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Abstract— Human activity recognition is a key component
for socially enabled robots to effectively and naturally interact
with humans. In this paper we exploit the fact that many
human activities produce characteristic sounds from which a
robot can infer the corresponding actions. We propose a novel
recognition approach called Non-Markovian Ensemble Voting
(NEV) able to classify multiple human activities in an on-
line fashion without the need for silence detection or audio
stream segmentation. Moreover, the method can deal with
activities that are extended over undefined periods in time.
In a series of experiments in real reverberant environments,
we are able to robustly recognize 22 different sounds that
correspond to a number of human activities in a bathroom and
kitchen context. Our method outperforms several established
classification techniques.

I. INTRODUCTION

Social robots that share a space with people require the
capacity to detect and track humans and recognize their
activities. This knowledge is key for effectively integrating
robots into people’s workflows, as well as natural human-
robot interaction in a variety of scenarios (see Fig. 1).

Popular sensory modalities for this task are computer
vision and 3D range imaging. Image data provide rich scene
information and, by today, allow for accurate body pose
estimates even from a single view. Recently, 3D range or
RGB-D data have also become popular for human body
pose estimation. Body pose can then be used to recognize
a large class of human activities. However, these modalities
are limited to the field of view of the imaging sensor and
not robust over all ranges of environmental conditions. Fur-
thermore, posture information cannot always provide unique
evidence about the actions a human is engaged in as very
different activities can be carried out in similar body poses.
In contrast, the approach we take in this paper employs
auditory perception since many human activities produce
very characteristic sounds from which a robot can effectively
infer the corresponding human actions. Having said this, we
do not see audio as a replacement rather than a complement
to existing sensory modalities, to be fused for particularly
robust activity recognition over wide ranges of conditions.

To date, audio-based human activity recognition has been
addressed in the wearable computing community [4, 15],
for auditory surveillance systems [5, 9, 3] and multimedia
systems [24, 23]. The work of [5] evaluates an audio-based
‘context’ recognition system for recognizing different indoor
and outdoor environments. They evaluate several kinds of
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Fig. 1. The capacity to recognize human activities is fundamental to many
scenarios including companionship and assistive applications.

audio features used as input of a Hidden Markov Model
(HMM). [4] uses a sound recognition framework based on
HMMs to recognize context from environmental audio. They
make use of this technique to create a wearable platform
aware of its audio environment. [15] uses Linear Discrim-
inant Analysis and HMM to process data from body-worn
accelerometers and microphones to detect 21 wood workshop
activities. [9] addresses the task of acoustic surveillance of
events occurring in typical office environments. Several audio
features are evaluated and used to classify sound events.
[5] aims to recognize several kinds of indoor/outdoor en-
vironments from audio streams. They evaluate several audio
features and classifiers in 26 different scenes. [3] applies
audio recognition to the task of monitoring bathroom activi-
ties. They use HMM and Mel Frequency Cepstral Coefficient
(MFCC) features to detect bathroom-related sound activities.
The works of [24, 23] use audio to classify and segment
audio-visual streams in the context of audio visualization
and audio indexing.

A large body of work exists in the field of audio-based
feature extraction. Mel Frequency Cepstral Coefficients [10]
are one of the most robust features in this area. Even though
designed for the task of speech recognition they have been
used for describing a large number of different sound classes
[1, 3, 5] which is why we will also use them in this
work. Several authors have used various machine learning
techniques to classify sound categories such as AdaBoost
[8], Support Vector Machines [7] and Vector Quantization
classification [18]. Other works, e.g. [5], make use of HMMs
to consider sound categories as sequences of small sound
samples. Here, we propose random forests as classifier for
this task and present a systematic comparison with the above



mentioned three alternative approaches.
The field of robot audition is typically concerned with

problems at signal-level including sound source localization
[16], sound source separation [20], echo cancellation [19], or
ego-noise compensation [11]. These problems are relevant
to make audio a robust sensory cue over a wide range
of conditions. Unlike these works, we address a high-level
recognition problems using audio, a little explored area apart
from speech. We will neglect signal-level factors at this point
and focus on the introduction of the recognition method to
finally demonstrate that audio can be highly useful sensory
modality for human activity recognition.

To this end, we propose a novel audio-based recognition
technique, Non-Markovian Ensemble Voting (NEV), an on-
line classification approach able to predict events in the past
and future, filling gaps of missing information. Previous
works rely on audio stream segmentation to recognize human
activities [9, 24, 15, 1, 18, 23] usually achieved through
silence detection, detection of abrupt feature changes or
even manual annotation. Our method does not require any
segmentation and is able to compute an estimate in an on-
line fashion. Methods that do not rely on segmentation either
make use of batch processing [5, 25] assuming a minimum
time duration of activities, or classify only short-duration
audio features [8, 10] which is unlikely to be a robust
approach in the noisy conditions robots typically encounter.
Our approach integrates information over time to come up
with a prediction result and is able to refine its estimate
with more incoming information over time. Our approach
has been inspired by the work of [22], in fact, our technique
can be interpreted as a generalization of it. The approach
presented by [22] consists in a fast recognition technique
for a large database of songs, that makes use of a hash-
based voting approach. Our technique instead is able to
generalize several categories of sounds and manage multiple
classification errors in the voting phase.

Clearly, identical human activities can differ largely in
their durations. Approaches based on sequential models (e.g.
HMM [4, 3]) or based on short-duration audio features
[8, 10] cannot generalize well over such variable-length
activities. The reason is that Markovian methods such as
HMMs rely on a limited duration model that assumes expo-
nentially distributed duration probabilities of each state. Our
approach, in contrast, is able to estimate human activities
with different durations with great flexibility. No parameters
have to be changed or tuned.

Finally, we evaluate our method extensively by comparing
four different classifiers for MFCC features and two different
high-level classification methods using standard performance
indices.

II. AUDIO-BASED HUMAN ACTIVITY RECOGNITION

In this section we present Non-Markovian Ensemble Vot-
ing (NEV), an audio-based recognition algorithm able to
classify activities of different duration from a continuous
audio stream. The procedure consists in three separate steps

Fig. 2. Frame-by-frame recognition (FBF). MFCC feature descriptors are
computed in short-duration audio frames fi and then classified using a
learned Random Forest (RF) classifier. The output is a predicted activity
label a.

feature extraction, frame-by-frame recognition, and Non-
Markovian ensemble voting.

A. Feature extraction from raw audio data

The audio stream is subdivided into short-duration seg-
ments called frames. A frame fi collects 40ms of audio
data. Consecutive frames are designed to overlap by 87.5%
of their duration to ensure a high level of data correlation.
For each fi at time index tfi , an MFCC feature descriptor xi

is computed.

B. Frame-by-frame recognition (FBF)

Each MFCC feature descriptor xi ∈ RP is classified
using a learned Random Forest (RF) [2] classifier h(xi)
to estimate the activity label a. A Random Forest classifier
is a supervised ensemble classification method that makes
use of multiple randomized decision trees to subdivide the
feature space. In our case, the RF classifier is trained also
with a background class, that is a class that contains sounds
unrelated to human activities. It is worth to mention that all
sounds of a human activity not included in the training set are
classified as background sounds. The process of frame-by-
frame audio classification (FBF) runs in a continuous fashion
and computes an estimated human activity a for each frame
fi:

h(xi) = a for all a = {0, 1, ..., N} (1)

where N is the number of activities considered. At the per-
frame level, classification is still unreliable which is due to
both, the natural variability in human actions and signal-
level factors such as background- or ego-noise, low signal-
to-noise ratio, or reverberation effects. All factors are likely
to affect the audio content in a short-duration frame and
can cause misclassification. This motivates the third stage,
described hereafter. Frame-level classification is key property
for the on-line capability of the proposed approach because
it provides an instantly available recognition result with little
delay to the current time.

C. Non-Markovian ensemble voting recognition

Non-Markovian ensemble voting (NEV) is an on-line
method, robust to short-term noise that builds upon the
classification output of the previous stage to recognize
multiple activities of variable length that can occur in any
moment in time. The training procedure of NEV consists
in building a soundbook for each human activity. This



ID Activity # trn/tst Experimental conditions
1 No human activity 19029/17372 Background noise, various sounds
2 Opening a food bag 15771/15774 Opening/shaking three kind of bags
3 Mixing with a blender 11843/11837 One blender in a small kitchen
4 Pouring cornflakes into a bowl 7101/7057 Three different bowls
5 Eating cornflakes 8626/8210 Heavy crunching, close distance
6 Pouring water into a cup 4338/4525 Several cups
7 Using a dishwasher (humming) 17357/17568 Two different dishwashers
8 Shaving with electric razor 15911/16476 Three different electric razors
9 Sorting flatwares 7903/7916 Sorting flatware into two different boxes

10 Using a food processor 7123/6682 One food processor at different speeds
11 Using a hairdryer 13017/13026 Hairdryer at different speeds, five models
12 Cooking with a microwave 18192/18201 Three different microwave ovens
13 Switching off a microwave oven 2368/2333 End chime of three different ovens
14 Closing a microwave oven door 8411/8388 Pushing the lock/unlock button
15 Sorting dishes 19288/19425 Dishes of different size and shape
16 Stirring water in a cup 11860/11504 Several kinds of cups
17 Flushing a toilet 11808/12261 Four different toiled brands
18 Brushing teeth 6095/5608 Brushing, recorded at close distance
19 Using a vacuum cleaner 15356/1573 Three different models
20 Using a washing machine 13405/13014 Three different operating modes
21 Boiling water 12628-13033 Electrical boiler, three different models
22 Using the water tap 38120/22469 Water splashing from a faucet into a sink

TABLE I
LIST OF HUMAN ACTIVITIES. THE CENTRAL COLUMN GIVES THE NUMBER OF MFCC TRAINING (# TRN) AND TESTING (# TST) SAMPLES. THE

RIGHTMOST COLUMN DESCRIBES THE VARYING CONDITIONS DURING DATA COLLECTION OF THE ACTIVITIES.

Fig. 3. Non-Markovian ensemble voting recognition (NEV). The figure exemplifies the NEV pipeline for two audio frames at times tfi and tfm that
vote for the same activity class a. For clarity, this figure illustrates only the voting process, exemplifed with a single activity. The output of the per-frame
classification stage is a predicted activity label used to select the corresponding soundbooks that are then compared to the MFCC feature descriptor. The
votes associated with the matched entries accumulate in the 1D voting space and give the score distribution of activity a.

procedure is in spirit similar to the generation of a visual
bag-of-words dictionary [17].

NEV Soundbook generation

A training set for a human activity is composed by
M audio samples Ai, i = 1, ..,M of that activity. Audio
samples are audio files of short duration. The audio samples
have the same duration thus they are subdivided in the
same number of frames F . For each audio sample Ai,
we compute F MFCC feature descriptors to form a set of
vectors Xi =

{
x1
i ,x

2
i , ...,x

F
i

}
. Then, for each frame fj ,

a temporal displacement ∆t ji between the frame and the
center point in time of the audio sample is computed and
associated to xj

i . This displacement is called vote. In order
to group features and votes associated to similar sounds,
a clustering step is performed. The MFCC feature vectors
computed on all the audio samples X1, ...,XM are clustered

in K clusters by using k-means [12]. The cluster centroids
x̂1, ..., x̂K are called soundbook entries. Each entry x̂k

corresponding to the kth cluster is associated to a set of
votes V̂k. Together they make up the soundbook of a given
human activity a

Sa =
{

(x̂1, V̂1), (x̂2, V̂2), ..., (x̂K , V̂K)
}

(2)

Note that each soundbook entry is a generalization of all
sounds contained in the cluster. Another important aspect of
our approach is how the vote distribution of activity classes
is described. A vote set V̂k is a sample-based representation
not constrained by parametric or predefined distribution
models and is thus able to represent arbitrary distributions
with varying number of modes. Codebook approaches have
been proven to work well in other domains such as visual
object recognition [13, 17].

NEV Activity recognition



The working principle of NEV is that human activities are
recognized by the score maxima that occur when many
votes vote in a consistent manner. This becomes clear by
considering the test phase. The NEV recognition phase
consists in a per-frame voting process. As soon as a frame
is available from the audio stream, its MFCC feature vector
x is computed and the FBF recognition stage predicts its
class according to equation (1). The resulting label a is
used to select the human activity soundbook Sa from S.
Then, x is compared with all soundbook entries x̂1, ..., x̂K

using a L2 distance criterion: the L nearest neighbors that
are distant less than a fixed threshold ε are considered
valid matches. The set of votes V̂ associated to all matched
soundbook entries are used to cast votes forwards and
backwards in time. The number of votes is denoted as
V . The voting space is the time axis, discretized into a
high-resolution histogram for each activity class. Votes are
accumulated in the histogram bins using a weighting model
that accounts for the degree of ambiguity with which x was
matched. Votes receive a high weight if L is small and a
low weight otherwise. This is implemented by an inverse
weight function w = 1/L.

The score in each histogram bin at time index t, for a
considered activity a, is then computed as the accumulation
of all V cast and weighted votes from all L matched entries
from all audio frames indexed by i

σ(t) =
∑
i

Li∑
j=1

Vj∑
k=1

δi,k(t)wj (3)

with δi,k(t) is the Kronecker delta that is 1 if t = tfi + ∆tk
and 0 otherwise. ∆tk ∈ V̂ are the votes associated with
the matched soundbook entries for frame fi. Equation 3, if
normalized, can be interpreted as the likelihood of detecting
an activity of type a

σa(t) ∝ p(y = a|x). (4)

Large values of σa(t) for human activity a represent high
confidence that a is carried out. Activities that last for
extended periods of time lead to high value plateaus in the
voting space, whereas short activities such as door closing
produce isolated peaks.

In order to select the winning activity, we perform a non-
maxima suppression among all the 1D-voting spaces,

a(t) = arg max
a={0,1,...,N}

{σa(t) } (5)

By this process NEV smooths the noisy frame-by-frame
recognitions by collecting consensus from past and future
audio frames. NEV runs in a continuous fashion each time
a FBF result becomes available (on-line capability) and it
computes estimates that are refined over time. The method’s
name lends itself from the acausal evidence accumulation
from votes that are cast forward and backwards in time.

III. EXPERIMENTS

Audio data have been collected using a consumer-level
dynamic cardioid microphone with integrated wind and pop
noise filter. The microphone is mounted on a tripod and
pointed towards the source of sound or towards the center
of the room. The signal is preamplified by an analog audio
mixer and sampled at 44100Hz via a USB audio interface.
All experiments have been conducted using a single mi-
crophone in unmodified reverberant real-world environments
with several sources of stationary ambient noise (e.g. PC fans
whirring).

For computing a MFCC feature descriptor in an audio
frame, the signal is loudness-normalized and then used
for a Discrete Fourier Transform computation that discards
frequencies higher than 8 kHz . Then, a mel-scaled triangular
filter bank with 12 filter outputs is used to compute the
Inverse Discrete Fourier Transform of the logarithm value
of the power spectrum.

Table I lists the 22 human activities considered in this
paper. Note that a large number of MFCC training and testing
samples (denoted as #trn and #tst) have been used in the
experiments to obtain statistically meaningful results.

The first experiment consists in the comparison of different
frame-by-frame activity recognition approaches (FBF). We
compare the results of MFCC feature descriptor classification
using Random Forests (RF), linear Support Vector Machines
(SVM) [21], AdaBoost (AB) [6], and Vector Quantization
(VQ) [14]. The SVM classifier has been trained with the stiff-
ness parameter C = 430. The AdaBoost classifier has been
trained with 50 decision stumps. The Vector Quantization
method uses k = 70 cluster centers computed with k-means.
The Random Forest classifier is trained with 200 decision
trees and 50% of the training data (randomly sampled). All
parameters have been found through cross-validation.

Frame-by-frame recognition results are shown as the green
and red bars in figure 5. We make use of the f-score metric
to ease the ranking between different methods. F-score is a
standard classification performance index that considers both
precision and recall values. It is defined as 2 · precision·recall

precision+recall .
Overall, RF achieves higher f-score than all the other

methods in 95% of the human activity classes, followed by
SVM, VQ, and AB. SVM and VQ obtain similar results.
Random Forests and Vector Quantization are both native
multi-class classification approaches, they are known to be
robust to mislabeling and generalize well in sparse feature
spaces. SVM shows good classification capabilities in the
complex MFCC feature space thanks to the choice of a linear
kernel that avoids overfitting. Adaboost does not perform
well because it tends to concentrate many weak classifiers
in parts of the space that are difficult to model thereby
overfitting locally. In particular, based on the per-frame
information, Random Forests classify human activities with
a f-score up to 0.95. We have observed that the predominant
reason for misclassification is a low signal-to-noise ratio.

The second experiment addressed the third step in our
approach and compares the proposed Non-Markovian En-
semble Voting approach (NEV) with a bag-of-sounds (BOS)



approach. BOS is the audio-based counterpart of the bag-
of-words method, a widely used method in information
retrieval and visual object recognition [17]. Using BOS, a
human activity is represented as an unordered collection of
soundbook entries whose frequencies are collected in bins
of a histogram. The entries are also obtained as centroids
from a clustering method (here: k-means). Histograms of
different activity classes, represented as points in the space
of soundbook entries, are finally predicted following a one-
vs-all linear SVM strategy.

NEV and BOS have been trained with 50 entries in the
soundbook for each human activity. By analyzing the f-
scores, NEV is more accurate than BOS. The experiment
shows the contribution from the voting process that yields an
ordering of soundbook matches. BOS disregards the ordering
and might further suffer from the fact that a linear separation
of the class histograms is too approximative. Note also that
BOS has no on-line property. There is no way to extract the
start and end of an activity – an information that is readily
available as score changes in the NEV approach. Therefore,
BOS requires a segmentation of the audio stream to classify
the segments. This in turn renders the recognition of actions
shorter than a segment a very difficult task. Summarizing,
NEV classifies human activities with an average f-score of
0.92, average precision 94% and average recall 91%, see
Figure 4-top. NEV clearly outperforms all the other human
activity recognition methods presented in this paper.

A detailed comparison of techniques is shown in Figure
5, rightmost columns. The NEV approach is largely more
accurate than every frame-by-frame classification method
(RF,AB,SVM,VQ). NEV is also more accurate than BOS
in the classification of 77% of the human activities, and it is
very competitive in all the other cases, albeit not requiring
any audio stream segmentation.

In the third experiment, we evaluate the system’s ability
to recognize human activities in a continuous fashion. A
user is asked to perform unscripted kitchen-related activities
as it would happen in a human-robot interaction scenario.
The experiment includes both silence between activities and
activities carried on for undefined periods of time. No new
training is performed for this experiment. The ground truth
labels have been added manually, see Fig. 6, top. NEV
achieves a very high recognition rate of 85.8% correctly
predicted audio frames in the experiment (Fig. 6, bottom)
demonstrating the ability of NEV to perform well under
realistic conditions.

IV. CONCLUSIONS

This paper addresses the problem of audio-based human
activity recognition. We propose a novel segmentation-free
approach called Non-Markovian Ensemble Voting (NEV),
able to robustly classify human activities in an on-line and
any-time fashion. The method relies on learned soundbooks
of activity classes, recognized by score maxima that emerge
when votes from short-duration audio frames are cast in
a consistent way with respect to the learned model. NEV
does not rely on audio stream segmentation and can deal
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Fig. 4. Overall comparison of the classification methods for the 22 human
activity classes. Colored bins depict different recognition methods: per-
frame recognition methods (FBF) are shown in shades of red and green, BOS
in gray, and the proposed method NEV in blue. Top: Overall comparison of
average precision, recall and f-score. NEV clearly outperforms all the other
recognition methods. Bottom: Detailed analysis of the f-score for the 22
classes. NEV outperforms all the other methods or achieves very competitive
f-scores.

with variable-length activities. We performed three experi-
ments with a set of 22 human activities from a bathroom
and kitchen context. NEV outperforms several alternative
classification methods (Support Vector Machines, Vector
Quantization, AdaBoost, and Bag-of-words) and leads to
high recognition rates of more than 85% in a final experiment
on continuous activity recognition.

Future work will analyze how robot-typical signal-level
factors such as non-stationary ego-noise from a moving robot
impact these recognition rates.
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