
Databases & Information Systems 

11 November 2012 
 



 RDF datasets are growing constantly (e.g. LOD) 

 

 Querying RDF datasets at web-scale is challenging 

 

 Our Approach 
◦ Distributed scalable RDF engine for processing very large 

datasets (RDF + SPARQL) 

 

◦ Build on common & widely-used frameworks 
(Hadoop MapReduce, HBase, Pig, Cassandra, …) 

 
 

 

 
Cascading Map-Side Joins over HBase for Scalable Join Processing 2 

Motivation 



3 

MapReduce 

 Automatic parallelization of computations 
 

 Distributed File System 
◦ Commodity hardware  Fault tolerance by replication 
◦ Very large files / write-once, read-many pattern 

 

 Apache Hadoop 
◦ Well-known open-source implementation 

split 1 

split 0 Map 

Map 

Map 

  
  

  
  

  
  

  
  
  

  
  
  

Reduce 

Reduce 

output 0 

output 1 

Map phase Shuffle & Sort Reduce phase 

split 2 

split 3 

split 4 

split 5 

Input 

(DFS) 

Intermediate Results 

(Local) 

Output 

(DFS) 

Cascading Map-Side Joins over HBase for Scalable Join Processing 



Cascading Map-Side Joins over HBase for Scalable Join Processing 4 

Previous Work – PigSPARQL [1] 

[1] Alexander Schätzle, Martin Przyjaciel-Zablocki, Georg Lausen: 
     PigSPARQL: Mapping SPARQL to Pig Latin, SWIM 2011. 

 SPARQL on top of Pig Latin 

 

 Advantages 

◦ All operators of SPARQL 1.0 

◦ Benefits from Pig optimizations  

◦ Runs "out-of-the-box" on Hadoop 

◦ Portable on other platforms 

 

 Performance 

◦ Good scalability and performance for 
complex analytical queries 

◦ Performance not satisfying for more 
selective queries 

 

 Reasons 

◦ Reduce-Side Join ( Data shuffling) 

◦ No built-in index structures 

Query Processor 

RDF 

Graph 

Query Engine (Pig) 

MapReduce 

HDFS 

Triple Loader 

RDF Management System 

SPARQL 1.0 

  

  

  

  

  

  

  



Cascading Map-Side Joins over HBase for Scalable Join Processing 5 

New Approach 

 Store input dataset in HBase instead of 
plain HDFS 
 

 Process the join in the Map phase to 
avoid unnecessary data shuffling 
 

 

 Expected benefit 

◦ No costly Shuffle & Sort phase 

◦ I/O reduction due to HBase indexes 

 

 Expected drawbacks 

◦ Communication overhead 

◦ Significantly higher RAM consumption 

◦ Not ideal for high-output queries 

Query Processor 

RDF 

Graph 

Native Query Engine 

MapReduce 

HDFS 

Triple Loader 

RDF Management System 

SPARQL BGP 

  

  

  

  

  

  

  

HBase 

  



RDF Storage in HBase 
Store RDF in a NoSQL data store 

  
Cascading Map-Side Joins over HBase for Scalable Join Processing 6 



 Clone of Google's Bigtable 

◦ Column-oriented, semi-structured NoSQL data store 

◦ Distributed over many machines 

◦ Layered on top of HDFS (Hadoop Distributed File System) 
 Files split into blocks (e.g. 64MB) and replicated across machines 
 Tolerant of machine failure 

◦ Adds random data access to HDFS in "close to real-time" 

◦ Strictly consistent! 

 
 Not a relational query engine 

◦ Not designed for normalized schemas 

◦ No join operators 

◦ No expressive query language like SQL 

 

7 

What is HBase (Not)? 

Cascading Map-Side Joins over HBase for Scalable Join Processing 



 Sparse, distributed, sorted, multidimensional map 
◦ Indexed by row key 

◦ Values can have multiple versions, identified via timestamps 

◦ Columns are grouped into column families 

◦ Tables are dynamically split into regions 

◦ Every region is assigned to exactly one Region Server 

 

 Access Pattern: 
( Table,RowKey,Family,Column,Timestamp )  Value  

  

HBase Data Model 

Cascading Map-Side Joins over HBase for Scalable Join Processing 8 



9 

RDF Storage by Example (1) 

Cascading Map-Side Joins over HBase for Scalable Join Processing 

rowkey  family:column   value  

Article1 p:title  {"PigSPARQL"} p:year  {"2011"} p:author  {Alex, Martin} 

Article2 p:title  {"RDFPath"}  p:year  {"2011"} p:author  {Martin, Alex}  p:cite  {Article1} 

Ts_po: 

rowkey  family:column   value  

Alex p:author  {Article1, Article2} 

Article1 p:cite  {Article2} 

 . . .  . . . 

To_ps: 



10 

Triple Pattern Matching 

Cascading Map-Side Joins over HBase for Scalable Join Processing 

pattern table filter 

(s, p, o) Ts_po  or  To_ps column & value 

(?s, p, o) To_ps column 

(s, ?p, o) Ts_po  or  To_ps value 

(s, p, ?o) Ts_po column 

(?s, ?p, o) To_ps 

(?s, p, ?o) Ts_po  or  To_ps (SCAN) column 

(s, ?p, ?o) Ts_po 

(?s, ?p, ?o) Ts_po  or  To_ps (SCAN) 

server side filters 



MAPSIN Join 
Map-Side Index Nested Loop Join 

  
Cascading Map-Side Joins over HBase for Scalable Join Processing 11 



 Map-Side (Merge) Join 
◦ Input datasets must be: 

1. divided into same number of partitions 

2. Sorted by the same key (the join key) 

3. All records of a particular key must reside in the same 
partition 

◦ Problem: Fulfill requirements for subsequent iterations 

 

 Broadcast Join 
◦ One dataset small enough to be distributed to each node 

◦ Problem: Not feasible for big datasets 

Cascading Map-Side Joins over HBase for Scalable Join Processing 12 

Map-Side Joins in MapReduce 



13 

MAPSIN Join 

SELECT *  

WHERE {  

 ?article   title  ?title .  

 ?article   author  ?author  .  

 ?article   year    ?year   

}  

Cascading Map-Side Joins over HBase for Scalable Join Processing 



14 

Multiway Join Optimization 

?article  title  ?title 

 

?article  author ?author 

 

?article  year   ?year 

Cascading Map-Side Joins over HBase for Scalable Join Processing 

(Ts_po, article1, column=author) 
(Ts_po, article2, column=author) 

(Ts_po, article1, column=year) 
(Ts_po, article2, column=year) 

1. iteration 

2. iteration 

Query pattern Corresponding HBase requests 

rowkey filter 



15 

Multiway Join Optimization 

?article  title  ?title 

 

?article  author ?author 

 

?article  year   ?year 

Cascading Map-Side Joins over HBase for Scalable Join Processing 

(Ts_po, article1, column=author) 
(Ts_po, article2, column=author) 

(Ts_po, article1, column=year) 
(Ts_po, article2, column=year) 

1. iteration 

2. iteration 

Query pattern Corresponding HBase requests 



16 

Multiway Join Optimization 

?article  title  ?title 

 

?article  author ?author 

 

?article  year   ?year 

Cascading Map-Side Joins over HBase for Scalable Join Processing 

(Ts_po, article1, column=author) 
(Ts_po, article2, column=author) 

(Ts_po, article1, column=year) 
(Ts_po, article2, column=year) 

1. iteration 

2. iteration 

?article  title  ?title 

 

?article  author ?author 

 

?article  year   ?year 

(Ts_po, article1, column=author) 
(Ts_po, article1, column=year) 
 
(Ts_po, article2, column=author) 
(Ts_po, article2, column=year) 

1. iteration 

Query pattern Corresponding HBase requests 



17 

Multiway Join Optimization 

?article  title  ?title 

 

?article  author ?author 

 

?article  year   ?year 

Cascading Map-Side Joins over HBase for Scalable Join Processing 

(Ts_po, article1, column=author) 
(Ts_po, article2, column=author) 

(Ts_po, article1, column=year) 
(Ts_po, article2, column=year) 

1. iteration 

2. iteration 

?article  title  ?title 

 

?article  author ?author 

 

?article  year   ?year 

(Ts_po, article1, column=author) 
(Ts_po, article1, column=year) 
 
(Ts_po, article2, column=author) 
(Ts_po, article2, column=year) 

1. iteration 

Query pattern Corresponding HBase requests 

4 requests! 



18 

Multiway Join Optimization 

?article  title  ?title 

 

?article  author ?author 

 

?article  year   ?year 

Cascading Map-Side Joins over HBase for Scalable Join Processing 

(Ts_po, article1, column=author) 
(Ts_po, article2, column=author) 

(Ts_po, article1, column=year) 
(Ts_po, article2, column=year) 

1. iteration 

2. iteration 

?article  title  ?title 

 

?article  author ?author 

 

?article  year   ?year 

(Ts_po, article1, column=author) 
(Ts_po, article1, column=year) 
 
(Ts_po, article2, column=author) 
(Ts_po, article2, column=year) 

1. iteration 

?article  title  ?title 

 

?article  author ?author 

 

?article  year   ?year 

(Ts_po, article1, column=author & column=year) 
 
(Ts_po, article2, column=author & column=year) 

1. iteration 

Query pattern Corresponding HBase requests 

2
 re

q
u
e
s
ts

! 



Evaluation 
Lehigh University Benchmark 
(LUBM) 

  
Cascading Map-Side Joins over HBase for Scalable Join Processing 19 



 Cluster Hardware 
◦ 10 Dell PowerEdge R200 servers 

◦ Dual Core 3.16 GHz CPU 

◦ 8 GB RAM 

◦ 3 TB hard disk 

◦ Gigabit Network 

 
 Frameworks 

◦ Hadoop 0.20.2 (CDH3) 

◦ HBase 0.90.4 

 
 Datasets 

◦ 1000 – 3000 LUBM universities 

◦ ~ 210 – 630 million triples 
(after reasoning) 

Cascading Map-Side Joins over HBase for Scalable Join Processing 20 

Evaluation Setup 

Master deamons 
(JobTracker, NameNode, HBase Master, Zookeeper) 

Slave deamons 
(TaskTracker, DataNode, HBase Regionserver) 



 Base Case (single join) 

 Linear Scaling behavior for both approaches 

 MAPSIN performs 8 – 13 times faster than PigSPARQL 

Cascading Map-Side Joins over HBase for Scalable Join Processing 21 

LUBM Q1 

1

10

100

1000

1000 1500 2000 2500 3000

tim
e

 in
 s

e
co

n
d
s 

LUBM (# universities) 

0

200

400

600

800

1000

1000 1500 2000 2500 3000

tim
e

 in
 s

e
co

n
d
s 

LUBM (# universities) 

SELECT ?X 

WHERE {  

   ?X rdf:type  ub:GraduateStudent  .  

   ?X ub:takesCourse  <...GraduateCourse0>  

}  

PigSPARQL MAPSIN 



 General Case (sequence of joins), Multiway Join Optimization applicable 

 Linear Scaling behavior for both approaches 

 MAPSIN performs up to 28 times faster than PigSPARQL 

 MAPSIN multiway join ~ 3 times faster than standard MAPSIN 

Cascading Map-Side Joins over HBase for Scalable Join Processing 22 

LUBM Q4 
SELECT ?X ?Y1 ?Y2 ?Y3  

WHERE {  

   ?X rdf:type  ub:Professor  .  

   ?X ub:worksFor  <...Department0.University0.edu> .  

   ?X ub:name  ?Y1 .  

   ?X ub:emailAddress  ?Y2 .  

   ?X ub:telephone  ?Y3 

}  

1

10

100

1000

10000

1000 1500 2000 2500 3000

tim
e

 in
 s

e
co

n
d
s 

LUBM (# universities) 

0

500

1000

1500

2000

2500

3000

3500

1000 1500 2000 2500 3000

tim
e

 in
 s

e
co

n
d
s 

LUBM (# universities) 

PigSPARQL MAPSIN 

PigSPARQL Multiway Join MAPSIN Multiway Join 



 Conclusion 
◦ MAPSIN joins are processed completely in Map phase 

◦ MAPSIN joins are easily iterable in a sequence of joins 
(without auxiliary Shuffle & Reduce Phases) 

◦ Multiway join optimization reduces the number of iterations and 
HBase requests 

◦ Outperforms reduce-side joins (PigSPARQL) by an order of 
magnitude (depending on the query selectivity) 

◦ Performance degrades with increasing query output 

 

 Future Work 
◦ Improvements of the RDF storage schema 

◦ Incorporate MAPSIN joins into PigSPARQL 

Cascading Map-Side Joins over HBase for Scalable Join Processing 23 

Conclusion & Future Work 

[http://www.superscholar.org] 



Cascading Map-Side Joins over HBase for Scalable Join Processing 24 

Thank you for your attention! 


