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Abstract—Developing the perfect SLAM front-end that pro-
duces graphs which are free of outliers is generally impossible due
to perceptual aliasing. Therefore, optimization back-ends need to
be able to deal with outliers resulting from an imperfect front-
end. In this paper, we introduce dynamic covariance scaling, a
novel approach for effective optimization of constraint networks
under the presence of outliers. The key idea is to use a
robust function that generalizes classical gating and dynamically
rejects outliers without compromising convergence speed. We
implemented and thoroughly evaluated our method on publicly
available datasets. Compared to recently published state-of-the-
art methods, we obtain a substantial speed up without increasing
the number of variables in the optimization process. Our method
can be easily integrated in almost any SLAM back-end.

I. INTRODUCTION

Building maps with mobile robots is a key prerequisite

for several robotics applications. As a result, a large variety

of SLAM approaches have been presented in the robotics

community over the last decades [1], [2], [3], [4]. One intuitive

way of formulating the SLAM problem is to use a graph.

The nodes in this graph, represent the poses of the robot

at different points in time and the edges model constraints

between these poses. The edges are obtained from observations

of the environment or from motion carried out by the robot.

Once such a graph is constructed, the map can be computed

by optimization techniques. The solution is the configuration

of the nodes that is best explained by the measurements.

Most approaches assume that the constraints are affected by

noise but no outliers (false positives) are present, i.e., there

are no constraints that identify actually different places as

being the same one. This corresponds to the assumption of

having a perfect SLAM front-end. In traditional methods, a

single error in the data association often leads to inconsistent

maps. Generating outlier-free graphs in the front-end, however,

is very challenging, especially in environments showing self-

similar structures [5], [6], [7]. Thus, having the capability to

identify and to reject wrong data associations is essential for

robustly building large scale maps without user intervention.

Recent work on graph-based SLAM addressed the issue and

there are now methods that can handle a large number of

outliers [8], [9], [10].

The contribution of this paper is a novel approach, namely

Dynamic Covariance scaling (DCS) which deals with outliers,

while at the same time avoiding an increase in execution
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Fig. 1. Graph optimization on standard datasets with 1,000 outliers. Standard
least square (left) fails while the switchable constraints method (center) as
well as our approach (right) provides comparable results. Our method shows
substantially faster convergence of up to a factor of 10. Colored lines depict
accepted loop closures.

time (see Fig 1). Our work stems from the analysis of

a recently introduced robust back-end based on switchable

constraints (SC) [8] and uses a robust function that generalizes

classical gating by dynamically scaling the covariance. Com-

pared to state-of-the-art approaches in robust SLAM back-

ends, our strategy has a reduced computational overhead and

typically has better convergence. The proposed function shares

common grounds with existing robust M-estimators. Further-

more, our method can be integrated easily into existing graph-

based SLAM systems and does not require significant changes

in the code. In the experimental section, we thoroughly eval-

uate our approach and show that our formulation outperforms

alternative methods in terms of convergence speed.

II. RELATED WORK

Various SLAM approaches have been presented in the

past. Lu and Milios [11] were the first to refine a map by

globally optimizing the system of equations to reduce the error



introduced by constraints. Subsequently, Gutmann and Kono-

lige [12] proposed a system for constructing the graphs and

for detecting loop closures incrementally. Since then, many

approaches for minimizing the error in the constraint network

have been proposed, including relaxation methods [13], [3],

stochastic gradient descent and its variants [2], [14], smoothing

techniques [4] and hierarchical techniques [15], [1].

The techniques presented above allow for Gaussian errors in

the constraints of the pose-graphs, i.e., noisy constraints, but

they cannot handle outliers, i.e., wrong loop closing constraints

between physically different locations. Although SLAM front-

ends (loop generation and loop validation ) improved over the

last years [7], [6], [5], it is not realistic to assume that the

generated pose-graphs are free of outliers.

Hence researchers recently started using the back-end slam

optimizer to identify outliers. For example, Sünderhauf and

Protzel [8] proposed a technique that is able to switch off

potential outlier constraints. The function controlling this

switching behavior is computed within the SLAM back-end.

Olson and Agarwal [9] recently presented a method that

can deal with multi-modal constraints, by introducing a max

operator. Their approach approximates the sum of Gaussian

model by the currently most promising Gaussian. This al-

lows for dealing with multi-modal constraints and rejecting

outliers while maintaining computational efficiency. Latif et

al. [10] proposed RRR, which handles outliers by finding the

maximum set of clustered edges, consistent with each other.

The key difference of RRR to the previously described two

approaches [8], [9] is that RRR rejects false edges while the

other two always keep rejected edges with a low weight.

Our approach is similar to [8] since we also keep rejected

constraints with a small probability, but it is more principled

and leads to faster convergence.

III. OPTIMIZATION WITH SWITCHABLE CONSTRAINTS

The graph-based approach to solve the SLAM problem is

to minimize the error function:

X∗ = argmin
X

∑

i

‖ f(xi, xi+1)− zi,i+1 ‖
2
Σi

+
∑

ij

‖ (f(xi, xj)− zij) ‖
2
Λij

︸ ︷︷ ︸

χ2

lij

(1)

where xi represents the pose of the robot at time i, zij is

the transformation between two poses obtained by odometry

or sensor measurements and f(xi, xj) is the function that

predicts the measurement between xi and xj . The covariances

of the odometry and sensor measurements are Σ and Λ. Thus,

whereas the first term in Eq. 1 represents the incremental

constraints that result from odometry constraints, the second

term refers to loop closing constraints.

Recently, Sünderhauf and Protzel [8] published an effective

method for optimizing graphs in the presence of outliers. Their

basic idea is to introduce switching variables sij ∈ [0, 1]
that can disable potential outlier constraints. Since our method

builds upon their insights, we provide a short review of this

technique. They minimize:

X∗, S∗ = argmin
X,S

∑

i

‖ f(xi, xi+1)− zi,i+1 ‖
2
Σi

+
∑

ij

‖ Ψ(sij)(f(xi, xj)− zij) ‖
2
Λij

+
∑

ij

‖ 1− sij ‖
2
Ξij

(2)

which can be interpreted as three sums over different χ2 errors,

i.e., the one of the incremental constraints, the loop closing

constraints and the switch priors. Here, Ψ(sij) ∈ [0, 1] is a

scaling function that determines the weight of a constraint

given sij and a switching prior Ξij . Sünderhauf and Protzel

propose a joint optimization of X and S. As a result of this,

for each loop closing constraint, an additional variable sij
has to be considered by the optimizer. The addition of the

switch variable increases computation cost of each iteration

and in this case increases the problem complexity and thus,

potentially decreases the convergence speed.

A. Analysis of the Switchable Constraints Error Function

The function Ψ(·) can be interpreted as a scaling factor in
the information matrix associated to a constraint, since

‖ Ψ(sij)(f(xi, xj)− zij) ‖
2
Λij

= Ψ(sij)(f(xi, xj)− zij)
⊤Λ−1

ij Ψ(sij)(f(xi, xj)− zij) (3)

= (f(xi, xj)− zij)
⊤Λ−1

ij Ψ(sij)
2(f(xi, xj)− zij) (4)

= ‖ f(xi, xj)− zij ‖2Ψ(sij)
−2Λij

(5)

Sünderhauf and Protzel [8] suggest to set Ψ(sij) = sij within

the interval [0, 1] to obtain the best results. To simplify the

following derivations, we directly replace Ψ(sij) by sij .

IV. DYNAMICALLY SCALED COVARIANCE KERNEL

The disadvantage of SC is the need of additional variables

sij , one for each constraint subjected to be an outlier. In

the remainder of this paper, we will show how to circum-

vent the use of the switching variables inside the optimizer.

This leads to a significantly faster convergence, meanwhile

obtaining comparable robustness. We next introduce the main

contribution of this work, namely a technique that provides

an analytical solution to the scaling factors. This does not

only simplify the optimization problem by greatly reducing the

number of variables, but it also creates an easier to optimize

cost surface as shown empirically in Section V.

In the following, we analyze the behavior of the error

function defined in Eq. 2. In particular, we investigate how

the switching variables influence the χ2 at the local minima.

Without the loss of generality, let us consider the edge between

two nodes k and l. We can split the error function into two

blocks, the first one considers all edges except kl and the



second block only the edge kl:

X∗, S∗ = argmin
X,S

∑

i

‖ f(xi, xi+1)− zi,i+1 ‖
2
Σi

+
∑

ij 6=kl

‖ sij(f(xi, xj)− zij) ‖
2
Λij

+
∑

ij 6=kl

‖ 1− sij ‖
2
Ξij

+ ‖ skl(f(xk, xl)− zkl) ‖
2
Λkl

+ ‖ 1− skl ‖
2
Ξkl

= argmin
X,S

g(Xij 6=kl, Sij 6=kl) + s2klχ
2
lkl

+ (1− skl)
2Φ

︸ ︷︷ ︸

h(s,χ2)
︸ ︷︷ ︸

b

(6)

with Φ := Ξ−1
ij . In Eq. 6, the term g(·) represents the error

for all edges, including odometry, except of the edge kl.

Once the optimizer converges, the partial derivatives with

respect to all variables ∈ {X,S} are zero. Hence the derivative

with respect to skl must be 0. Taking the partial derivative of

Eq. 6 with respect to skl, we obtain for a generic constraint

(indices are omitted for notational simplicity):

∇b =







...
∂b
∂s
...






=







...

2sχ2
l − 2(1− s)Φ

...






=







...

0
...







(7)

Solving for s, in terms of Φ and χ2
l , leads to

2sχ2
l − 2(1− s)Φ = 0

s
(
χ2
l +Φ

)
= Φ

s =
Φ

χ2
l +Φ

. (8)

Substituting s from Eq. 8 in h(·), we obtain:

ĥ =
Φ2χ2

l

(χ2
l +Φ)

2 +Φ−
2Φ2

χ2
l +Φ

+
Φ3

(χ2
l +Φ)

2 (9)

The function ĥ(·) represents the projection of h(·) on the

manifold where the gradient is 0. Finding the maxima of this

function is equivalent to obtain an upper bound on χ2
l for all

possible solutions computed by the optimizer. Lets analyze the

derivative of Eq. 9:

dĥ

dχl

=
2χlΦ

2

(Φ + χ2
l )

2 (10)

As can be seen from Eq. 10, the derivative is 0 when χl = 0.

Thus, we evaluate the function ĥ at ±∞ and 0:

lim
χl→±∞

ĥ = 0 + Φ− 0 + 0 = Φ (11)

χl = 0 ⇒ ĥ = 0 + Φ− 2Φ + Φ = 0 (12)

Thus, h(·) ≤ Φ for every solution computed by the

optimizer. This can be generalized to all switch variables and

hence h(·) ≤ Φ for every constraint. By using Φ as an upper

bound for all robust edges, we obtain:

(1− s)
2
Φ+ s2χ2

l ≤ Φ

Φ+ s2Φ− 2sΦ+ s2χ2
l ≤ Φ

s2(Φ + χ2
l ) + s(−2Φ) + (Φ− Φ) ≤ 0

s(s(Φ + χ2
l )− 2Φ) ≤ 0. (13)

The solution to this inequality is given as

0 ≤ s ≤
2Φ

Φ + χ2
l

. (14)

In theory, one could choose any value for s within that interval.

We choose the value that minimize h(·) within that interval,

while not exceeding 1. It is given by

s = min

(

1,
2Φ

Φ + χ2
l

)

. (15)

In sum, we have a closed form solution for computing the

scaling factor s individually for each loop closing constraint. It

depends on χ2
l , which is the original error term for each loop

closing constraint. This formulation dynamically scales the

information matrix of each non-incremental edge by s2 given

by Eq. 15 and thus by a factor that considers the magnitude of

the current error. A gradient always exists in the direction of an

edge and gradually increases in the presence of more mutually

consistent constraints. The cost surface is always quadratic but

the magnitude of the gradient is scaled according to s, which

depends on the current error (χ2
l ) and Φ.

It should be noted that this result can be integrated in

basically any graph-based SLAM system with minimal efforts.

Once sij is computed based on the error of the corresponding

constraint, the residuals can be scaled with sij or the informa-

tion matrix be scaled with s2ij depending on implementation

of the SLAM back-end.

A. Relations to Robust Estimation Theory

The analytical solution of s2 derived above also shows

its relation to iterative re-weighted least squares (IRLS) and

robust M-Estimation. Similar to IRLS, we scale the covari-

ance to modify the residuals iteratively. In fact the Geman-

McClure [16] M-Estimator has a similar weight function:

w(x) =
1

(1 + x2)
2 , (16)

Under the special condition of Φ = 1 and not forcing s ≤
1, both scaling functions are similar. DCS allows changing

the values of Φ and prevents over-fitting by having w(x) ≤
1. Computing exact values of Φ as well as comparison with

Geman-McClure is subject of future work.

V. EXPERIMENTAL EVALUATION

We implemented the method described above and conducted

a large set of evaluations comparing it to switching con-

straints (SC) [8]. We have used the g2o framework with Gauss-

Newton optimization steps for all our experiments [17].



TABLE I
DATASETS USED IN OUR EXPERIMENTS.

Dataset # Poses & # Correct Loop # Outliers

Landmarks Constraints (max.)

ManhattanOlson 3,500 2,099 5,000

ManhattanG2O 3,500 2,099 5,000

City10000 10,000 10,688 5,000

Intel Research 943 894 5,000

Sphere2500 2,500 2,450 5,000

CityTrees10000 10,100 4,443 1,000

Victoria Park 7,120 3,640 1,000

Bicocca 43,116 767 516

Lincoln Labs 6,357 2,334 3,754

A. Datasets and Outliers

To support comparisons, we used publicly available

datasets, namely the Manhattan3500, Intel Research Lab,

City10000, Sphere2500, CityTrees10000, and Victoria Park

datasets. For Manhattan3500, we considered the two different

initialization procedures provided by Olson [2] and g2o [17].

The Intel Research Lab dataset is available in the g2o pack-

age [17] and the City10000, CityTrees10000, Sphere2500

datasets as well as the Victoria Park dataset were released with

the iSAM package [4]. We also evaluated additional large-

scale datasets such as the 36 loops of the Lincoln Lab and the

five loops of the Bicocca multi-session experiment initially

evaluated with RRR [10]. Tab. I lists the properties of the

different datasets as well as the maximum number of outliers

present in the corrupted versions. For landmark datasets, the

loop constraints are pose-landmark edges.

The corrupted versions of the data sets contain both, real

and simulated outliers. For simulated outliers, we used four

different approaches to generate them namely “random”, “lo-

cal”, “random grouped”, and “local grouped” as described

in [8]. Random outliers connect any two randomly sampled

nodes in the graph. Local outliers connect random nodes that

are in the vicinity of each other. For the grouped outliers,

we create clusters of 10 mutually consistent outliers. We

believe that randomly grouped outliers are the most realistic

form of outliers as such constraints are similar to systematic

errors generated due to perceptual aliasing by a front-end. The

outliers are generated using the script provided in the Vertigo

package [18]. For landmark datasets such as Victoria Park

and CityTrees10000, we added wrong loop closures between

random pairs of nodes and landmarks.

For the Bicocca and Lincoln multi-session datasets, we used

the processed datasets provided by Latif et al. [10] in which

loop closures are generated using a place recognition system

subjected to perceptual aliasing. The Bicocca dataset uses a

bag of word-based front-end while the Lincoln Lab dataset

was created with a GIST-based front-end.

For all evaluations, unless otherwise stated, Φ = 1, since

this is suggested value according to [8].
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Fig. 2. Scatter plots showing the error depending on the number and type
of outliers for DCS. ManhattanG2O, Intel, and Sphere2500 converge to the
correct solution even with 5,000 outliers while City10000 and ManhattanOlson
always convergence in the case of local outliers. City10000 converges to the
correct solution for up to 1,500 outliers which are not local. ManhattanOlson
is more sensitive to non-local outliers.

B. Robust against Simulated and Real Outliers

To show the robustness against outliers we evaluated DCS

on both simulated and real outliers. First, we evaluated DCS

on datasets with up to 5,000 simulated outliers. In total,

we evaluated 400 graphs per dataset—100 for each of the

four outlier generation strategy. Scatter plots of the resulting

reprojection error (RPE) after convergence are shown in Fig. 2.

As can be seen, for the ManhattanG2O, Intel and Sphere2500

datasets, DCS always converges to the correct solution. For

ManhattanOlson and City10000, DCS converges in all the

local outlier cases but is sensitive to the non-local outliers.

City10000 fails to converge to the correct solution in some

non-local cases with more than 1500 outliers. Even when

ManhattanOlson does not converge, the RPE is always less

than 10 and appears somewhat constant. This case is further

analyzed in Section V-G.

Compared to the other datasets evaluated in this paper, the

next two datasets contain outliers created from a front-end

due to place recognition errors. The goal of these experiments

is to evaluate the performance of DCS with an error prone

front-end. We use the data-sets evaluated in [10] and thus

also provide an informal comparison to it. Fig. 3 depicts the

optimization results of DCS on the Biccoca and Lincoln Lab

datasets.

DCS takes 0.79 s (3 iterations) to optimize the Lincoln

Lab dataset and 1.56 s (16 iterations) to optimize the Bicocca

dataset. For the Bicocca dataset, we achieved the best result

with Φ = 5. By visual inspection, we can see that our solution

is close to the reported correct structure in [10]. Compared

to RRR, which reports a timing of 314 s for the Bicocca

dataset, DCS takes only 1.56 s and thus is around two orders

of magnitude faster. SC does not find the correct solution in

the standard settings and requires an additional Huber robust

kernel which takes 5.24 s to find the solution [10].

C. Timing analysis

The next set of experiments are conducted to analyze

the timing performance of DCS and to support the claim



TABLE II
OPTIMIZATION TIME NEEDED BY SC AND DCS IN THE PRESENCE OF 1000 TO 5000 OUTLIERS WITH RANDOM(R), LOCAL(L), RANDOM-GROUPED(RG)

AND LOCAL-GROUPED(LG) OUTLIER GENERATION STRATEGIES.

Dataset 1000 2000 3000 4000 5000

R, L, RG, LG R, L, RG, LG R, L, RG, LG R, L, RG, LG R, L, RG, LG

ManG2O

SC 4.70, 1.91, 3.11, 1.55 8.17, 2.93, 4.46, 2.85 10.11, 3.45, 11.89, 5.11 11.21, 2.80, 11.17, 3.32 24.53, 3.14, 15.33, 4.67

DCS 2.09, 0.86, 1.41, 0.88 3.83, 1.07, 2.80, 1.00 5.47, 1.25, 4.24, 1.17 7.62, 1.44, 6.27, 1.38 9.29, 1.69, 8.42, 1.59

ManOlson

SC 14.53, 2.21, 10.65, 2.21 18.96, 2.80, 15.45, 2.71 39.34, 3.41, 39.94, 3.27 53.29, 4.69, 36.71, 4.54 67.44, 5.33, 61.16, 5.09

DCS 4.62, 1.08, 3.40, 1.07 6.57, 1.35, 3.23, 1.27 26.21, 1.57, 20.21, 1.46 29.24, 1.84, 26.46, 1.71 16.80, 2.03, 14.00, 1.93

Intel

SC 0.54, 0.42, 0.51, 0.39 1.20, 0.94, 1.18, 0.94 1.60, 1.22, 1.61, 1.20 2.00, 1.52, 2.01, 1.50 2.37, 1.78, 2.44, 1.74

DCS 0.34, 0.22, 0.31, 0.21 0.52, 0.31, 0.52, 0.34 0.69, 0.45, 0.71, 0.42 0.85, 0.53, 0.85, 0.50 1.00, 0.58, 1.08, 0.58

City10000

SC 47.61, 30.06, 41.11, 29.86 108.2, 33.84, 79.50, 33.52 212.8, 41.14, 134.9, 39.04 285.7, 43.82, 207.1, 40.70 389.9, 49.98, 446.5, 49.92

DCS 10.09, 3.98, 7.88, 3.93 36.94, 4.80, 15.74, 4.53 51.60, 5.95, 34.02, 5.65 218.8, 6.92, 50.09, 6.44 262.9, 8.04, 393.2, 7.37

Sphere2500

SC 53.83, 11.09, 48.26, 10.62 115.5, 14.88, 108.9, 16.03 240.1, 24.10, 170.3, 18.55 218.7, 30.78, 230.2, 57.22 310.7, 67.53, 281.8, 63.37

DCS 19.52, 7.83, 16.84, 7.51 42.52, 9.22, 38.39, 9.02 50.58, 10.40, 50.32, 9.94 66.51, 11.31, 69.39, 11.36 90.12, 12.35, 97.07, 11.97

Bicocca initialization Result after optimization

Lincoln Labs initialization Result after optimization

Fig. 3. Qualitative evaluation on 5 sessions of Bicocca (top) and 36 loops of
Lincoln Labs (bottom) datasets that contain outliers generated by the vision
system. Latif et al. [10] report a that RRR solves Bicocca in 314 s whereas
DCS requires only 1.56 s to obtain the solution.

that our method converges faster than SC. We first show in

Fig. 4 that the optimization time required by DCS depends

only on the number of constraints and the outlier generation

criteria. Importantly, DCS does not increase the optimization

time significantly compared to the standard least squares. The

required pptimization time shows a larger variance for random

outliers in ManhattanOlson compared to ManhattanG2O as the

former starts with a worse initialization.

Tab. II compares the time required by DCS and SC to
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Fig. 4. Scatter plots showing the runtime depending on the number and
type of outliers for DCS. DCS does not add significant overheads to the
sparse matrix factorization algorithms compared to standard least squares.
Local outliers create less fill-in inside and hence requires less time.

converge in presence of outliers. This table compares the total

time taken for both these algorithms to reach the optimal

solution. As can be seen from the table, DCS is faster than

SC in all cases. The increase in convergence speed is most

noticeable in City10000 dataset. The optimization process for

both methods were stopped when the change in χ2 was less

than the set threshold. In the next section we show reduction

of χ2 and RPE is significantly faster and smoother for DCS

compared SC.

D. Convergence Properties

The experiments in this section analyze the convergence

behavior of DCS and SC in the presence of 1000 randomly

grouped errors, as this is the most difficult and realistic

scenario. Fig. 5 plots the evolution of the RPE (top row)

and the χ2 error (bottom row) during optimization for SC

(blue) and DCS (green). As can be seen from these plots,

within at most 6 iterations, DCS converges while SC typically
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Fig. 5. The figure plots RPE (top row) and χ
2 error (bottom row) for 20 iterations for SC and DCS. While DCS converges within 6 iterations or less, SC

needs between 15 and 20 iterations to converge. The shapes of the plots for SC reveal a frequent increase of RPE and χ
2 error which tend to indicate that

there are more local minima in the SC formulation compared to DCS.

needs between 15 and 20 iterations to converge. The shapes

of the plots for SC reveal a frequent increase of the RPE

as well as χ2 error. We believe this may be indicative of

the fact that the Gauss-Newton quadratic approximation of

the cost functions for the new optimization problem with

additional switch variables in SC is not completely accurate

in the neighborhood of evaluation.

For our method, the evolution of χ2 and RPE is smooth and

almost monotonous. The plots illustrate that DCS requires a

smaller number of iterations and offers a faster convergence

while at the same time being robust to outliers. This is also

apparent from the video submitted with the paper, available

at http://www.informatik.uni-freiburg.de/%7Eagarwal/videos/

icra13/DCS.mp4. Note that the absolute χ2 values for SC and

DCS have to be interpreted differently since SC introduces

extra switch prior constraints contributing to the overall error.

E. Parameter Sensitivity

To analyze the sensitivity of DCS and SC with respect to

the parameter Φ, we analyzed several values of Φ in the range

of 0.01 and 10. Both methods are evaluated on the standard

datasets adding 1,000 outliers using random, local random,

grouped, and local grouped outliers. Once chosen, the outliers

are not changed for different values of Φ. Fig. 6 shows the

RPE for varying values of Φ. In general, we found that the

sensitivity of DCS and SC is similar for ManhattanG2O, Intel

and City10000 datasets. Small values of Φ < 0.1 lead to larger

RPE. The RPE however is small, around 10−5, for a wide

range of values 0.1 < Φ < 10.

For the Sphere2500 dataset, both DCS and SC do not con-

verge for Φ < 0.1. The convergence improves with increasing

Φ but DCS fails to converge for Φ > 5 in the presence of

local grouped outliers. For the ManhattanOlson dataset, DCS

and SC converge for values 0.1 < Φ ≤ 1 in all cases while

both approaches appear to be sensitive to non-local errors. This

may be explained by the structure of this dataset since it can

be devided into three parts which are connected by very a few

constraints only (see left part of ground truth configuration

in Fig. 8 and the colored parts). In summary, DCS appears

to be more sensitive to the value of Φ in the case of the

Sphere2500 dataset but for all other datasets the sensitivity

on Φ is comparable for both approaches. Importantly, DCS

and SC show a wide range of values for Φ and we thus fixed

Φ = 1 as also suggested in [8].

F. Dynamically Scaled Covariances Approach on Landmark-

Based Graphs

So far, we evaluated our method only on datasets that con-

tain pose-to-pose constraints, i.e., that directly relate pairs of

poses of the robot with each other. Our method also works for

landmark-based SLAM. Most landmark-based SLAM systems

provide pose-feature range-bearing constraints and pose-to-

pose constraints only for odometry. Operating on pose-feature

constraints is more challenging for outlier rejection since there

is no reliable constraints such as odometry between the feature

nodes. In the previous evaluated pose graphs, every node is

constrained by two odometry edges which are not subjected

to being an outlier. For landmark datasets all constraints to

a feature node are potential outliers and hence create large

number of local minima solutions.

For landmark datasets we corrupt the outlier free Victoria

Park and the CityTrees10000 dataset with up to 1, 000 random

outlier constrains. The outliers are random measurements from

a robot pose to a landmark. Fig. 7 shows the initialization for

these two datasets and the RPE with an increasing number of

outliers. As can be seen from the plots, in these two datasets,
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Fig. 6. Robustness of SC (top) and DCS (bottom) with respect to the parameter Φ ∈ [0.01, 10] in presence of 1,000 outliers.
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Fig. 7. Resulting RPE for Victoria Park and cityTrees10000 dataset in the
presence of a varying number of outliers. Although the initialization is far
from the global minimum, DCS is able to converge to the correct solution for
small number of outliers.

DCS is robust up to around 100 outliers and the robustness

decreases as the outliers are increased thereafter. The fact that

DCS is still able to optimize the Victoria Park dataset from the

initialization shown for 100 random outliers is strong evidence

that the method can be used in synergy with existing front-ends

validation techniques for landmark based system to improve

robustness.

G. Degenerate case

Investigations of the failure cases in ManhattanOlson found

is Section V-B reveal an interesting behavior. We analyses

two specific failure cases, one with 501 and one with 4,751

random outliers. After converging, both solutions appear to

have similar configuration, even though the second case is

subjected to roughly ten times more outliers, shown in Fig. 8.

They are locally consistent and appear to have converged

to a similar local minima. The scaling values of each false

positive edge is shown in the plots in Fig. 8. The problem

here is that three parts of the graph are only sparsely connected

(see Fig. 8-left). By adding non-local and mutual consistent

outliers, there exists configurations in which the system cannot

determine all outliers correctly. SC shows a similar issue with

ManhattanOlson, which the authors solved by introducing an

additional robust Huber kernel at the expense of an even slower

convergence [8].

The parking garage dataset is a difficult real world dataset

compared to all the previous datasets. This is mainly because

of the sparse nature of loop closures. Each deck of the parking

garage is connected by two odometry chains. SC had reported

degenerate behavior with this dataset [8]. It argued that since

only a small number of constraints connect the decks robust

methods were not able to outperform non-robust methods.

DCS is able to reject outliers even in this dataset. We

also added mutually consistent constraints between decks at

multiple levels and compared both methods with standard

parameters as shown in fig 9. We believe DCS is able to reject

outliers as the gradients of odometry edges and correct loop

edges outweigh those provided by the outliers.

VI. CONCLUSION

In this paper, we introduced dynamic covariance scal-

ing (DCS), an elegant and principled method to cope with

outliers in graph-based SLAM systems. We showed that DCS

generalizes the switchable constraint method of Sünderhauf

and Protzel, while introducing a substantially lower computa-

tional overhead. This is achieved by analyzing the behavior

of the error function and deriving an analytical solution

for computing the weighting factors. We implemented and

thoroughly evaluated our approach. We supported our claims

with extensive experiments and comparisons to state-of-the-

art methods on publicly available datasets. The results show a

comparable robustness to outliers as well as in accuracy but

with a convergence rate that is substantially faster. The authors

have released the source code of the approach presented in this

paper with the latest version of g2o.
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Fig. 8. Left: Ground truth configuration for Manhattan3500. The dataset reveals three sparsely connected region illustrated by the colored ellipses. The other
four images are designed to illustrate the two failure cases, obtained for 501 and 4,751 random outliers, in the ManhattanOlson dataset. The images show
the local minima maps in both situations together with the scaling values for the false positive constraints. The plots show that even if our method fails to
converge to the optimal solution, the number of false positives accepted by the system is small, evident by a small scaling factor. With 501 outliers only two
constraints have a scale value of more than 0.05 and with 4,751 outliers only four outliers have a scale value more than 0.05.

Fig. 9. Parking garage dataset with sparse connection. (Left) The original datasets with wrong loop closures connecting different decks in red. Note: the
z-axis is scaled up to clearly show the wrong edges. (Center) SC returns the wrong solution while DCS rejects the outliers(right). This figure shows DCS
being able to reject outliers even in the challenging case of datasets with minimal graph connectivity.
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