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Abstract— In this paper, we consider the problem of exploring
an unknown environment with a team of robots. As in single-
robot exploration the goal is to minimize the overall exploration
time. The key problem to be solved in the context of multiple
robots is to choose appropriate target points for the individual
robots so that they simultaneously explore different regions of
the environment. We present an approach for the coordination
of multiple robots, which simultaneously takes into account the
cost of reaching a target point and its utility. Whenever a target
point is assigned to a specific robot, the utility of the unexplored
area visible from this target position is reduced. In this way,
different target locations are assigned to the individual robots.
We furthermore describe how our algorithm can be extended
to situations in which the communication range of the robots
is limited. Our technique has been implemented and tested
extensively in real-world experiments and simulation runs. The
results demonstrate that our technique effectively distributes
the robots over the environment and allows them to quickly
accomplish their mission.

Index Terms— multi-robot exploration, coordinated behavior,
limited communication, mobile robotics

I. INTRODUCTION

The problem of exploring an environment belongs to the
fundamental problems in mobile robotics. There are sev-
eral applications like planetary exploration [3], reconnais-
sance [26], rescue [46, 62], mowing [29], or cleaning [19,
30, 55] in which the complete coverage of a terrain belongs
to the integral parts of a robotic mission.

In this paper, we consider the problem of exploring un-
known environments with teams of mobile robots. The use of
multiple robots is often suggested to have several advantages
over single robot systems [9, 17]. First, cooperating robots
have the potential to accomplish a single task faster than a
single robot [25]. Furthermore, using several robots introduces
redundancy. Teams of robots therefore can be expected to be
more fault-tolerant than only one robot. Another advantage
of robot teams is due to merging of overlapping information,
which can help compensate for sensor uncertainty. For exam-
ple, multiple robots have been shown to localize themselves
more efficiently, especially when they have different sensor
capabilities [20]. However, when robots operate in teams there
is the risk of possible interferences between them [53, 22]. For
example, if the robots have the same type of active sensors
such as ultrasound sensors, the overall performance can be
reduced due to cross-talk between the sensors. Also, the more
robots are used the longer detours may be necessary in order
to avoid collisions with other members of the team.

In this paper, we present an algorithm for coordinating a
group of robots so as to efficiently explore their environment.
Our method, which has originally been presented in [44]

and has been integrated into two different systems [8, 54],
follows a decision-theoretic approach to explicitly coordinate
the robots. It does so by maximizing the overall utility and
by minimizing the potential for overlap in information gain
amongst the various robots. Our algorithm simultaneously
considers the utility of unexplored areas and the cost for
reaching these areas. By trading off the utilities and the cost
and by reducing the utilities according to the number of robots
that already are heading towards this area, coordination is
achieved in a very elegant way. In practice, one also has to
deal with a limited communication range that restricts the
communication abilities of the vehicles. Naturally, the task
of exploring a terrain with limited communication range is
harder than without this constraint. If the distance between
the robots becomes too large to be bridged by the wireless
network or if a temporal network error occurs, robots may
explore an area another robot has already explored before,
which can lead to a suboptimal behavior. In this paper, we
also describe an extension of our algorithm to robot teams
with a limited communication range.

Our technique has been implemented on teams of het-
erogeneous robots and has been proven effectively in real-
world scenarios. Additionally, we have carried out a variety
of simulation experiments to explore the properties of our
approach and to compare the coordination mechanism to other
approaches developed so far. As the experiments demon-
strate, our technique significantly reduces the time required
to completely cover an unknown environment with a team of
robots compared to an approach which lacks our centralized
coordination. Furthermore, we describe experiments in which
we analyze our algorithm in the context of teams of mobile
robots with a limited communication range.

This paper is organized as follows. In the next section
we present our decision-theoretic approach to coordinated
exploration with mobile robots. In Section III, we briefly
describe the technique used by our system to acquire and
communicate maps of the environment. Section IV presents
series of experiments carried out with real robot systems and
in simulation. Finally, we discuss related work in Section V.

II. COORDINATING A TEAM OF ROBOTS DURING
EXPLORATION

The goal of an exploration process is to cover the whole
environment in a minimum amount of time. Therefore, it is
essential that the robots keep track of which areas of the
environment have already been explored. Furthermore, the
robots have to construct a global map in order to plan their
paths and to coordinate their actions. Throughout this section
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we first assume that at every point in time both the map of
the area explored so far and the positions of the robots in this
map can be communicated between the robots. We will focus
on the question of how to coordinate the robots in order to
efficiently cover the environment. At the end of this section,
we will consider the situation in which the robots have a
limited communication range. The mapping system will briefly
be described in Section III.

Our system uses occupancy grid maps [45, 61] to represent
the environment. Each cell of such an occupancy grid map
contains a numerical value representing the posterior proba-
bility that the corresponding area in the environment is covered
by an obstacle. Since the sensors of real robots generally have
a limited range and since often parts of the environment are
occluded by objects, a map generally contains certain cells
whose value is “unknown” since they have never been updated
so far. Throughout this paper, we assume that “exploredness”
is a binary concept and we regard a cell as explored as soon
as it has been intercepted by a sensor beam. At this point,
we would like to mention that the approach presented here
is not restricted to occupancy maps. The only requirement is
that the underlying representation of the environment must
allow the distinction between known and unknown areas and
to compute travel costs for the individual robots. Therefore,
our algorithm can also be applied to alternative representations
like topological maps [11] or coverage maps [57].

When exploring an unknown environment we are especially
interested in “frontier cells” [63]. As a frontier cell we denote
each already explored cell that is an immediate neighbor of an
unknown, unexplored cell. If we direct a robot to such a cell,
we can expect that it gains information about the unexplored
area when it arrives at its target location. The fact that a map
generally contains several unexplored areas raises the problem
of how to assign exploration tasks represented by frontier cells
to the individual robots. If multiple robots are involved, we
want to avoid several of them moving to the same location. To
deal with these problems and to determine appropriate target
locations for the individual robots our system uses a decision-
theoretic approach. We simultaneously consider the cost of
reaching a frontier cell and the utility of that cell. For each
robot, the cost of a cell is proportional to the distance between
the robot and that cell. The utility of a frontier cell instead
depends on the number of robots that are moving to that cell
or to a place close to that cell.

In the following subsections, we will describe how we
compute the cost of reaching a frontier cell for the individual
robots, how we determine the utility of a frontier cell, and how
we choose appropriate assignments of frontier cells to robots.

A. Costs

To determine the cost of reaching the current frontier
cells, we compute the optimal path from the current position
of the robot to all frontier cells based on a deterministic
variant of the value iteration, a popular dynamic programming
algorithm [5, 28]. In the following, a tuple (x, y) corresponds
to the x-th cell in the direction of the x-axis and the y-th cell
in direction of the y-axis of the two-dimensional occupancy
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Fig. 1. Typical value functions obtained for two different robot positions. The
black rectangle indicates the target points in the unknown area with minimum
cost.

grid map. In our approach, the cost for traversing a grid cell
(x, y) is proportional to its occupancy value P (occxy). The
minimum-cost path is computed using the following two steps:

1) Initialization. The grid cell that contains the robot
location is initialized with 0, all others with ∞:

Vx,y ←−
{

0, if (x, y) is the robot position
∞, otherwise

2) Update loop. For all grid cells (x, y) do:

Vx,y ←− min
{
Vx+∆x,y+∆y +

√
∆x2 + ∆y2

·P (occx+∆x,y+∆y) | ∆x,∆y ∈ {−1, 0, 1}
∧P (occx+∆x,y+∆y) ∈ [0, occmax ]

}
,

where occmax is the maximum occupancy probability value
of a grid cell the robot is allowed to traverse. This technique
updates the value of all grid cells by the value of their best
neighbors, plus the cost of moving to this neighbor. Here, cost
is equivalent to the probability P (occx,y) that a grid cell (x, y)
is occupied times the distance to the cell. The update rule is
repeated until convergence. Then each value Vx,y corresponds
to the cumulative cost of moving from the current position
of the robot to (x, y). The convergence of the algorithm is
guaranteed as long as the cost for traversing a cell is not
negative and the environment is bounded. Both criteria are
fulfilled in our approach. The resulting value function V can
also be used to efficiently derive the minimum-cost path from
the current location of the robot to arbitrary goal positions
(x, y). This is done by steepest descent in V , starting at (x, y).

Figure 1 shows the resulting value functions for two dif-
ferent robot positions. The black rectangle indicates the target
point in the unknown area with minimum travel cost. Note that
the same target point is chosen in both situations. Accordingly,
if the robots are not coordinated during exploration, they
would move to the same position which obviously is not
optimal.

Our algorithm differs from standard value iteration in that
it regards all actions of the robots as deterministic, which
seriously speeds up the computation. To incorporate the un-
certainty of the robots’ motions into the process and to benefit
from the efficiency of the deterministic variant, we smooth the
input maps by a convolution with a Gaussian kernel. This has
a similar effect as generally observed when using the non-
deterministic approach: It introduces a penalty for traversing
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narrow passages or staying close to obstacles. Therefore, the
robots generally prefer target points in open spaces rather
than behind narrow doorways. Note that the maps depicted
in Figure 1 have not been smoothed to allow the reader to
distinguish between walls (dark grey) and the values of the
final value function (light grey).

B. Computing Utilities of Frontier Cells

Estimating the utility of frontier cells is more difficult. In
fact, the actual information that can be gathered by moving to a
particular location is impossible to predict, since it very much
depends on the structure of the corresponding area. However,
if there already is a robot that moves to a particular frontier
cell, the utility of that cell can be expected to be lower for
other robots. But not only the designated target location has a
reduced utility. Since the sensors of a robot typically cover a
certain region around a particular frontier cell as soon as the
robot arrives there, even the expected utility of frontier cells
in the vicinity of the robot’s target point is reduced.

In this section, we will present a technique that estimates
the expected utility of a frontier cell based on the distance and
visibility to cells that are assigned to other robots. Suppose in
the beginning each frontier cell t has the utility Ut which
is equal for all frontier cells if no additional information
about the usefulness of certain positions in the environment
is available. Whenever a target point t′ is selected for a robot,
we reduce the utility of the adjacent frontier cells in distance
d from t′ according to the probability P (d) that the robot’s
sensors will cover cells in distance d. One can estimate P (d)
by maintaining a posterior about the estimated distances to be
measured. While the robot moves through the environment,
this posterior is updated.

Thus, any cell t in distance d from the designated tar-
get location t′ will be covered with probability P (d) when
the robot reaches t′. Accordingly, we compute the utility
U(tn | t1, . . . , tn−1) of a frontier cell tn given that the
cells t1, . . . , tn−1 have already been assigned to the robots
1, . . . , n− 1 as

U(tn | t1, . . . , tn−1) = Utn −
n−1∑

i=1

P (||tn − ti||). (1)

According to Equation (1), the more robots move to a location
from where tn is likely to be visible, the lower is the utility
of tn. Note that we also take into account whether there is an
obstacle between two frontier cells t and t′. This is achieved by
a ray-casting operation on the grid map. If there is an obstacle
between two frontier cells t and t′, we set P (||t− t′||) to zero.

In extensive experiments, we could not find a significant
difference in the resulting exploration time depending on in
which environment the posterior P (d) has been learned. We
therefore use the following approximation:

P (d) =

{
1.0− d

max range , if d < max range

0, otherwise
, (2)

where max range is the maximum range reading provided by
the range sensor.

C. Target Point Selection

To compute appropriate target points for the individual
robots we need to consider for each robot the cost of moving
to a location and the utility of that location. In particular, for
each robot i we trade-off the cost V it to move to the location
t and the utility Ut of t.

Algorithm 1 Goal Assignment for Coordinated Multi-Robot
Exploration.

1: Determine the set of frontier cells.
2: Compute for each robot i the cost V i

t for reaching each
frontier cell t.

3: Set the utility Ut of all frontier cells to 1.
4: while there is one robot left without a target point do
5: Determine a robot i and a frontier cell t which satisfy:

(i, t) = argmax(i′,t′)

(
Ut′ − β · V i

′
t′

)
.

6: Reduce the utility of each target point t′ in the visibility
area according to Ut′ ← Ut′ − P (||t− t′||).

7: end while

To determine appropriate target points for all robots, we use
an iterative approach. In each round, we compute that tuple
(i, t) where i the number of a robot and t is a frontier cell,
which has the best overall evaluation Ut − β · V it . We then
recompute the utilities of all frontier cells given the new and
all previous assignments according to Equation (1). Finally,
we repeat this process for the remaining robots. This results
in Algorithm 1. The complexity of this algorithm is O(n2T )
where n is the number of robots and T is the number of
frontier cells.

The quantity β ≥ 0 determines the relative importance of
utility versus cost. Experiments showed that the exploration
time stays nearly constant if β ∈ [0.01, 50]. For bigger values
of β the exploration time increases because the impact of the
coordination is decreased. If β is close to 0 the robots ignore
the distance to be traveled which also leads to an increased
exploration time. Therfore, β generally is set to 1 in our current
implementation.

Figure 2 illustrates the effect of our coordination technique.
Whereas uncoordinated robots would choose the same target
position (see Figure 1), the coordinated robots select different
frontier cells as the next exploration targets. When coordinat-
ing a team of robots during exploration one question is when
to re-compute the target locations. In the case of unlimited
communication, we compute new assignments whenever one
robot has reached its designated target location or whenever
the distance traveled by the robots or the time elapsed after
computing the latest assignment exceeds a given threshold.

D. Coordination with Limited Communication Range

In practice, one cannot assume that the robots can exchange
information at any point in time. For example, the limited
range of nowadays wireless networks can prevent robots from
being able to communicate with other robots at a certain
point in time. If the distance between the robots becomes
too large so that not all robots can communicate with each
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Fig. 2. Target positions obtained using the coordination approach. In this
case, the target point for the second robot is to the left in the corridor.

other, a centralized approach as described above can no longer
be applied. However, our algorithm can easily be adapted to
cope with a limited communication range. In our system, we
apply our approach to each sub-team of robots which are
able to communicate with each other. Obviously, this can,
at least in the worst case, lead to a situation in which all
robots individually explore the whole environment. In practical
experiments, however, we found that this approach still results
in a quite efficient exploration process, since the robots can
quickly exchange necessary information and coordinate with
each other again as soon a connection between them has been
re-established.

In the case of limited communication, we apply a slightly
different strategy to determine when to compute new assign-
ments. In our experiments, we found that the risk of redundant
work is increased if the robots forget about the assignments
of other robots as soon as the communication breaks down.
Instead, if each robot stores the latest target locations assigned
to other robots the overall performance is increased especially
in situations in which the communication range has been
exceeded, since the robots avoid going to places already
explored by other robots. This approach turned out to be useful
especially in the context of small robot teams.

III. COLLABORATIVE MAPPING WITH TEAMS OF MOBILE
ROBOTS

To explore their environment and to coordinate their ac-
tions, the robots need a detailed map of the environment.
Furthermore, the robots must be able to build maps online,
while they are in motion. The online characteristic is especially
important in the context of the exploration task, since mapping
is constantly interleaved with decision making as to where
to move next. To map an environment, a robot has to cope
with two types of sensor noise: Noise in perception (e.g.,
range measurements), and noise in odometry (e.g., wheel
encoders). Because of the latter, the problem of mapping
creates an inherent localization problem, which is the problem
of determining the location of a robot relative to its own
map. The mobile robot mapping problem is therefore often
referred to as the concurrent mapping and localization problem
(CML) [40] or as the simultaneous localization and mapping
problem (SLAM) [10, 15].

Our system applies the statistical framework presented in
detail in [61] to compute consistent maps while the robots are
exploring the environment. Each robot starts with a blank grid

map. During exploration, each robot simultaneously performs
two tasks: It determines a maximum likelihood estimate for its
own position and a maximum likelihood estimate for the map
(location of surrounding objects). To recover from possible
localization errors, each robot maintains a posterior density
characterizing its “true” location (see [61]). The current ver-
sion of the system relies on the following two assumptions:

1) The robots must begin their operation in nearby loca-
tions, so that their range scans show substantial overlap.

2) The software must be told the approximate relative
initial pose of the robots. Thereby errors up to 50 cm
and 20 degrees in orientation are admissible.

To achieve the coordination, the team must be able to com-
municate the maps of the individual robots during exploration.
In our current system, we assume that the robots set up an
ad-hoc network which forms clusters. The messages sent by a
robot are forwarded to all team-mates within the corresponding
cluster. Whenever two clusters are merged, care has to be
taken to avoid that robots become overly confident in the state
of the environment. Suppose that each cluster maintains an
occupancy grid map built from all observations made by the
robots of that team. As an example, let us assume that two
robots that share a map m leave their communication range. As
long as they explore the environment individually they update
their maps and obtain two different maps m1 and m2. Now
suppose the robots can communicate again and exchange their
maps. If they use the recursive update rule for occupancy grids
to combine m1 and m2 the information originally contained
in m is integrated twice in the resulting map, which is not
admissible.

There are several ways to avoid the multiple use of sen-
sor information. One solution is to prevent the robots from
exchanging information more than once [21], which reduces
the benefit of a multi-robot system. An alternative solution is
that each robot maintains an individual map for each other
robot. These maps, which can be combined to a joint map,
can be updated separately. In our current system, we apply a
different approach that we found to be less memory intensive.
Furthermore, it reduces the communication overhead. In this
approach, each robot stores for each other robot a log of sensor
measurements perceived by this robot. A robot only transfers
those measurements that have not been transmitted to the
corresponding robot so far. Additionally, the robots maintain
a small data structure containing the time stamp of the latest
sensor measurement of a robot that was transmitted to all other
robots. This allows the robots to discard those measurements
which have been received by all other robots already.

IV. EXPERIMENTAL RESULTS

The approach described has been implemented and exten-
sively tested on real robots and in different environments.
Additionally, we performed a series of simulation experiments.

A. Exploration with a Team of Mobile Robots

The first experiment is designed to demonstrate the capabil-
ity of our approach to efficiently cover an unknown environ-
ment with a team of mobile robots. To evaluate our approach
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Fig. 3. Coordinated exploration by a team of three robots with unlimited
communication abilities in a real world experiment.

we installed three robots (two Pioneer I and one iRobot
B21) in an empty laboratory environment. Figure 3 shows
the map of this environment. The size of the environment is
18 m× 14 m. Also shown are the paths of the robots which
started in the upper left room. As can be seen from the figure,
the robots were effectively distributed over the environment.
This demonstrates that our approach can effectively guide a
team of mobile robots to collaboratively explore an unknown
environment.

B. Comparison between Uncoordinated and Coordinated Ex-
ploration

The goal of the second experiment described here is to
illustrate the advantage of our coordination technique over
an approach in which the robots share a map but in which
there is no arbitration about target locations so that each robot
approaches the closest frontier cell. For this experiment we
used two different robots: An iRobot B21 robot equipped with
two laser-range scanners covering a 360 degree field of view
(robot 1) and a Pioneer I robot equipped with a single laser
scanner covering a 180 degree field of view (robot 2). The
size of the environment to be explored in this experiment was
14 m× 8 m and the range of the laser sensors was limited to
5 m.

Figure 4 shows the typical behavior of the two robots when
they explore their environment without coordination, i.e., when
each robot moves to the closest unexplored location. The white
arrows indicate the positions and directions of the two robots.
Since the cost for moving through the narrow doorway in
the upper left room are higher than the cost for reaching a
target point in the corridor, both robots decide first to explore
the corridor. After reaching the end of the corridor robot 2
enters the upper right room. At that point, robot 1 assigns
the highest utility to the upper left room and therefore turns
back. Before robot 1 reaches the upper left room, robot 2 has
already entered it and has completed the exploration mission.
As a result, robot 2 explores the whole environment on its
own while robot 1 does not contribute anything. The overall
time needed to complete the exploration was 49 seconds in
this case.

(a) (b) (c)
Fig. 6. Simulated exploration with three robots.

However, if both robots are coordinated, they perform much
better (see Figure 5). As in the previous example, robot 2
moves to the end of the corridor. Since the utilities of the
frontier cells in the corridor are reduced, robot 1 directly enters
the upper left room. As soon as both robots have entered the
rooms, the exploration mission is completed. This run lasted
35 seconds.

C. Simulation Experiments

The previous experiments demonstrate that our approach
can effectively guide robots to collaboratively explore an
unknown environment. To get a more quantitative assessment
we performed a series of simulation experiments in different
environments.

To carry out these experiments, we developed a simulation
system, that allows us to consider the effects of various
parameters on the exploration performance. The simulator can
handle an arbitrary number of robots. It uses a discretized
representation of the state space into equally sized cells of
15 cm× 15 cm and 8 orientations. Additionally, it models
interferences between the robots. Whenever robots are close
to each other, the system performs the planned movement
with a probability of 0.7. Thus, robots that stay close to each
other move slower than robots that are isolated. This approach
is designed to model cross-talk between active sensors such
as ultrasound devices as well as time delays introduced by
necessary collision avoidance maneuvers.

Screen shots of this simulation system during a run in which
three robots explore the environment are shown in Figure 6.
The simulator also allows the specification of different prop-
erties of the robot systems and sensors. To carry out these
experiments, we used sensors with a 360 degree field of view
as is the case, for example, for robots equipped with two laser
range sensors or with a ring of ultrasound sensors. Note that
our approach does not require a 360 degree field of view. In
the past, we successfully applied our approach even to robots
with a limited field of view, equipped only with a single laser
scanner [8, 54].

Throughout these experiments, we compared three differ-
ent strategies. The first approach is the technique used by
Yamauchi et al. [63] as well as Singh and Fujimura [56],
in which each robot always approaches the closest unex-
plored area of a joint map. In the sequel, this approach
will be denoted as uncoordinated exploration since it lacks
a component that arbitrates between the robots whenever they
choose the same frontier cells. The second approach is our
coordination approach specified by Algorithm 1. Additionally,
we evaluated an alternative approach that seeks to optimize
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Fig. 4. Uncoordinated exploration with two robots. In the images (a) and (b) both robots drive along the corridor, but robot 1 is slower than robot 2. In
image (c) robot 1 reached the end of the corridor, but robot 2 already has explored the right room. Due to the convolution of the maps, the path from robot 1
to the left room through the corridor has lower cost (one doorway) compared to the path through the right room (two doorways). Therefore, robot 1 turns
around and follows the corridor. In image (d) robot 2 has entered the left room from the right hand side and explored it.
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Fig. 5. Coordinated exploration by two robots. In image (b) both robots focus on different frontiers due to the coordination strategy. Therefore, robot 1
explores the left room and robot 2 the right one. This leads to a better performance compared to the uncoordinated behavior.
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Fig. 7. Situation in which the assignments resulting from the algorithm given
in Algorithm 1 are sub-optimal (a). If robot 1 moves to point a and robot 2
moves to the location b as illustrated in figure (b), the time needed to finish
the exploration task is reduced, since the maximum time needed to reach the
rooms is lower.

the assignments computed in lines 4–7 of our algorithm. For
example, consider the situation depicted in Figure 7. Here two
robots are exploring a corridor with two rooms. The already
explored area is depicted in grey/yellow. Suppose both target
points a and b have the same utility. In the first round of
the iteration (see while loop in Algorithm 1), our algorithm
assigns robot 2 to a since this assignment has the least cost
of all other possible assignments. Accordingly, in the second
round, robot 1 is assigned to b. The resulting assignments are
depicted in image (a) of Figure 7. If we assume that both
robots require the same amount of time to explore a room,
this assignment is clearly sub-optimal. A better assignment is
shown in Figure 7 (b). By directing robot 1 to the left room
and robot 2 to the right room, the whole team can finish the
job earlier, because the time required to reach the rooms is
reduced.

One approach to overcome this problem is to consider all
possible combinations of target points and robots. Again, we
want to minimize the trade-off between the utility of frontier
cells and the distance to be traveled. However, just adding the
distances to be traveled by the two robots does not make a
difference in situations like that depicted in Figure 7. Since

the robots execute their actions in parallel the time to complete
the whole task depends on the longest trajectory. To minimize
the completion time (by choosing more balanced trajectories
for the individual robots), we therefore modify the evaluation
function so that it considers squared distances to choose target
locations t1, . . . , tn:

argmax
(t1,...,tn)

n∑

i=1

[
U(ti | t1, . . . , ti−1, ti+1, . . . , tn)− β · (V iti)2

]
.

Algorithm 2 Goal selection determining the best assignment
over all permutations.

1: Determine the set of frontier cells.
2: Compute for each robot i the cost V i

t for reaching each
frontier cell.

3: Determine target locations t1, . . . , tn for the robots i =
1, . . . , n that maximizes the following evaluation function:∑n

i=1 U(ti | t1, . . . , ti−1, ti+1, . . . , tn)− β · (V iti)2.

The resulting algorithm that determines in every round the
optimal assignment of robots to target locations according to
this evaluation function is given in Algorithm 2. Compared to
the selection scheme of our algorithm, the major problem of
this approach lies in the fact that one has to figure out T !

(T−n)!
possible assignments in the worst case where T is the number
of possible target locations, n is the number of robots, and
n ≤ T . Whereas this number can be handled for small teams
of robots, it becomes intractable for larger teams, because the
number of possible assignments grows exponentially in the
number of robots. In practice, one therefore needs appropriate
search techniques to find good assignments in a reasonable
amount of time. In the experiments described here, we applied



7

(a) (b) (c)
Fig. 8. Maps used for the simulation experiments: unstructured (a), office
(b), and corridor environment (c).
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Fig. 10. Time required on a Pentium-4, 2.8 GHz machine to compute the
assignment of target locations to robots for three different strategies.

a randomized search technique combined with hill-climbing to
search for optimal assignments of frontiers to robots.

To compare these three strategies, we chose a set of different
environments depicted in Figure 8. For each environment and
each number of robots we performed 45 different simulation
experiments for each strategy. In each comparison of the three
strategies, the robot team was started at the same randomly
chosen location. We then evaluated the average number of
time steps the system needed to complete the job. The resulting
plots are shown in Figure 9. The error bars indicate the 5%
confidence level. As can be seen from the figure, the team us-
ing our algorithm significantly outperforms the uncoordinated
system with respect to the exploration time. This is mainly due
to the fact that Algorithm 1 provides a better distribution of
the robots over the environment. We repeated the experiments
without modeling the interference between the robots. The
results of these experiments were quite similar and revealed
a similar relative improvement of our algorithm compared to
the uncoordinated approach.

It is worth noting that the randomized optimization strategy
usually yields slightly better results than our coordination
technique although the improvement is not significant. Thus,
the transition from our algorithm, which has complexity
O(n2T ), to a complex search that seeks to determine the
optimal assignment from all T !

(T−n)! permutations appears
to yield only slight improvements. Given the computational
overhead introduced by the randomized search in the space of
all permutations (see Figure 10), especially for large teams of
robots Algorithm 1 appears to be preferable over Algorithm 2.

D. Exploration under Limited Communication

The final experiments are designed to analyze the perfor-
mance of our coordination strategy if the robots only have
a limited communication range. As explained above, if the

communication range is limited the robots cannot globally
coordinate their actions anymore. As a result, different robots
may explore the same regions which reduces the overall
efficiency.

The first experiment described in this section was carried out
with three robots in our laboratory environment. Throughout
this experiment we limited the communication range to 5 m.
Figure 11 depicts the exploration process. Each row shows the
maps of the individual robots at different points in time. The
initial situation is depicted in the first row. The communication
ranges of the robots are highlighted by colored/grey disks
around each robot. As can be seen from the second row the
robots were quickly split up in this experiment and had to plan
their trajectories individually. In row three, the robots R1 and
R3 are able to communicate again and therefore can exchange
their maps and coordinate their behavior again. Robot R2,
however, still acts independently of the other two robots. In
row five, R1 and R3 again leave their communication range,
whereas R2 and R3 can merge their maps and approach the
last unexplored area in the top left corner. In the last row the
robots R2 and R3 complete the exploration task.

To analyze the influence of the communication range, we
performed a large series of simulation experiments. For differ-
ent numbers of robots (1-5) and seven different communication
ranges, we carried out 45 simulation runs. In each run, we
chose a random starting point for the robot team. We regard
the exploration task as completed as soon as the known
area in the map of one robot covers the whole environment.
The results are depicted in Figure 12. The x-axis shows the
communication range of the robots in relation to the maximum
distance in the map, whereas the y-axis depicts the average
exploration time. If the communication range is close to zero
the coordinated and uncoordinated strategies behave similar,
because all robots act independently most of the time. As the
communication range increases, the benefit of the coordinated
approach improves. An interesting result of this experiment
is that a communication range of 30% of the diameter of
the environment appears to be sufficient to yield the same
performance as with unlimited communication.

V. RELATED WORK

The various aspects of the problem of exploring unknown
environments with mobile robots have been studied intensively
in the past. Many approaches have been proposed for exploring
unknown environments with single robots [11, 16, 18, 23, 36,
43, 58, 60, 64, 65]. Most of these approaches guide the robot
to the closest unexplored area, just as our approach does when
applied to a single robot system. These techniques mainly
differ in the way the environment is represented. Popular
representations are topological [11, 36], metric [18], or grid-
based [64, 65]. Furthermore, there is a serious amount of
theoretical work providing a mathematical analysis of the
complexity of exploration strategies including comparisons
for single robots [1, 2, 13, 14, 34, 41, 48]. Additionally,
Lee and Recce [39] provide an experimental analysis of the
performance of different exploration strategies for one mobile
robot.
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Fig. 9. Performances of the different coordination strategies for the environments shown in Figure 8: unstructured environment (a), office environment (b),
and corridor environment (c).
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Fig. 12. Performances of the coordinated strategy with limited communication range for the different environments (unstructured (a), office (b), and corridor
environment (c)). The x-axis shows the communication range in relation to the size of the environment, the y-axis the average exploration time. As can be
seen, the results of these experiments look very similar in all tested environments.

Also the problem of exploring terrains with teams of mobile
robots has received considerable attention in the past. For
example, Rekleitis et al. [49, 50, 51] focus on the problem of
reducing the odometry error during exploration. They separate
the environment into stripes that are explored successively by
the robot team. Whenever one robot moves, the other robots
are kept stationary and observe the moving robot, a strategy
similar to the presented by Kurazume and Shigemi [38].
Whereas this approach can significantly reduce the odometry
error during the exploration process, it is not designed to
distribute the robots over the environment. Rather, the robots
are forced to stay close to each other in order to remain in
the visibility range. Thus, using these strategies for multi-
robot exploration one cannot expect that the exploration time
is significantly reduced.

Cohen [12] considers the problem of collaborative mapping
and navigation of teams of mobile robots. The team consists
of a navigator that has to reach an initially unknown target
location and a set of cartographers that randomly move
through the environment to find the target location. When a
robot discovers the goal point, the location is communicated
among the cartographers to the navigation robot which then
starts to move to that location. In extensive experiments,
the author analyzes the performance of this approach and
compares it to the optimal solution for different environments
and different sizes of robot teams.

Koenig et al. [33] analyze different terrain coverage meth-
ods for ants which are simple robots with limited sensing and

computational capabilities. They consider environments that
are discretized into equally spaced cells. Instead of storing
a map of the environment in their memory, the ants leave
markers in the cells they visit. The authors consider two
different strategies for updating the markers. The first strategy
is “Learning Real-Time A∗” (LRTA∗), which greedily and
independently guides the robots to the closest unexplored areas
and thus results in a similar behavior of the robots as in the
approach of Yamauchi et al. [63]. The second approach is
“Node Counting” in which the ants simply count the number of
times a cell has been visited. The authors show that Learning
Real-Time A∗ (LRTA∗) is guaranteed to be polynomial in the
number of cells, whereas “Node Counting” can be exponential.

Billard et al. [7] introduce a probabilistic model to simulate
a team of mobile robots that explores and maps locations
of objects in a circular environment. In several experiments,
they demonstrate the correspondence of their model with the
behavior of a team of real robots.

In [4], Balch and Arkin analyze the effects of different kinds
of communication on the performance of teams of mobile
robots that perform tasks like searching for objects or covering
a terrain. The “graze task” carried out by the team of robots
corresponds to an exploration behavior. One of the results is
that the communication of goal locations does not help if the
robots can detect the “graze swathes” of other robots.

The technique presented by Kurabayashi et al. [37] is an
off-line approach, which, given a map of the environment,
computes a cooperative terrain sweeping technique for a team
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Fig. 11. Coordinated exploration by a team of three robots with limited
communication abilities. Each column shows the evolution of the map of one
robot over time.

of mobile robots. In contrast to most other approaches, this
method is not designed to acquire a map. Rather the goal is
to minimize the time required to cover a known environment
which can lead to a more efficient behavior in the context of
cleaning or mowing tasks.

Yamauchi et al. [63] present a technique to learn maps with
a team of mobile robots. In this approach, the robots exchange
information about the map that is continuously updated when-
ever new sensor input arrives. They also use map-matching
techniques [64] to improve the consistency of the resulting

map. To acquire knowledge about the environment all robots
move to the closest frontier cell. The authors do not apply any
strategies to distribute the robots over the environment or to
avoid that two or more robots exploring the same areas.

One approach towards cooperation between robots has been
presented by Singh and Fujimura [56]. This approach espe-
cially addresses the problem of heterogeneous robot systems.
During exploration each robot identifies “tunnels” to the so
far unexplored area. If a robot is too big to pass through a
tunnel it informs other robots about this task. Whenever a
robot receives a message about a new task, it either accepts it
or delegates it to smaller robots. In the case of homogeneous
robots, the robots follow a strategy similar to the system of
Yamauchi et al. [63]. Recently Howard et al. [27] presented
an incremental deployment approach that is similar to the
technique described here. Whereas their approach explicitly
deals with obstructions, i.e., situations in which the path of
one robot is blocked by another, they do not consider the
problem of limited communication. Zlot and colleagues [66]
have recently proposed an architecture for mobile robot teams
in which the exploration is guided by a market economy. In
contrast to our algorithm, they consider sequences of potential
target locations for each robot and trade tasks using single-
item first-price sealed-bid auctions. In several experiments, we
figured out that the treatment of the assignment problem as
a multi-agent traveling sales-man problem yields advantages
if the number of robots is small compared to the number of
frontier cells. However, in the case of multiple robots this TSP-
approach can be disadvantageous. Whenever a robot discovers
a new frontier during exploration, this robot will often be
the best suited to go on it [66]. We found that this can lead
to an unbalanced assignment of tasks to robots so that the
overall exploration time is increased. Ko et al. [32] present a
variant of our approach that uses the Hungarian Method [35]
to compute the assignments of frontier cells to robots. Practical
experiments showed that the Hungarian Method yields a
similar performance as our coordination algorithm. Only in the
case of small robot teams our approach appeared to be slightly
superior since it provides a better distribution of the robots
over the environment. A further advantage of our algorithm
compared to the Hungarian Method lies in the fact that it can
be implemented very easily.

Furthermore, there are approaches which address the prob-
lem of coordinating two robots. The work presented by Bender
and Slonim [6] theoretically analyzes the complexity of explor-
ing strongly-connected directed graphs with two robots. Roy
and Dudek [52] focus on the problem of exploring unknown
environments with two robots and present an approach allow-
ing the robots with a limited communication range to schedule
rendezvous. The algorithms are analyzed analytically as well
as empirically using real robots.

Several researchers have focused on architectures for multi-
robot cooperation. For example, Grabowski et al. [24] consider
teams of miniature robots that overcome the limitations im-
posed by their small scale by exchanging mapping and sensor
information. In this architecture, a team leader integrates the
information gathered by the other robots. Furthermore, it
directs the other robots to move around obstacles or to direct
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them to unknown areas. Jung and Zelinsky [31] present a
distributed action selection scheme for behavior-based agents
which has successfully been applied to a cleaning task.
Stroupe et al. recently presented the MVERT-approach [59].
Their system uses a greedy approach that selects robot-target
pairs based on proximity. The goal of the action selection
is to maximize cooperative progress toward mission goals.
In contrast to our algorithm, the MVERT system does not
discount areas close to the selected goal locations. Matarić and
Sukhatme [42] consider different strategies for task allocation
in robot teams and analyze the performance of the team
in extensive experiments. Recently Parker [47] described a
project in which a large team of heterogeneous robots is used
to perform reconnaissance and surveillance task. This work
differs from our approach in that it investigates how to jointly
accomplish a task with heterogeneous robots that cannot solve
it individually.

VI. SUMMARY AND CONCLUSIONS

In this paper, we presented a technique for coordinating a
team of robots while they are exploring their environment.
The key idea of this technique is to simultaneously take into
account the cost of reaching a so far unexplored location and
its utility. Thereby, the utility of a target location depends
on the probability that this location is visible from target
locations assigned to other robots. Our algorithm always
assigns that target location to a robot which has the best trade-
off between utility and costs. We also presented an extension
of our technique to multi-robot systems that have a limited
communication range.

Our technique has been implemented and tested on real
robots and in extensive simulation runs. Experiments pre-
sented in this paper demonstrate that our algorithm is able
to effectively coordinate a team of robots during exploration.
They further reveal that our coordination technique signifi-
cantly reduces the exploration time compared to exploration
approaches that do not explicitly coordinate the robots. Further
experiments demonstrate that the performance of our technique
nicely scales with the range of the communication link.

Despite these encouraging results, there are several aspects
which could be improved. One interesting research direction
is to consider situations in which the robots do not know
their relative positions even if they can communicate with
each other. In this case, the exploration problem becomes even
harder since the robots now have to solve two problems. On
one hand they have to extend the map and on the other hand
they need to find out where they are relative to each other.
Additionally, we want to investigate scenarios in which the
robots may malfunction or break or in which the environment
changes over time.
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