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Abstract

People tracking is a key technology for autonomous systems,
intelligent cars and social robots operating in populated envi-
ronments. What makes the task difficult is that the appearance
of humans in range data can change drastically as a function
of body pose, distance to the sensor, self-occlusion and oc-
clusion by other objects. In this paper we propose a novel ap-
proach to pedestrian detection in 3D range data based on su-
pervised learning techniques to create a bank of classifiers for
different height levels of the human body. In particular, our
approach applies AdaBoost to train a strong classifier from
geometrical and statistical features of groups of neighboring
points at the same height. In a second step, the AdaBoost
classifiers mutually enforce their evidence across different
heights by voting into a continuous space. Pedestrians are fi-
nally found efficiently by mean-shift search for local maxima
in the voting space. Experimental results carried out with 3D
laser range data illustrate the robustness and efficiency of our
approach even in cluttered urban environments. The learned
people detector reaches a classification rate up to 96% from a
single 3D scan.

1. Introduction
Robustly detecting pedestrians is a key problem for mobile
robots and intelligent cars. Laser range sensors are partic-
ularly interesting for this task as, in contrast to vision, they
are highly robust against illumination changes and typically
provide a larger field of view.

In this paper we address the problem of detecting pedes-
trians in 3D range data. The approach presented here uses
techniques from people detection in 2D range data for which
a large amount of related work exists (Kluge, Köhler, and
Prassler, 2001; Fod, Howard, and Mataríc, 2002; Schulz
et al., 2003; Cui et al., 2005; Arras, Martínez Mozos, and
Burgard, 2007). In early works, people are detected us-
ing ad-hoc classifiers, looking for moving local minima in
the scan. Learning has been applied for this task by Arras,
Martínez Mozos, and Burgard (2007) where a classifier for
2D point clouds has been learned by boosting a set of geo-
metrical features. As there is a natural performance limit for
people detection in asingle2D layer of range data, several
authors started looking into the use of multiple co-planar 2D
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Figure 1: 3D pedestrian detection. A person pushing a
buggy, a child and a walking pedestrian are correctly identi-
fied in the point cloud.

laser scanners Gidel et al. (2008); Carballo, Ohya, and Yuta
(2008). Close to our context is the work of Mozos, Ku-
razume, and Hasegawa (2010), in which the authors apply
boosting on each of three horizontal layers and use a prob-
abilistic rule set to combine the three classifiers assuminga
known ground plane.

There is little related work on pedestrian detection in 3D
data. Navarro-Serment, Mertz, and Hebert (2009) collapse
the 3D scan into a virtual 2D slice to find salient vertical
objects above ground. For these objects, they align a win-
dow to the principal data direction, compute a set of fea-
tures, and classify pedestrians using a set of SVMs. Ba-
jracharya et al. (2009) detect people in point clouds from
stereo vision by processing vertical objects and consider-
ing a set of geometrical and statistical features of the cloud
based on a fixed pedestrian model. From the comprehen-
sive body of literature on people detection in images, we
mention the most related ones, namely the HOG detector
by Dalal and Triggs (2005) and the ISM approach by Leibe,
Seemann, and Schiele (2005). People detection from multi-
modal data using laser and vision has been presented by
Spinello, Triebel, and Siegwart (2008).

To our knowledge, this work presents the first principled
learning approach to people detection in 3D range data. The
idea is to subdivide a pedestrian into parts defined by dif-
ferent height levels, and learn a highly specialized classifier
for each part. We exploit the fact that most of the com-
mercial 3D laser devices retrieve the environment as a set
of individualscan lineswhich are not necessarily co-planar.



The building blocks used for classification aresegments, i.e.
groups of consecutive points in each scan line, on which a
set of geometrical and statistical features are computed. We
do not define a 3D pedestrian shape model beforehand, but
instead learn it from labeled data by storing the displace-
ments between the segment centers and the person’s center.
This allows for a general and robust description for articu-
lated and complex 3D objects. Then, each segment is clas-
sified based on the likelihood of belonging to each part. We
relate the output of each classifier geometrically by employ-
ing a 3.5D voting approach where each segment votes for
the center of a person. Areas of high density in the contin-
uous voting space define hypotheses for the occurrence of a
person. This allows for robustness against occlusions as not
all parts are needed for a detection. Moreover, our approach
does not rely on any ground plane extraction heuristics and
does not require any motion cues. No tracking is done in
this work.

The paper is structured as follows: Sec. 2 explains the pre-
processing steps we apply to the 3D data. Sec. 3 describes
how we subdivide and learn a 3D person model from data.
In Sec. 4 the detection step is presented. Sec. 5 contains the
experimental results and Sec. 6 concludes the paper.

2. Preprocessing 3D Range Data
Different systems exist to acquire 3D range data from the
environment. Many of them rely on a scanning device that
sends out laser rays and measures the distance to the clos-
est object. To acquire a 3D scan, such devices are usually
rotated about one of the main axes of the sensor-based co-
ordinate frame. Examples include 2D range finders such as
the SICK LMS laser scanner, mounted on a turntable that
rotates about its vertical or horizontal axis (Lamon, Kolski,
and Siegwart, 2006). Other devices, such as the Velodyne
HDL-64E, also rotate about thez-axis sending out 64 inde-
pendent laser beams that are not coplanar. The Alasca XT
rangefinder uses a beam deflected by a rotating mirror and
4 receivers. Such sensors return point clouds that consist of
individualscan lines, i.e. sequences of points that have been
measured with the same beam. With some abstraction, we
can thus think of such a 3D point cloud as a collection of
2D laser points arranged inslicesor layers. This definition
holds also for a wide set of non-laser sensors: range cam-
era data (e.g. Swissranger) or point cloud data from stereo
cameras can also be transformed into sets of scan lines by
horizontally sampling image pixels.

Formally, we consider a point cloudX as consisting of
layersLi = {xi j }, wherexi j = (xi j ,yi j ,zi j ). In this paper, we
demonstrate that by treating a 3D scan as a collection of 2D
scans at different levels, known and proven techniques for
detecting people in 2D range data can be easily extended to
the 3D case, yielding a fast and robust people detector for
3D range data.

2.1 Point Cloud Segmentation per Layer
As a first step of our detection algorithm, we divide each
scan line intosegmentsusing Jump Distance Clustering
(JDC). JDC initializes a new segment each time the distance

Nr Feature Name Nr Feature Name

f1 Width f2 Number of points

f3 Circularity f4 Linearity

f5 Boundary length f6 Boundary regularity

f7 Mean angular difference f8 Mean curvature

f9 Quadratic spline fitting f10 Cubic spline fitting

f11 Standard dev. w.r.t. centroid f12 Mean avg. dev. from median

f13 Kurtosis w.r.t. centroid f14 Radius

f15 PCA ratio f16 Bounding box area

f17 Convex hull area

Table 1: Features used to describe the shape and statistical
properties of a segment.

between two consecutive points exceeds a thresholdθd. As
a result, the data is reduced to a smaller number of segments
with a higher amount of information than that of the raw data
points. We denote each segment as a setS j , j = 1, . . . ,Ni of
consecutive points whereNi is the number of segments in
scan linei. Our algorithm assumes that the 3D scanner ro-
tates about the verticalz-axis, which means that the points
in a segment are sorted by ascending azimuth angles. The
segments constitute the primal element to extract local in-
formation.

2.2 Segment shape characterization
In the next step, we compute severaldescriptorsfor each
extracted segment. A descriptor is defined as a function
fk: S j → � that takes theM points contained in a segment
S j = {(x1,y1,z1) . . . (xM ,yM ,zM)} as an input argument and
returns a real value. Most of the features we use (f1 . . . f8)
have been presented by Arras, Martínez Mozos, and Bur-
gard (2007) and Spinello, Triebel, and Siegwart (2008), the
following ones (f9 . . . f17) are added for this particular task:

• Quadratic spline fitting: this feature measures the resid-
ual sum of squares of a quadratic B-Spline regressions2
(a piecewise polynomial approximation introduced by De
Boor (1978)) of the points inS j : f9 =

∑

i (s2 (xi ,yi)−yi)2

• Cubic spline fitting: this feature measures the residual
sum of squares of a cubic B-Spline regressions3 of the
points inS j , i.e. f10=

∑

i (s3 (xi ,yi)−yi)2

• Kurtosis with respect to centroid: the kurtosis is defined
as the fourth standardized moment of the clusterS j , i.e.

f12 =

∑

i (xi−x̂ j )4

M· f 4
11

, where f11 represents the standard devia-

tion with respect to the centroid, andx̂i the center of grav-
ity of S j .

• PCA ratio: this feature is the ratio between the second
biggest eigenvalueλ2 and the biggest eigenvalueλ1 of the
scatter matrix associated withS j . It measures the aspect
ratio of the oriented bounding box, i.e.f13=

λ2
λ1+1

• Bounding box area: this feature represents the area of the
axis-aligned bounding box ofS j .

• Convex hull area: this feature represents the area com-
puted from the convex hull polygon extracted fromSi .



Figure 2: Learning a 3D person model. Objects are ver-
tically divided into K parts. For each part an independent
AdaBoost classifier is learned: all the segmented points con-
tained on each scan line are considered as positive samples
for theK AdaBoost classifiers.

Table 1 lists all 17 used features. The set of feature values
of each segmentSi then forms a vectorf i = ( f1, . . . , f17).

3. Learning a 3D Model of People

The appearance of people is highly variable. Humans have
different sizes and body shapes, wear clothes, carry bags,
backpacks, or umbrellas, pull suitcases, or push buggies.
This makes it hard to predefine models for their appearance
and motivates a learning approach based on a model that is
created from acquired data.

3.1 Definition of Parts

We tackle the problem of the shape complexity of humans by
a subdivision into different height layers orparts(see Fig. 2).
The subdivision is defined beforehand and does not follow
an anatomical semantics like legs, trunk, head. Results from
computer vision literature (Dalal and Triggs, 2005; Zhu et
al., 2006; Viola and Jones, 2002) and also our own experi-
ence show that descriptors computed in geometrically over-
lapping tessellations are powerful tools for learning an ob-
ject model. Therefore, for learning a 3D person model we
createK different and independent classifiers, each corre-
sponding to a height-divided part of a human.

For training, all the scan lines that fall within a part are
considered. The model is learned from subjects with similar
heights (within±15cmfrom the mean). As part classifier we
use AdaBoost (Freund and Schapire, 1997), a well known
machine learning algorithm, that has been proven successful
for people detection in 2D range data (Arras, Martínez Mo-
zos, and Burgard, 2007).

3.2 Learning the Part Detectors

AdaBoost is a general method for creating an accurate strong
classifier by combining a set of weighted weak classifiers,
in this case decision stumps. A decision stumpht defines a
single axis-parallel partition of the feature space. The final
strong classifierH(f ) computed for the feature vectorf is a

weighted sum of theT best weak classifiers:

H (f) = sign

















T
∑

t=1

αtht(f)

















, (1)

whereαt are the weights learned by AdaBoost.
As people are usually represented only by a few number

of data points in a 3D scan, there are many more background
segments than segments on people. This makes the training
set unbalanced. Now, instead of down-sampling the nega-
tive set, which could lead to an under-representation of the
feature distribution, we use an adaptive initial weight vector
w0 ∈ �

N whereN is the total number of training segments.
Usually w0 is set to a uniform distribution, i.e. 1/N · 1N,
where1N is the vector of dimensionN with all entries equal
to 1. Instead we use

wp :=
1

2Npos
1Npos, wn :=

1
2Nneg

1Nneg, w0 =
(

wp,wn) , (2)

whereNpos,Nneg are the numbers of positive and negative
training samples. Thus, the bigger training set – in our case
the negative set – obtains a smaller weight.

To avoid early hard decisions in the classification of seg-
ments, we apply a sigmoid to the classification result in
Eq. (1). This can be interpreted as a measure of likelihood
p(πk | f i) of a segmenti, represented by its feature vectorf i ,
of corresponding to a partπk of a pedestrian:

gk(f i) =

∑T
t=1α

k
t h

k
t (f i)

∑T
t=1α

k
t

, p(πk | f i) =
(

1+e2−13gk(f i )
)−1
, (3)

wheregk is the normalized sum of weak classification results
of the k-th classifier andπk is a binary label that is true if
segmenti corresponds to partk.

In our case we need to classify one part against all others
and the background. We therefore face a multi-class classi-
fication problem for which we follow aone-vs-allstrategy:
when training a part, all the features of the segments con-
tained in that part are considered positive samples, the fea-
tures of the background and of the other parts are tagged as
negative samples.

3.3 Learning Geometric Relations
So far we described a way to classify parts of a person, now
we combine the individual classifications into a full person
detector. In computer vision, this problem is addressed using
part constellations(Fergus, Perona, and Zisserman, 2003),
Conditional Random Fields (CRF) (Felzenszwalb and Hut-
tenlocher, 2005), or implicit shape models (ISM) (Leibe,
Seemann, and Schiele, 2005). Loosely inspired from the
latter, we propose the following voting model.

First, we use the 3D displacement information of seg-
ments to define the geometric relations that constitute a 3D
person model. Each part and each segment found in a part
are considered independently. For a segmentSi found in
partπk in the training set, we store the 3D displacement vec-
tor vk

i , also called ‘vote’, i.e. the difference between the cen-
ter of the person and the center ofSi . Then all votes for
partπk are collected in a setVk. This information implic-
itly resembles different body poses of humans. For instance,



Figure 3: Learning a 3D voting model for training the de-
tector. The displacement, or vote, between a segment and
the person center of gravity in 3D associated to each subpart
is stored asVk. Agglomerative clustering is carried out to
obtain a more compact representation ofVk.

if the training data is acquired during a walking sequence,
the segments contained in the lowest body part (associated
to feet/ankles) typically have a larger variation of displace-
ments with respect to the center of gravity, i.e. the votes
are spread out wider. After all person samples have been
processed, a large amount of votes for each part is stored.
The final step is then to compressVk for each part into a
new setV̂k. This is achieved using agglomerative cluster-
ing with average linkage and a distance thresholdθv (see
Figure 3). Then, a weight ˆwk

i = |V̂
k|−1 is assigned to each

clustered votêvk
i of V̂k, where|V̂k| denotes the number of

vote clusters for partπk. The intuition here is that parts with
a higher displacement variability imply a lower voting con-
fidence. Finally, to obtain a practical geometrical interpreta-
tion of people in 3D, we compute the average bounding box
from all person samples.

4. Detecting People in 3D
Our detection method processes a single point cloud as input
and retrieves as output a set of detected people. After aquir-
ing a new 3D scan, it is processed by the JDC segmentation
step for each scan layer. Then, the feature vectorf i is com-
puted for each segment found in each part. The likelihood
of a segment to belong to a part is obtained by classifying
the features with the corresponding AdaBoost model. Thus,
we obtain a vector

ci =
(

p(π1 | f i), . . . , p(πk | f i)
)

. (4)

This defines a multiple weighted part hypothesis, there-
fore we need to find a way of properly treating this informa-
tion. Here, we use the voting model learned in the training
phase (see Section 3) to generate hypotheses of person cen-
ters in 3D. It is important to note that no assumptions about
the position of the ground plane are done in this work.

We formulate a 3.5D continuous voting space proce-
dure in which each segmentSi casts a set of non-negative
weighed votesV1, . . . ,VK in 3D, whereK is the number of

pedestrian subparts. Each vote setVm is weighted by the
subpart classification likelihood of equation (4):

ρ(k) =
ci(k)

K
(5)

whereci(k) is the value of them-element of the vector (4)
andK the number of subparts.

All generated votes are collected in a continuous voting
spaceW. High density loci represent hypotheses of pedes-
trians centers in 3D. Therefore, we estimate the modes of
the voting space distribution. This is achieved using Mean
Shift estimation (Comaniciu and Meer, 2002) with a spheri-
cal uniform kernel. Mean shift locates stationary points ofa
density function given discrete data sampled from that func-
tion. As soon as a mode is found, its score is computed:

score(xk | W) =
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ζ(N(xk))
K

, (6)

wherexk is a converged mode andN(xk) contains all the
indices of the votes contributing to the basin of attraction
of xk, ǫ(v j) is a function that returns the part index of the
votev j , v̂ j the weight value of votev j . ζ(·) is a function that
returns the number of parts from which the votes are orig-
inated. Thus,ζ(·) is a modifier that favors people that are
explained by more parts than others and it is very useful to
decrease strong false positives that receive vote from clut-
ter at the same height. The higher the hypothesis score of
equation 6, the higher the likelihood of detecting people in
xk. It is important to notice that this approach implements
a form of simultaneous detection and segmentation: votes
contributing to a hypothesis identify segments that belong
to a person.

5. Experiments
We evaluate our algorithm on two outdoor data sets collected
with a Velodyne HDL 64E S2 laser scanner. The first data
set, namedPolyterrasse, has been collected in a large area in
the front of the ETH Zurich main building, accessible only
to people and bicycles. The second data set, namedTan-
nenstrasse, has been collected on a busy street crossing in
downtown Zurich with trams, cars, pedestrians, or bicycles.

We collected 900 full-view point clouds for the first set
and 500 for the second set. The sensor rotates with a fre-
quency of 5Hz at a maximum range limited to 20m. This
produces around 120,000 points per 3D scan. In each frame,
people are manually annotated by a bounding box if they
are represented by at least 200 points and exceed 1.20m in
height. A second type of annotations are made for people
represented by at least 100 points and 1m height.

5.1 Training
We train with 203 persons, standing still and walking. We
define a subdivision of 9 parts at different heights given in
Table 2. The vote clustering threshold is set toθv= 25cm, the
JDC threshold is set toθd = 40cm. Training has been done
on 2592 background segments and 7075 people segments
from thePolyterrassedata set.



Part number Part height # of votes # pos. training segments

1 [0m,0.2m] 7 500

2 [0.2m,0.4m] 9 814

3 [0.4m,0.6m] 4 751

4 [0.6m,0.8m] 3 811

5 [0.8m,1.0m] 6 866

6 [1.0m,1.2m] 3 881

7 [1.2m,1.4m] 3 903

8 [1.4m,1.6m] 3 917

9 [1.6m,2.5m] 2 632

Table 2: Person parts subdivision and vote set.
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Figure 4: Precision-recall curve of the individual part detec-
tors under the assumption of a known ground plane. Upper
body parts (nr. 6-8) show better performance partly due to
a better separation from the background, a higher point den-
sity, and a smoother shape.

The right-most column in Table 2 gives the resulting num-
ber of training samples for each part. The third column in
Table 2 contains the number of votes for each part after the
vote clustering step. Note that lower parts, related to legs,
return more votes due to the varying displacements of the
segments during walking. Only 20 decision stumps have
been learned to avoid overfitting.

5.2 Quantitative Performance Evaluation

We evaluated each part detector on 440 frames not in the
training set. To analyze the performance of the individual
classifiers, we assumed to know the ground plane and se-
lected the correct detector for each scan line. Figure 4 shows
the precision-recall curve for each part classifier. It is inter-
esting to see that the individual detection performances are
rather poor. The detectors show a high recall behavior, high
detection rates cause big quantities of false positives.

Figure 5 shows the overall precision-recall graph of the
proposed method applied to both data sets. Detections are
counted as true positives if the bounding box overlaps with
a manually labeled person by more than 60% to account
for metric inaccuracies in the annotation and the detec-
tion. Adopting the no-reward-no-penalization policy from
Enzweiler and Gavrila (2009), when a detection matches an
annotation of the second type, no true positives or no false
positives are counted.
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Figure 5: Evaluation for 3D people detection. Each figure
depicts precision-recall graphs at different ranges: from 0 to
10m, 15m, and 20m. Left : Detection performance for the
Polyterrassedata set, the Equal Error Rates (EER) are 96%,
71%, 65%. Right: Precision-recall graph for theTannen-
strassedata set, EER values are 95%, 76%, 63%.

The performance increase over the individual part detec-
tors is significant. The false positive rate is greatly decreased
while the true positive rate is increased. This means that the
part classifiers are diverse and complementary: if some parts
do not return positive classifications, others do. This prop-
erty is likely to explain the result shown in Fig. 1 where the
detector correctly finds the child although no child was in
the training set.

The figure also shows how the detection performance de-
creases with distance from the sensor. For thePolyterrasse
data set, the Equal Error Rate (EER) for ranges between 0
to 10m is 96%, to 15m it is 71% and to 20m it is 65%. For
theTannenstrassedata set, the respective numbers are 95%,
76%, and 63%. The decay is mainly caused by point sparsity
that leads to oversegmentation and less distinctive descrip-
tors. This loss of detail renders the distinction of people
from vertical structures of similar size such as traffic signs or
pillars more difficult. The overall performance is compara-
ble in both data sets although thePolyterrasseenvironment
is well structured while the crossing of theTannenstrasseis
a rather busy place with clutter and all kinds of dynamic ob-
jects. Note that the person model was learned only with data
from thePolyterrasseenvironment.

In our evaluation set, people are described by 1062 points
on average when they are in a range of 0 to 10m, by 557
points in a 15m range and by 290 points in a 20m range.
Therefore, a 73% decrease in the number of points, from
10m to 20mrange, causes only a 23% performance loss. Fig.
6 shows the detection results of two example frames.

A C++ implementation of the proposed method, not op-
timized for speed, obtains∼ 1Hz detection frequency in an
average 3D scan, limited to 10mmaximum range, of around
75,000 points.

6. Conclusions
In this paper we presented a principled learning approach to
people detection in 3D range data. Our approach subdivides
a person into parts at different height levels. For each part a
specialized AdaBoost classifier is created from a set of geo-
metrical and statistical features computed on segments. The



Figure 6: Two example frames showing detection results as red boxes.Left : A frame of thePolyterrassedata set. Closely walk-
ing people and a partly visible individual standing close tothe sensor are correctly found.Right: A frame of theTannenstrasse
data set showing a cluttered urban street crossing with people, pillars, street signs, and a tram just entering the scene. People
are correctly detected while crossing the street and walking at a large distance to the sensor. There are two false positives in the
lower left part of the picture caused by a glass window with vertical steel poles.

classifiers mutually enforce their evidence across different
heights by voting into a continuous space. This approach al-
lows for the detection of people from partial views and does
not require knowledge of the ground plane. In experiments
with two different data sets in cluttered urban environments,
a classification rate up to 96% has been achieved which is
a high value given that we detect people from a single 3D
scan. In future work, we plan to combine this method with
tracking to integrate detection results over time.
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