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Abstract This paper presents a novel approach to detect and track pedestrians and

cars based on the combined information retrieved from a camera and a laser range

scanner. Laser data points are classified using boosted Conditional Random Fields

(CRF), while the image based detector uses an extension of the Implicit Shape

Model (ISM), which learns a codebook of local descriptors from a set of hand-

labeled images and uses them to vote for centers of detected objects. Our extensions

to ISM include the learning of object sub-parts and template masks to obtain more

distinctive votes for the particular object classes. The detections from both sen-

sors are then fused and the objects are tracked using an Extended Kalman Filter

with multiple motion models. Experiments conducted in real-world urban scenarios

demonstrate the usefulness of our approach.

1 Introduction

One research area that has turned more and more into the focus of interest during

the last years is the development of driver assistant systems and (semi-)autonomous

cars. In particular, such systems are designed for operation in highly unstructured

and dynamic environments. Especially in city centers, where many different kinds

of transportation systems are encountered (walking, cycling, driving, etc.), the re-

quirements for an autonomous system are very high. One key prerequisite for such

systems is a reliable detection and distinction of dynamic objects, as well as an ac-

curate estimation of their motion direction and speed. In this paper, we address this

problem focusing on the detection and tracking of pedestrians and cars. Our system

is a robotic car equipped with cameras and a 2D laser range scanner. As we will

show, the use of different sensor modalities helps to improve the detection results.
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The system we present here employs a variety of different methods frommachine

learning and computer vision, which have been shown to provide good detection

rates. We extend these methods obtaining substantial improvements and combine

them into a complete system of detection, sensor fusion and object tracking. We use

supervised-learning techniques for both kinds of sensor modalities, which extract

relevant information from large hand-labeled training data sets. In particular, the

major contributions of this work are:

• Several extensions to the vision based object detector by Leibe et al. [13] using a

feature based voting scheme denoted as Implicit ShapeModels (ISM). Our major

improvements to ISM are the subdivision of objects into sub-parts to obtain a

more differentiated voting, the use of template masks to discard unlikely votes,

and the definition of superfeatures that exhibit a higher evidence of an object’s

occurrence and are more likely to be found.

• The application and combination of boosted Conditional Random Fields (CRF)

for classifying laser scans with the ISM based detector using vision. We use an

Extended Kalman Filter (EKF) with multiple motion models to fuse the sensor

information and to track the objects in the scene.

This paper is organized as follows. The next section describes work that is related

to ours. Sec. 3 gives a brief overview of our overall object detection and tracking

system. In Sec. 4, we introduce the implicit shape model (ISM) and present our

extensions. Sec. 5 describes our classification method of 2D laser range scans based

on boosted Conditional Random Fields. Then, in Sec. 6 we explain our EKF-based

object tracker. Finally, we present experiments in Sec. 7 and conclude the paper.

2 Related Work

Several approaches can be found in the literature to identify a person in 2D laser data

including analysis of local minima [19, 23], geometric rules [24], using maximum-

likelihood estimation to detect dynamic objects [10], using AdaBoost on a set

of geometrical features extracted from segments [1], or from Delaunay neighbor-

hoods [20]. Most similar to our work is that of Douillard et al. [5] who use Condi-

tional Random Fields to classify objects from a collection of laser scans. In the area

of vision-based people detection, there mainly exist two kinds of approaches (see

[9] for a survey). One uses the analysis of a detection window or templates [8, 4],

the other performs a parts-based detection [6, 11]. Leibe et al. [13] present a peo-

ple detector using Implicit Shape Models (ISM) with excellent detection results in

crowded scenes. In earlier works, we showed already extensions of this method with

a better feature selection and an improved nearest neighbor search [21, 22].

Existing people detection methods based on camera and laser data either use hard

constrained approaches or hand tuned thresholding. Zivkovic and Kröse [25] use a

learned leg detector and boosted Haar features from the camera images and employ

a parts-based method. However, both their approach to cluster the laser data using
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Canny edge detection and the use of Haar features to detect body parts is hardly

suited for outdoor scenarios due to the highly cluttered data and the larger variation

of illumination. Schulz [18] uses probabilistic exemplar models learned from train-

ing data of both sensors and applies a Rao-Blackwellized particle filter (RBPF) to

track a person’s appearance in the data. However, in outdoor scenarios illumination

changes often and occlusions are very likely, which is why contour matching is not

appropriate. Also, the RBPF is computationally demanding, especially in crowded

environments. Douillard et al. [5] also use image features to enhance the object de-

tection but they do not consider occlusions andmultiple image detection hypotheses.

3 Overview of Our Method

Our system consists of three main components: an appearance based detector that

uses the information from camera images, a 2D-laser based detector providing

structural information, and a tracking module that uses the combined information

from both sensor modalities and provides an estimate of the motion vector for each

tracked object. The laser based detection applies a Conditional Random Field (CRF)

on a boosted set of geometrical and statistical features of 2D scan points. The

image based detector extends the multiclass version of the Implicit Shape Model

(ISM)[13]. It only operates on a region of interest obtained from projecting the

laser detection into the image to constrain the position and scale of the detected

objects. Then, the tracking module applies an Extended Kalman Filter (EKF) with

two different motion models, fusing the information from camera and laser. In the

following, we describe the particular components in detail.

4 Appearance Based Detection

Our vision-based people detector is mostly inspired by the work of Leibe et al. [13]

on scale-invariant Implicit Shape Models (ISM). In summary, an ISM consists in

a set of local region descriptors, called the codebook, and a set of displacements

and scale factors, usually named votes, for each descriptor. The idea is that each

descriptor can be found at different positions inside an object and at different scales.

Thus, a vote points from the position of the descriptor to the center of the object

as it was found in the training data. To obtain an ISM from labeled training data,

all descriptors are clustered, usually using agglomerative clustering, and the votes

are computed by adding the scale and the displacement of the objects’ center to the

descriptors in the codebook. For the detection, new descriptors are computed on a

test image and matched against the descriptors in the codebook. The votes that are

cast by each matched descriptor are collected in a 3D voting space, and a maximum

density estimator is used to find the most likely position and scale of an object.
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In the past, we presented already several improvements of the standard ISM ap-

proach (see [21, 22]). Here, we show some more extensions of ISM to further im-

prove the classification results. These extensions concern both the learning and the

detection phase and are described in the following.

4.1 ISM Extensions in the Learning Phase

Sub-Parts: The aim of this procedure is to enrich the information from the voters

by distinguishing between different object subparts from which the vote was cast.

We achieve this by learning a circular histogram of interest points from the training

data set for each object class. The number of bins of this histogram is determined

automatically by using k-means clustering. The final number of clusters, here de-

noted as q, is obtained using the Bayesian Information Criterion (BIC). Note that

this subpart extraction does not guarantee a semantical subdivision of the object

(i.e.: legs, arms, etc. for pedestrians) but it is interesting to see that it nevertheless

resembles this automatically without manual interaction by the user (see Fig. 1, left

and center).

Template Masks: In the training data, labeled objects are represented using a binary

image named segmentation mask. This mask has the size of the object’s bounding

box and is 1 inside the shape of the object and 0 elsewhere. By overlaying all these

masks for a given object class so that their centers coincide and then averaging over

them, we obtain a template mask of each object class (see Fig. 1, left and center).

This method is more robust against noise than, e.g., Chamfer matching [3], and does

not depend on an accurate detection of the object contours. We use the template

mask later to discard outlier votes cast from unlikely areas.

Superfeatures: The original ISMmaintains all features from the training data in the

codebook as potential voters and does not distinguish between stronger and weaker

votes. This has the disadvantage that often too many votes are cast, even if an oc-

curance of the object is not likely given the training data, and leads to many false

positive detections. To overcome this, we propose to extract superfeatures from the

training data, i.e. descriptor vectors that cast a stronger vote than standard features.

We keep these superfeatures in a separate codebook to avoid clutter in the implemen-

tation. A superfeature is defined by a local density maximum in descriptor space,

where only feature vectors are considered that correspond to interest points from a

dense area in the image space (in x, y, and scale). This definition ensures that for

superfeatures a high evidence of the occurrence of the object is combined with a

high probability to encounter an interest point. We compute superfeatures by first

employing mean shift estimation on all interest points found in the training data set

for each class, and then clustering the feature vectors in descriptor space that cor-

respond to the interest points from the found areas of high density. This clustering

is done agglomeratively. In the end, we select the 50% of the cluster centers that

correspond to the biggest clusters. The right part of Fig. 1 shows an example. Note

that the superfeatures inherently reflect the skeleton of the object.
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Fig. 1 Left and Center: Sub-parts, depicted in colored slices, and template masks, in white. They

are computed from the training set. Note that even though the subparts are computed unsupervised,

they exhibit some semantic interpretation. Right: Superfeatures are stable features in image and

descriptor space. This figure shows Shape Context descriptors at Hessian interest points (in red)

for the class ’pedestrian’. The position of the superfeatures are depicted in green.

4.2 ISM Extensions in the Inference Phase

Sub-Parts and Template Masks: After collecting all the votes for a given set of ex-

tracted input features from a test image, we first discard the ones that are implausible

by placing the template mask at the potential object centers and removing the votes

that are cast from outside the mask. For the remaining ones we find the maximum

density pointm using mean shift and insert all votes form into a circular histogram

with q bins: one per sub-part of the object. We denote each such histogram as a

hypothesis h = (h1, . . . ,hq) of an object’s position. The strength σ of a hypothesis

is defined as the sum of all bins, i.e. the number of all voters for the object center.

To find the best hypothesis we define a partial order≺ based on a function ∆h:

hi ≺ h j ⇔ ∆h(hi,h j) < 0 where ∆h(hi,h j) :=
q

∑
k=1

sign(hik−h
j
k). (1)

Using this, we select the hypothesis with the highest order (in case of ambiguity

we use the one with the highest strength) for each class. Then, we find the best

hypothesis across all classes as described below, remove all its voters and recompute

the ordering. This is done until a minimum hypothesis strength σmin is reached.

Thus, the parameter σmin influences the number of false positive detections.

Superfeatures: Superfeatures and standard features vote for object centers in the

same voting space, but the votes from superfeatures are weighted higher (in our

case by a factor of 2). Thus, the score of a hypothesis is higher if the fraction of

superfeatures voting for it is higher. In some cases where an object’s shape visibility

is low only superfeatures might be used to obtain a very fast detection.

Best Inter-Class Hypothesis: As mentioned above, we need to rate the best object

hypotheses from all classes. To be independent on an over- or under-representation

of a class in the codebooks, we do this by comparing the relative areas covered

by the voters from all class hypotheses. More precisely, we define a square area γ
around each voter that depends on the relative scale of the descriptor, i.e. the ratio

of the test descriptor’s scale and that of the found descriptor in the codebook. The

fraction of the area covered by all voters of a hypothesis and the total area of the
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object (computed from the template mask) is then used to quantify the hypothesis.

Care has to be taken in the case of overlapping class hypotheses. Here, we compute

the set intersection of the interest points in the overlapping area and assign their

corresponding γ values alternately to one and the other hypothesis.

5 Structure Based Detection

For the detection of objects in 2D laser range scans, several approaches have been

presented in the past (see for example [1, 16]). Most of them have the disadvantage

that they disregard the conditional dependence between data points in a close neigh-

borhood. In particular, they can not model the fact that the label li of a given scan

point zi is more likely to be l j if we know that l j is the label of z j and z j and zi are

neighbors. One way to model this conditional independence is to use Conditional

Random Fields (CRFs) [12], as shown by Douillard et al. [5]. CRFs represent the

conditional probability p(y | z) using an undirected cyclic graph, in which each node
is associated with a hidden random variable li and an observation zi. In our case, the

li is a discrete label that ranges over 3 different classes (pedestrian, car and back-

ground) and the observations zi are 2D points in the laser scan. At this point we omit

the mathematical details about CRFs and refer to the literature (e.g. [5, 17]).We only

note that for training the CRF we use the L-BFGS gradient descent method [14] and

for the inference we use max-product loopy belief propagation.

We use a set of statistical and geometrical features fn for the nodes of the CRF,

e.g. height, width, circularity, standard deviation, kurtosis, etc. (for a full list see

[20]). We compute these features in a local neighborhood around each point, which

we determine by jump distance clustering. However, we don’t use this features di-

rectly in the CRF, because, as stated in [17] and also from our own observation,

the CRF is not able to handle non-linear relations between the observations and the

labels. Instead, we apply AdaBoost [7] to the node features and use the outcome as

features for the CRF. For our particular classification problem with multiple classes,

we train one binary AdaBoost classifier for each class against the others. As a re-

sult, we obtain for each class k a set of M weak classifiers ui (decision stumps) and

corresponding weight coefficients αi so that the sum

gk(z) :=
M

∑
i=1

αiui(f(z)) (2)

is positive for observations assigned with the class label k and negative otherwise.

We apply the inverse logit function a(x)= (1+e−x)−1 to gk to obtain a classification

likelihood. Thus, the node features for a scan point zi and a label li are computed as

fn(zi, li) = a(gli(zi)). For the edge features fe we compute two values, namely the

Euclidean distance d between the points zi and z j and a value gi j defined as

gi j(zi,z j) = sign(gi(zi)g j(z j))(|gi(zi)|+ |g j(z j)|). (3)
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This feature has a high value if both zi and z j are equally classified (its sign is

positive) and low otherwise. Its absolute value is the sum of distances from the

decision boundary of AdaBoost where g(z)= 0. Thus, we define the edge features as

fe(zi,z j, li, l j) =

{
(

a(d(zi,z j)) a(gi, j(zi,z j))
)T

if li = l j
(0 0)T otherwise.

(4)

The intuition behind Eq. (4) is that edges that connect points with equal labels have

a non-zero feature value and thus yield a higher potential.

6 Object Tracking and Sensor Fusion

To fuse the information from camera and laser and for object tracking we use an Ex-

tended Kalman Filter (EKF) as presented in [21]. In our implementation, we use two

different motion models – Brownian motion and linear velocity – in order to cope

with pedestrian and car movements. The data association is performed in the camera

frame: we project the detected objects from the laser scan into the camera image.

Assuming a fixed minimal object height, we obtain a rectangular search region, in

which we consider all hypotheses from the vision based detector for the particular

object class. Using a previously calibrated distance r0 of an object at scale 1.0 (us-

ing the normalized training height), we can estimate the distance rest of a detected

object in the camera image by multiplying r0 with the scale of the object. Then, rest
is compared to the measured distance rmeas from the laser and both detections are

assigned to each other if |rmeas− rest | is smaller than a threshold τd (in our case 2m).
We track cluster centers of gravity in the 2D laser frame using two system states:

xm1 = 〈(xcog,ycog),(vcogx ,vcogy ),(c1, . . . ,cn)〉 and xm2 = 〈(xcog,ycog),(c1, . . . ,cn)〉,

one for each motion model. Here, (vcogx ,v
cog
y ) is the velocity of the cluster centroid

(xcogx ,y
cog
y ) and c1, . . . ,cn are the probabilities of all n classes. We use a static state

model where the observation vector w consists of the position of the cluster and the

class probabilities for each sensor modality:

w = 〈x̂cog, ŷcog,(c1, . . . ,cn)
1
, . . . ,(c1, . . . ,cn)

s〉. (5)

Here, (x̂cog, ŷcog) is a new observation of a cluster center and s denotes the number of

sensors. The matrix H models the mapping from states to the predicted observation

and is defined as H = (PTST1 . . .STs )T , where P maps to pose observations and the

Si map to class probabilities per sensor. For example, for one laser, one camera and

constant velocity we have

P =
(

1 0 0 0 0 0
0 1 0 0 0 0

)

S1 = S2 =
(

0 0 0 0 1 0
0 0 0 0 0 1

)

. (6)



8 Luciano Spinello, Rudolph Triebel, and Roland Siegwart

Fig. 2 Left: For car classification, we use codebooks from 7 different views. For training, mirrored

images are included for each view to obtain a wider coverage. Center: For pedestrians we use 2

codebooks of side views with mirroring. Lateral views have sufficient information to generalize

frontal/back views. Right: Setup used for the city data set. Only a small overlap of the cameras’

field of view is used to cover a larger part of the laser scans. No stereo vision is used in this work.

7 Experimental Results

To acquire the data, we used a car equipped with two CCD cameras and a 2D laser

range finder mounted in front (see Fig. 2, right). The 3D transform between the laser

and the camera coordinate frame was calibrated beforehand. We acquired training

data sets for both sensor modalities. For the camera, we collected images of pedes-

trians and cars that we labeled by hand. The pedestrian data set consists of 400

images of persons with a height of 200 pixels in different poses and with different

clothing and accessories such as backpacks and hand bags in a typical urban en-

vironment. The class ’car’ was learned from 7 different viewpoints as in [13] (see

also Fig. 2, left). Each car data set consists of 100 pictures from urban scenes with

occlusions. Car codebooks are learned using Shape Context (SC) descriptors [2] at

Hessian-Laplace interest points [15]. The pedestrian codebook uses lateral views

and SC descriptors at Hessian-Laplace and Harris-Laplace interest points for more

robustness. Experience shows [13] that lateral views of pedestrians also generalize

well to front/back views. Our laser training data consists of 800 annotated scans

with pedestrians, cars and background. There is no distinction of car views in the

laser data as the variation in shape is low. The range data consists in 4 layers where

each has an angular resolution of 0.25◦ and a maximum range of 15m.

To quantify the performance of our detector we acquired two datasets containing

cars and pedestrians. The results of our detection algorithm are shown in Fig. 3.

Our vision based detecion named ISMe2.0 is compared to the standard ISM, our

previous extension ISMe1.0, and for the pedestrian class, with AdaBoost trained on

Haar features (ABH). For the class ’car’, we averaged the results over all different

views. We can see that our method yields the best results with an Equal Error Rate

(EER) of 72.3% for pedestrians and 74% for cars. The improvements are mainly

due to a decreased rate of false positive detections. The results of our laser based

detection are shown in the middle column of Fig. 3. We can see that our approach

using boosted CRFs performs better than standard AdaBoost. The right column of

Fig. 3 depicts the results for the combined detection using laser and vision. These

graphs clearly show that using both sensors the number of false positive detections

decreases and the hit rate increases. Some qualitative results are shown in Fig. 4

where a passing car and a crossing pedestrian are correctly detected and tracked.
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Fig. 3 Quantitative evaluation. Upper row: pedestrian detection, Lower row: car detection. From

left to right we show the results only using camera, only using laser, and both. As we can see, our

approach outperforms the other methods for both sensor modalities. The image based detection

is compared with standard ISM, our first extension of ISM (ISMe1.0) and AdaBoost with Haar

features. Our CRF-based laser detector is compared with AdaBoost. We can also see that the com-

bination of both sensors improves the detection result of both single sensors.

In addition, we evaluated our algorithm on a third, more challenging dataset ac-

quired in the city of Zurich. It consists of 4000 images and laser scans. The equal

error rates of this experiment resulted in 64.1% (laser-only), 64.1% (vision-only)

and 68% (combined) for pedestrians, and in (72.2%,73.5%,75.7%) for cars. As

a comparison, we evaluated the state-of-the-art pedestrian detector based on His-

togram of Oriented Gradients [4] and ABH obtained an EER of 36.4 and 8.9.

Fig. 4 Cars and pedestrian detected and tracked under occlusion, clutter and partial views. In the

camera images, upper row, blue boxes indicate car detections, orange boxes pedestrian detections.

The colored circle on the upper left corner of each box is the track identifier. Tracks are shown in

color in the second row and plotted with respect to the robot reference frame.
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8 Conclusions

We presented a method to reliably detect and track multiple object classes in outdoor

scenarios using vision and 2D laser range data. We showed that the overall perfor-

mance of the system is improved using a multiple-sensor system. We presented sev-

eral extensions to the ISM based image detection to cope with multiple classes. We

showed that laser detection based on CRFs performs better than a simpler AdaBoost

classifier and presented tracking results on combined data. Finally, we showed the

usefulness of our approach through experimental results on real-world data.
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