
Cascading Map-Side Joins over 
HBase for Scalable Join Processing 

Joint Workshop on Scalable and High-Performance Semantic Web Systems 

(SSWS + HPCSW 2012) 

Collocated with the 11th International Semantic Web Conference (ISWC 2012) 

Alexander Schätzle 
Martin Przyjaciel-Zablocki 
Christopher Dorner 
Thomas Hornung 
Georg Lausen 
 

University of Freiburg 
Databases & Information Systems 

11 November 2012 
 



 RDF datasets are growing constantly (e.g. LOD) 

 

 Querying RDF datasets at web-scale is challenging 

 

 Our Approach 
◦ Distributed scalable RDF engine for processing very large 

datasets (RDF + SPARQL) 

 

◦ Build on common & widely-used frameworks 
(Hadoop MapReduce, HBase, Pig, Cassandra, …) 
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Motivation 
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MapReduce 

 Automatic parallelization of computations 
 

 Distributed File System 
◦ Commodity hardware  Fault tolerance by replication 
◦ Very large files / write-once, read-many pattern 

 

 Apache Hadoop 
◦ Well-known open-source implementation 
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Previous Work – PigSPARQL [1] 

[1] Alexander Schätzle, Martin Przyjaciel-Zablocki, Georg Lausen: 
     PigSPARQL: Mapping SPARQL to Pig Latin, SWIM 2011. 

 SPARQL on top of Pig Latin 

 

 Advantages 

◦ All operators of SPARQL 1.0 

◦ Benefits from Pig optimizations  

◦ Runs "out-of-the-box" on Hadoop 

◦ Portable on other platforms 

 

 Performance 

◦ Good scalability and performance for 
complex analytical queries 

◦ Performance not satisfying for more 
selective queries 

 

 Reasons 

◦ Reduce-Side Join ( Data shuffling) 

◦ No built-in index structures 

Query Processor 

RDF 

Graph 

Query Engine (Pig) 

MapReduce 

HDFS 

Triple Loader 

RDF Management System 

SPARQL 1.0 

  

  

  

  

  

  

  



Cascading Map-Side Joins over HBase for Scalable Join Processing 5 

New Approach 

 Store input dataset in HBase instead of 
plain HDFS 
 

 Process the join in the Map phase to 
avoid unnecessary data shuffling 
 

 

 Expected benefit 

◦ No costly Shuffle & Sort phase 

◦ I/O reduction due to HBase indexes 

 

 Expected drawbacks 

◦ Communication overhead 

◦ Significantly higher RAM consumption 

◦ Not ideal for high-output queries 
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RDF Storage in HBase 
Store RDF in a NoSQL data store 
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 Clone of Google's Bigtable 

◦ Column-oriented, semi-structured NoSQL data store 

◦ Distributed over many machines 

◦ Layered on top of HDFS (Hadoop Distributed File System) 
 Files split into blocks (e.g. 64MB) and replicated across machines 
 Tolerant of machine failure 

◦ Adds random data access to HDFS in "close to real-time" 

◦ Strictly consistent! 

 
 Not a relational query engine 

◦ Not designed for normalized schemas 

◦ No join operators 

◦ No expressive query language like SQL 
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What is HBase (Not)? 
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 Sparse, distributed, sorted, multidimensional map 
◦ Indexed by row key 

◦ Values can have multiple versions, identified via timestamps 

◦ Columns are grouped into column families 

◦ Tables are dynamically split into regions 

◦ Every region is assigned to exactly one Region Server 

 

 Access Pattern: 
( Table,RowKey,Family,Column,Timestamp )  Value  

  

HBase Data Model 
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RDF Storage by Example (1) 
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rowkey  family:column   value  

Article1 p:title  {"PigSPARQL"} p:year  {"2011"} p:author  {Alex, Martin} 

Article2 p:title  {"RDFPath"}  p:year  {"2011"} p:author  {Martin, Alex}  p:cite  {Article1} 

Ts_po: 

rowkey  family:column   value  

Alex p:author  {Article1, Article2} 

Article1 p:cite  {Article2} 

 . . .  . . . 

To_ps: 
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Triple Pattern Matching 
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pattern table filter 

(s, p, o) Ts_po  or  To_ps column & value 

(?s, p, o) To_ps column 

(s, ?p, o) Ts_po  or  To_ps value 

(s, p, ?o) Ts_po column 

(?s, ?p, o) To_ps 

(?s, p, ?o) Ts_po  or  To_ps (SCAN) column 

(s, ?p, ?o) Ts_po 

(?s, ?p, ?o) Ts_po  or  To_ps (SCAN) 

server side filters 



MAPSIN Join 
Map-Side Index Nested Loop Join 
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 Map-Side (Merge) Join 
◦ Input datasets must be: 

1. divided into same number of partitions 

2. Sorted by the same key (the join key) 

3. All records of a particular key must reside in the same 
partition 

◦ Problem: Fulfill requirements for subsequent iterations 

 

 Broadcast Join 
◦ One dataset small enough to be distributed to each node 

◦ Problem: Not feasible for big datasets 
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Map-Side Joins in MapReduce 
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MAPSIN Join 

SELECT *  

WHERE {  

 ?article   title  ?title .  

 ?article   author  ?author  .  

 ?article   year    ?year   

}  
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Multiway Join Optimization 

?article  title  ?title 

 

?article  author ?author 

 

?article  year   ?year 
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(Ts_po, article1, column=author) 
(Ts_po, article2, column=author) 

(Ts_po, article1, column=year) 
(Ts_po, article2, column=year) 

1. iteration 

2. iteration 

Query pattern Corresponding HBase requests 

rowkey filter 
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Multiway Join Optimization 

?article  title  ?title 

 

?article  author ?author 

 

?article  year   ?year 
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(Ts_po, article1, column=author) 
(Ts_po, article2, column=author) 

(Ts_po, article1, column=year) 
(Ts_po, article2, column=year) 

1. iteration 

2. iteration 

Query pattern Corresponding HBase requests 
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Multiway Join Optimization 
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Multiway Join Optimization 

?article  title  ?title 

 

?article  author ?author 

 

?article  year   ?year 
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(Ts_po, article1, column=author) 
(Ts_po, article2, column=author) 

(Ts_po, article1, column=year) 
(Ts_po, article2, column=year) 

1. iteration 

2. iteration 
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(Ts_po, article1, column=author) 
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1. iteration 

Query pattern Corresponding HBase requests 

4 requests! 
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Multiway Join Optimization 

?article  title  ?title 

 

?article  author ?author 

 

?article  year   ?year 
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(Ts_po, article1, column=author) 
(Ts_po, article2, column=author) 

(Ts_po, article1, column=year) 
(Ts_po, article2, column=year) 

1. iteration 

2. iteration 
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1. iteration 

?article  title  ?title 

 

?article  author ?author 

 

?article  year   ?year 

(Ts_po, article1, column=author & column=year) 
 
(Ts_po, article2, column=author & column=year) 

1. iteration 

Query pattern Corresponding HBase requests 
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Evaluation 
Lehigh University Benchmark 
(LUBM) 
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 Cluster Hardware 
◦ 10 Dell PowerEdge R200 servers 

◦ Dual Core 3.16 GHz CPU 

◦ 8 GB RAM 

◦ 3 TB hard disk 

◦ Gigabit Network 

 
 Frameworks 

◦ Hadoop 0.20.2 (CDH3) 

◦ HBase 0.90.4 

 
 Datasets 

◦ 1000 – 3000 LUBM universities 

◦ ~ 210 – 630 million triples 
(after reasoning) 
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Evaluation Setup 

Master deamons 
(JobTracker, NameNode, HBase Master, Zookeeper) 

Slave deamons 
(TaskTracker, DataNode, HBase Regionserver) 



 Base Case (single join) 

 Linear Scaling behavior for both approaches 

 MAPSIN performs 8 – 13 times faster than PigSPARQL 
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LUBM Q1 
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SELECT ?X 

WHERE {  

   ?X rdf:type  ub:GraduateStudent  .  

   ?X ub:takesCourse  <...GraduateCourse0>  

}  

PigSPARQL MAPSIN 



 General Case (sequence of joins), Multiway Join Optimization applicable 

 Linear Scaling behavior for both approaches 

 MAPSIN performs up to 28 times faster than PigSPARQL 

 MAPSIN multiway join ~ 3 times faster than standard MAPSIN 
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LUBM Q4 
SELECT ?X ?Y1 ?Y2 ?Y3  

WHERE {  

   ?X rdf:type  ub:Professor  .  

   ?X ub:worksFor  <...Department0.University0.edu> .  

   ?X ub:name  ?Y1 .  

   ?X ub:emailAddress  ?Y2 .  

   ?X ub:telephone  ?Y3 

}  
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 Conclusion 
◦ MAPSIN joins are processed completely in Map phase 

◦ MAPSIN joins are easily iterable in a sequence of joins 
(without auxiliary Shuffle & Reduce Phases) 

◦ Multiway join optimization reduces the number of iterations and 
HBase requests 

◦ Outperforms reduce-side joins (PigSPARQL) by an order of 
magnitude (depending on the query selectivity) 

◦ Performance degrades with increasing query output 

 

 Future Work 
◦ Improvements of the RDF storage schema 

◦ Incorporate MAPSIN joins into PigSPARQL 
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Conclusion & Future Work 

[http://www.superscholar.org] 
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Thank you for your attention! 


