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Summary. The problem of generating maps with mobile robots has received considerable
attention over the past years. Most of the techniques developed so far have been designed for
situations in which the environment is static during the mapping process. Dynamic objects,
however, can lead to serious errors in the resulting maps such as spurious objects or misalign-
ments due to localization errors. In this chapter, we consider the problem of creating maps with
mobile robots in dynamic environments. We present two approaches to deal with non-static
objects. The first approach interleaves mapping and localization with a probabilistic technique
to identify spurious measurements. Measurements corresponding to dynamic objects are then
filtered out during the registration process. Additionally, we present an approach that learns
typical configurations of dynamic areas in the environment of a mobile robot. Our approach
clusters local grid maps to identify the typical configurations. This knowledge is then used
to improve the localization capabilities of a mobile vehicle acting in dynamic environments.
In practical experiments carried out with a mobile robot in atypical office environment, we
demonstrate the advantages of our approaches.

1.1 Introduction

Learning maps with mobile robots is one of the fundamental problems in mobile
robotics. In the literature, the mobile robot mapping problem is often referred to
as thesimultaneous localization and mapping problem (SLAM)[10, 13, 16, 20, 21,
31, 33]. This is because mapping includes both, estimating the position of the robot
relative to the map and generating a map using the sensory input and the estimates
about the robot’s pose.

Whereas most of todays mapping systems are able to deal with noise in the odom-
etry and noise in the sensor data, they assume that the environment is static during
mapping. However, if a person walks through the sensor rangeof the robot during
mapping, the resulting map will contain evidence about an object at the correspond-
ing location. Moreover, if the robot scans the same area a second time and registers
the two scans, the resulting pose estimates will be less accurate if the person has
moved in between. Thus, dynamic objects can lead to spuriousobjects in the result-
ing maps and at the same time can make localization harder.
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Throughout this chapter, we consider the problem of learning grid maps with
mobile robots in dynamic environments. In principle, thereare different ways to
dealing with the dynamic aspects in an environment. The mostnaı̈ve way of dealing
with dynamic objects is to apply the standard map updating equations. Typical tech-
niques in this context are the occupancy grid algorithm [25]or the counting model
used throughout this chapter. Under both algorithms, areasassumed as occupied will
certainly be regarded as free after the robot has seen them unoccupied for a long
enough period of time (and vice versa). This is due to the factthat the map updating
operations are additive as can be seen, for example, from thelog-odds representation
of occupancy grid maps [25] or directly from the counting model. Accordingly, the
robot needs to see an area as free more often as it has seen it occupied to make it
belief that the corresponding area is free. An alternative way is to identify whether
or not a beam is reflected by a dynamic object. One popular way to achieve this is
to use features corresponding to dynamic objects and to track such objects while the
robot moves through its environment [17, 34]. Before the robot updates its map, it
can then simply filter all measurements that correspond to dynamic objects. Whereas
such approaches have been demonstrated to be quite robust, their disadvantage lies in
the fact that the features need to be known a priori. Throughout this chapter, we will
describe an alternative technique that applies the Expectation-Maximization (EM)
algorithm. In the expectation step, we compute a probabilistic estimate about which
measurements might correspond to static objects. In the maximization step, we use
these estimates to determine the position of the robot and the map. This process is
iterated until no further improvement can be achieved.

Whereas techniques for filtering dynamic aspects have been proven to be quite
robust, their major disadvantage lies in the fact that the resulting maps only contain
the static aspects of the environment. Throughout this chapter, we therefore will also
describe an approach to explicitely model certain dynamic aspects of environments,
namely the so-called low-dynamic or quasi-static states. Our approach is motivated
by the fact, that many dynamic objects appear only in a limited number of pos-
sible configurations. As an example, consider the doors in anoffice environment,
which are typically either open or closed. In such a situation, techniques to filter
out dynamic objects produce maps which do not contain a single door. This can be
problematic since in many corridor environments doors are important features for lo-
calization. The knowledge about the different possible configurations can explicitly
improve the localization capabilities of a mobile robot. Therefore, it is important to
integrate such information into the map of the environment.

The contribution of this chapter is novel approach to generating grid maps in
dynamic environments from range data. Our algorithm first estimates for each in-
dividual beam whether or not it has been reflected by a dynamicobject. It then
uses this information during the range registration process to estimate get better
pose estimates. It also learns the quasi-static states of areas by identifying sub-maps
which have typical configurations. This is achieved by clustering local grid maps.
We present experiments illustrating the accuracy of the resulting maps and also an
extended Monte-Carlo localization algorithm, which uses the clusters of the local
maps to more accurately localize the robot.
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1.2 EM-based Filtering of Beams Reflected by Dynamic Objects

As described above, one of the key problems in the context of mapping in dynamic
environments is to determine whether or not a measurement isreflected by a dynamic
object. Our approach to discover such measurements is strictly statistical. We use the
popular EM-algorithm to identify data items that cannot be explained by the rest of
the data set. The input to our routine is a sequence of data itemsz = {z1, . . . , zT}.
The output is a modelm obtained from these data items after incorporating the es-
timates about spurious measurements. In essence, our approach seeks to identify a
modelm that maximizes the likelihood of the data. Throughout this chapter, we as-
sume that each measurementzt consists of multiple datazt,1, . . . , zt,N as it is the
case, for example, for laser-range scans. Throughout this chapter, we assume that the
datazt,n are beams obtained with a laser-range scanner.

To accurately map a dynamic environment, we need to know which measure-
ments are caused by dynamic objects and therefore can safelybe ignored in the
alignment and map updating phase. To characterize spuriousmeasurements in the
data, we introduce additional variablesct,n that tell us for eacht and eachn whether
the data itemzt,n is caused by a static object or not. Each such variablect,n is a
binary variable that is either0 or 1. It is 1 if and only if thezt,n is caused by a static
object. The vector of all these variables will be denoted byc.

n,tzf(x,n,k)

robot/laser

0

beam endpoint

Fig. 1.1.Beam coveringzt,n cells of a map.

For the sake of simplicity, we give the derivation for beams that are parallel to the
x-axis of the map. In this case, the lengthzt,n directly corresponds to the number of
cells covered by this beam. We will later describe how to dealwith beams that are not
parallel to thex-axis. Letf be a function that returns for each positionxt of the robot,
each beam numbern, and eachk ≤ zt,n the indexf(xt, n, k) of k-th field covered by
that beam in the map (see Figure 1.1). To determine whether ornot a beam is reflected
by a dynamic object, we need to define the likelihood of a measurement given the
current mapm of the environment, the posex of the robot, and the information about
whetherzt,n is reflected by a maximum range reading. Typically, maximum-range
readings have to be treated differently, since those measurements generally are not



4 Wolfram Burgard Cyrill Stachniss Dirk Hähnel

reflected by any object. Throughout this chapter, we introduce indicator variables
ζt,n which are1 if and only if zt,n is a maximum range reading and0, otherwise.
The likelihood of a measurementzt,n given the value ofct,n and the mapm can thus
be computed as

p(zt,n | ct,n, xt, m) =

[

zt,n−1
∏

k=0

(1 − mf(xt,n,k)))

]ζt,n

·

[

[mf(xt,n,zt,n)]
ct,n · [1 − mf(xt,n,zt,n)]

(1−ct,n)

·

zt,n−1
∏

k=0

(1 − mf(xt,n,k))

](1−ζt,n)

(1.1)

The first term of this equation specifies the likelihood of thebeam given it is a max-
imum range scan. In such a situation, we compute the likelihood as the product of
the probabilities that the beam has covered the cells0 to zt,n−1. Please note that
the cell in which the beam ends does not provide any information since we do not
know, whether there is an object or not given the beam is a maximum range reading.
Thereby, the probability that a beam covers a cellk < zt,n is equal to1−mf(xt,n,k).
The second row of this equation specifies how to deal with the case that a cell that
reflects a non-maximum range beam. Ifzt,n is not reflected by a dynamic object,
i.e. ct,n = 1, then the likelihood equalsmf(xt,n,zt,n). If, in contrast,zt,n is reflected
by a dynamic object, the likelihood is1−mf(xt,n,zt,n). As well as for the maximum
range measurements, we have to consider in both cases that the beam has covered
zt,n − 1 cells before reaching cellf(xt, n, zt,n).

Based on the definition of the observation likelihood, we nowwill define the
likelihood p(z, c | x, m) of the data which we try to maximize in order to find the
most likely map of the environment.

p(z, c | x, m) =

T
∏

t=1

p(zt, ct | xt, m) (1.2)

=

T
∏

t=1

p(zt, | xt, m) · p(ct | xt, m) (1.3)

=

T
∏

t=1

p(zt, | xt, m) · p(ct) (1.4)

=
T
∏

t=1

N
∏

n=1

p(zt,n, | ct,n, xt, m) · p(ct) (1.5)

We obtain Equation (1.3) from Equation (1.2) by assuming that the zt andct are
independent givenxt andm. We furthermore considerct as independent from the
locationxt and the mapm, which leads to Equation (1.4). Finally, Equation (1.5) is
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derived from Equation (1.4) under the usual assumption, that the neighboring beams
of a single scan are independent given the map of the environment.

Maximizing p(z, c | x, m) is equivalent to maximizing the corresponding log
likelihood, which can be derived from Equation (1.5) and Equation (1.1) by straight-
forward mathematical transformations.

ln p(z, c | x, m)

= ln

T
∏

t=1

N
∏

n=1

p(zt,n, | ct,n, xt, m) · p(ct)

= N ·

T
∑

t=1

ln p(ct) +

T
∑

t=1

N
∑

n=1

ln p(zt,n, | ct,n, xt, m)

= N ·

T
∑

t=1

ln p(ct) +

T
∑

t=1

N
∑

n=1

[

(1 − ζt,n) ·
[

ct,n · lnmf(xt,n,zt,n)

+(1 − ct,n) · ln(1 − mf(xt,n,zt,n))
]

+

zt,n−1
∑

k=0

ln(1 − mf(xt,n,k))

]

(1.6)

Since the correspondence variablesc are not observable in the first place, a com-
mon approach is to integrate over them, that is, to optimize the expected log likeli-
hoodEc[ln p(c, z | x, m) | x, m, d] instead. Since the expectation is a linear operator,
we can move it inside the expression. By exploiting the fact that the expectation of
ct,n only depends on the corresponding measurementzt,n and the positionxt of the
robot at that time. we can derive the following equation:

Ec[ln p(z, c | x, m) | z, x, m] =

γ +

T
∑

t=1

N
∑

n=1

[

et,n · (1 − ζt,n) · lnmf(xt,n,zt,n)

+(1 − et,n) · (1 − ζt,n) · ln(1 − mf(xt,n,zt,n))

+

zt,n−1
∑

k=0

ln(1 − mf(x,n,k))

]

(1.7)

For the sake of brevity, we use the term

et,n = Ec[ct,n | zt,n, xt, m] (1.8)

in this equation. The term

γ = N ·
T
∑

t=1

Ec[ln p(ct) | z, x, m] (1.9)

is computed from the priorp(ct) of the measurements which is independent ofz, x,
andm. Accordingly,γ can be regarded as a constant.
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Unfortunately, optimizing Equation (1.7) is not an easy endeavor. A typical ap-
proach to maximize log likelihoods is the EM algorithm. In the particular problem
considered here, this amounts to generating a sequence of mapsm of increasing like-
lihood. In the E-Step, we compute the expectations about thehidden variablesc. In
the M-step, we then compute the most likely mapm using the expectations computed
in the E-Step. Both steps are described in detail in the remainder of this section.

In the E-step, we compute the expectationset,n = Ec[ct,n | zt,n, xt, m] for each
ct,n given the measurementzt,n, the locationxt of the robot and the current map
m. Exploiting the fact thatet,n equalsp(ct,n | zt,n, xt, m) and considering the two
cases thatzt,n is a maximum range reading or not, we obtain:

et,n =

{

p(ct,n) , if ζt,n = 1

p(ct,n)ǫt,n , otherwise

where

ǫt,n =
1

p(ct,n) + (1 − p(ct,n))( 1
mf(xt,n,zt,n)

− 1)
(1.10)

The first equation corresponds to the situation thatzt,n is a maximum range reading.
Then,et,n corresponds to the prior probabilityp(ct,n) that a measurement is reflected
by a static object. Thus, a maximum range reading does not provide any evidence
about whether or not the cell in the map in which the beam ends is covered by a
dynamic object.

In the M-Step, we want to determine the values form andx that maximize Equa-
tion (1.7) after computing the expectationset,n about the hidden variablesct,n in the
E-step. Unfortunately, maximizing this equation is also not trivial since it involves a
solution to a high-dimensional state estimation problem. To deal with the enormous
complexity of the problem, many researchers phrase it as an incremental maximum
likelihood process [33, 16]. The key idea of incremental approaches is to calculate the
desired sequence of poses and the corresponding maps by maximizing the marginal
likelihood of thet-th pose and map relative to the(t − 1)-th pose and map. In our
algorithm, we additionally consider the estimationset,n that measurementn at time
t is caused by a static object of the environment:

x̂t = argmax
xt

{

p(zt | ct, xt, m̂
[t−1]) · p(xt | ut−1, x̂t−1)

}

(1.11)

In this equation, the termp(zt | ct, xt, m̂
[t−1]) is the likelihood of the mea-

surementzt given the posêxt and the mapm̂[t−1] constructed so far. The term
p(xt | ut−1, x̂t−1) represents the probability that the robot is at locationxt given
the robot previously was at position̂xt−1 and has carried out (or measured) the mo-
tion ut−1. The registration procedure is then carried out using the same algorithm as
described in our previous work [17].

It remains to describe how the measurementzt is then used to generate a new
map m̂[t] given the resulting posêxt and the expectationset,n. Fortunately, once
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MappingScan Registration

M−Step: SLAM

Determine Dynamic Measurements
E−Step:

Fig. 1.2.Iteration of SLAM and dynamic beam estimation.

x1, . . . , xt, have been computed, we can derive a closed-form solution for m[t]. We
want to determine the value of each fieldj of the mapm[t] such that the overall
likelihood of m[t] is maximized. To achieve this, we sum over individual fieldsj ∈
[1, . . . , J ] of the map. Thereby, we use an indicator functionI(y) which is1, if y is
true and0, otherwise.

m̂[t] = argmax
m

(

J
∑

j=1

T
∑

t=1

N
∑

n=1

[

I(f(xt, n, zt,n) = j)

·(1 − ζt,n) · (et,n lnmj + (1 − et,n) ln(1 − mj))

+

zt,n−1
∑

k=0

I(f(xt, n, k) = j) · ln(1 − mj)

])

(1.12)

Now suppose, we define

Ĩ(x, n, k, j) := I(f(x, n, k) = j)

and

αj :=

T
∑

t=1

N
∑

n=1

Ĩ(xt, n, zt,n, j) · (1 − ζt,n) · et,n

βj :=

T
∑

t=1

N
∑

n=1

(

Ĩ(xt, n, zt,n, j) · (1 − ζt,n)

·(1 − et,n) +

zt,n−1
∑

k=0

I(f(xt, n, k) = j)

)

The quantityαj corresponds to the sum of the expectationset,n that beamn of scan
t is reflected by a static object of all beams that are not maximum-range beams and
that end in cellj. The termβj , on the other hand, is the sum of two terms. The first
term is the sum of the expectations1 − et,n that beamn of scant is reflected by
a dynamic object of all beams that are not maximum-range beams and that end in
cell j. The second value of the sum simply is the number of times a beam coversj
but does not end inj. Please note that this value is independent from whether or not
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the corresponding beam is reflected by a dynamic object or not. Please furthermore
note that in a static world withet,n = 1 for all t andn the termαt corresponds to
the number of times a beam that does not have the maximum length ends inj. In
contrast to that,βj is the number of times a beam covers a cell.

Using the definitions ofαj andβj , Equation (1.12) turns into

m[t] = argmax
m





J
∑

j=1

αj lnmj + βj ln(1 − mj)



 (1.13)

Since allmj are independent, we maximize the overall sum by maximizing each
mj . A necessary condition to ensure thatmj is a maximum is that the first derivative
equals zero:

∂m

∂mj

=
αj

mj

−
βj

1 − mj

= 0 (1.14)

By straightforward mathematical transformations we obtain

mj =
αj

αj + βj

. (1.15)

Note that given the sensor model specified in Equation (1.1),this closed-form solu-
tion for the most likely mapm for given positionsx and static environments corre-
sponds to the naı̈ve counting technique. In this approach, one determines the prob-
ability that a map cell reflects a beam by counting how often a beam has ended in
that cell and how often a beam has covered it without ending init. This differs from
the occupancy mapping approach in which one seeks to determine whether or not a
particular area in the environment is occupied or not. To understand the difference
between the two approaches, consider an object that reflectsa beam in70% of all
cases. Whereas the counting model yields a value of0.7 for this cell, the value of the
same cell will typically converge to1 in the context of occupancy grids.

The overall approach can be summarized as follows (see also Figure 1.2). We
start with an initial map̂m obtained by the incremental mapping approach. Thereby,
the expectationset,n are initialized with the prior probabilityp(ct,n) that a measure-
ment is caused by a static object. Given the resulting mapm̂ and the corresponding
positionsx̂, we compute new expectationset,n for each beam according to Equa-
tion (1.8). These expectations are then used to compute a newmap. The overall
process is iterated until no improvement of the overall likelihood (Equation (1.6))
can be achieved or a certain number of iterations has been exceeded.

At the end of this section, we would like to discuss how to dealwith beams that
are not parallel to thex-axis. In this case, we no longer can compute the likelihood
that a beam covers a cellj of m as(1−mj). Otherwise, transversal beams covering
more cells would accumulate a lower likelihood. The solution to this is to weigh the
beams according to the length by which they cover a cell. SupposeB is the set of
cells in m covered by a beam. Furthermore, supposelj is the length by which the
beam covers fieldj ∈ B. Then, the likelihood of covering all cells inB is computed
as
∏

j∈B (1 − mj)
lj .
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This concludes the description of our algorithm for filtering measurements re-
flected from dynamic objects. As we will see in the experiments, this approach dras-
tically improves the accuracy of the pose estimates and the quality of the resulting
map.

1.3 Learning Maps of Quasi-Static Environments

In certain situations, it can be advantageous to explicitely model dynamic aspects
rather than simply filtering them out. As a motivating example consider the individ-
ual local maps depicted in Figure 1.3. These maps correspondto typical configura-
tions of the same place and have been learned by a mobile robotoperating in an office
environment. They show a part of a corridor including two doors and their typical
states. The approach described in this section learns such local configurations and to
uses this information to improve the localization accuracyof a mobile robot.

Fig. 1.3.Possible states of a local area. The different configurations correspond to open and
closed doors.

The key idea of our approach is to use the information about changes in the
environment during data acquisition to estimate possible spatial configurations and
store them in the map model. To achieve this, we construct a sub-map for each area
in which dynamic aspects have been observed. We then learn clusters of sub-maps
that represent possible environmental states in the corresponding areas.

1.3.1 Map Segmentation

In general, the problem of learning maps in dynamic environments is a high-
dimensional state estimation problem. A naı̈ve approach could be to store an indi-
vidual map of the whole environment for each potential state. Obviously, using this
approach, one would have to store a number of maps that is exponential in the num-
ber of dynamic objects. In real world situations, the statesof the objects in one room
are typically independent of the states of the objects in another room. Therefore, it is
reasonable to marginalize the local configurations of the individual objects.

Our algorithm segments the environment into local areas, called sub-maps. In this
chapter, we use rectangular areas which inclose locally detected dynamic aspects to
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segment the environment into sub-maps. For each sub-map, the dynamic aspects are
then modeled independently.

Note that in general the size of these local maps can vary fromthe size of the
overall environment to the size of each grid cell. In the firstcase, we would have
to deal with the exponential complexity mentioned above. Inthe second case, one
heavily relies on the assumption that neighboring cells areindependent, which is not
justified in the context of dynamic objects. In our current system, we first identify
positions in which the robot perceives contradictory observations which are typically
caused by dynamic elements. Based on a region growing technique, areas which
inclose dynamic aspects are determined. By taking into account visibility constraints
between regions, they are merged until they do not exceed a maximum sub-map
size (currently set to20 m2). This limits the number of dynamic objects per local
map and in this way leads to a tractable complexity. An example for three sub-maps
constructed in such a way is depicted in Figure 1.11. Note that each sub-map has an
individual size and different sub-maps can (slightly) overlap.

1.3.2 Learning Environmental Configurations

To enable a robot to learn different states of the environment, we assume that the
robot observes the same areas at different points in time. Wecluster the local maps
built from the different observations in order to extract possible configurations of
the environment. To achieve this, we first segment the sensordata perceived by the
robot into observation sequences. Whenever the robot leaves a sub-map, the current
sequence ends and accordingly a new observation sequence starts as soon as the
robot enters a new sub-map. Additionally, we start a new sequence whenever the
robot moves through the same area for more than a certain amount of time (30 s).
This results in a setΦ of observation sequences for each sub-map

Φ = {φ1, . . . , φn}, (1.16)

where each

φi = zstart(i), . . . , zend(i). (1.17)

Herezt describes an observation obtained at timet. For each sequenceφi of obser-
vations, we build an individual grid map for the corresponding local area. Thereby,
we use the algorithm proposed in Section 1.2. Note that this approach eliminates
highly dynamic aspects such as people walking by. Quasi-static aspects like doors,
typically do not change their state frequently, so that the robot can observe them as
static for the short time window. The different states are usually observed when the
robot returns to a location at a later point in time.

Each grid computed for a local region is then transformed into a vector of proba-
bility values ranging from0 to 1 and one additional valueξ to represent an unknown
(unobserved) cell. All vectors which correspond to the samelocal area are clustered
using the fuzzy k-means algorithm [14]. During clustering,we treat unknown cells
in an slightly different way, since we do not want to get an extra cluster in case the
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sensor did not covered all parts of the local area. In our experiment, we obtained the
best behavior using the following distance function for twovectorsa andb during
clustering

d(a, b) =
∑

i







(ai − bi) ai 6= ξ ∧ bi 6= ξ
0 ai = ξ ∧ bi = ξ
ǫ otherwise,

(1.18)

whereǫ is a constant close to zero.
When comparing two values representing unknown cells, one in general should

use the average distance computed over all known cells to estimate this quantity. In
our experiments, we experienced that this leads to additional clusters in case a big
part of a sub-map contains unknown cells even if the known areas of the maps were
nearly identical. Therefore, we use the distance function given in Equation (1.18)
which sets this distance value to zero.

Unfortunately, the number of different environmental states is not known in ad-
vance. Therefore, we iterate over the number of clusters andcompute in each step a
model using the fuzzy k-means algorithm. In each iteration,we create a new clus-
ter initialized using the input vector which has the lowest likelihood under the cur-
rent model. We evaluate each modelθ using the Bayesian Information Criterion
(BIC) [30]:

BIC = log P (d | θ) −
|θ|

2
log n (1.19)

The BIC is a popular approach to score a model during clustering. It trades off the
number|θ| of clusters in the modelθ multiplied by the logarithm of the number of
input vectorsn and the quality of the model with respect to the given datad. The
model with the highest BIC is chosen as the set of possible configurations, in the
following also called patches, for that sub-map. This process is repeated for all sub-
maps.

Note that our approach is an extension of the classical occupancy grid map [25]
or counting model, in which the environment is not supposed to be static anymore.
In situations without moving objects, the overall map reduces to a standard grid map.

The complexity of our mapping approach depends linearly on the numberT
of observations multiplied by the numbers of sub-maps. Furthermore, the region
growing applied to build up local maps introduces in the worst case a complexity
of p2 log p, wherep is the number of grid cells considered as dynamic. This leads
to an overall complexity ofO(T · s + p2 log p). Using a standard PC, our current
implementation requires around10% of the time needed to record the log file.

1.4 Monte-Carlo Localization Using Patch-Maps

It remains to describe how our patch-map representation canbe used to estimate the
pose of a mobile robot moving through its environment. Throughout this chapter, we
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apply an extension of Monte-Carlo localization (MCL), which has originally been
developed for mobile robot localization in static environment [12]. MCL uses a set
of weighted particles to represent possible poses of the robot. Typically, the state
vector consists of the robot’s position as well as its orientation. The sensor readings
are used to compute the weight of each particle by estimatingthe likelihood of the
observation given the pose of the particle and the map.

Besides the pose of the robot, we want to estimate the configuration of the envi-
ronment in our approach. Since we do not use a static map like in standard MCL, we
need to estimate the mapm[t] as well as the posext of the robot at timet

p(xt, m
[t] | z1:t, u0:t−1) =

η · p(zt | xt, m
[t], z1:t−1, u0:t−1) · p(xt, m

[t] | z1:t−1, u0:t−1). (1.20)

Hereη is a normalization constant andut−1 refers to the motion command which
guides the robot fromxt−1 to xt. The main difference to approaches on simultane-
ous localization and mapping (SLAM) is that we do not reason about all possible
map configurations like SLAM approaches do. Our patch-map restricts the possible
states according to the clustering of patches and thereforeonly a small number of
configurations are possible.

Under the Markov assumption, the second line of Equation (1.20) can be trans-
formed to

p(xt, m
[t] | z1:t−1, u0:t−1)

=

∫

xt−1

∫

m[t−1]

p(xt, m
[t] | xt−1, m

[t−1], z1:t−1, ut−1)

·p(xt−1, m
[t−1] | z1:t−1, u0:t−2) dxt−1 dm[t−1] (1.21)

=

∫

xt−1

∫

m[t−1]

p(xt | xt−1, m
[t−1], z1:t−1, ut−1)

·p(m[t] | xt, xt−1, m
[t−1], z1:t−1, ut−1)

·p(xt−1, m
[t−1] | z1:t−1, u0:t−2) dxt−1 dm[t−1] (1.22)

=

∫

xt−1

∫

m[t−1]

p(xt | xt−1, ut−1)p(m[t] | xt, m
[t−1])

·p(xt−1, m
[t−1] | z1:t−1, u0:t−2) dxt−1 dm[t−1]. (1.23)

Equation (1.23) is obtained from Equation (1.22) by assuming thatm[t] is indepen-
dent fromxt−1, z1:t−1, ut−1 given we knowxt andm[t−1] as well as assuming that
xt is independent fromm[t−1], z1:t−1 given we knowxt−1 andut−1. Combining
Equation (1.20) and Equation (1.23) leads to

p(xt, m
[t] | z1:t, u0:t−1)

= η · p(zt | xt, m
[t], z1:t−1, u0:t−1)

∫

xt−1

∫

m[t−1]

p(xt | xt−1, ut−1)p(m[t] | xt, m
[t−1])

·p(xt−1, m
[t−1] | z1:t−1, u0:t−2) dxt−1 dm[t−1]. (1.24)
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Equation (1.24) describes how to extend the standard MCL approach so that it
can deal with different environmental configurations. Besides the motion model
p(xt | xt−1, ut−1) of the robot, we need to specify a map transition modelp(m[t] |
xt, m

[t−1]), which describes the change in the environment over time.
In our current implementation, we do not reason about the state of the whole

map, since each sub-map would introduce a new dimension in the state vector of
each particle, which leads to a state estimation problem, that is exponential in the
number of local sub-maps. Furthermore, the observations obtained with a mobile
robot provide information only about the local environmentof the robot. Therefore,
we only estimate the state of the current patch the robot is in, which leads to one
additional dimension in the state vector of the particles compared to standard MCL.

In principle, the map transition modelp(m[t] | xt, m
[t−1]) can be learned while

the robot moves through the environment. In our current system, we use a fixed
density for all patches. We assume, that with probabilityα the current state of the
environment does not change between timet−1 andt. Accordingly, the state changes
to another configuration with probability1−α. Whenever a particle stays in the same
sub-map betweent−1 andt, we draw a new local map configuration for that sample
with probability 1 − α. If a particle moves to a new sub-map, we draw the new
map state from a uniform distribution over the possible patches in that sub-map. To
improve the map transition model during localization, one in principle can update
the values forα for each patch according to the observations of the robot. However,
adapting these densities can also be problematic in case of adiverged filter or a multi-
modal distribution about the pose of the robot. Therefore, we currently do not adapt
the values ofα while the robot acts in the environment.

Note that our representation bears resemblance with approaches using Rao-
Blackwellized particle filters to solve the simultaneous localization and mapping
problem [26, 23], as it separates the estimate about the poseof the robot from the
estimate about the map. It computes the localization of the vehicle and uses this
knowledge to identify the current state of the (local) map. The difference is that we
aim to estimate the current state of the sub-map based on the possible configurations
represented in our enhanced environmental model.

1.5 Experiments

The approaches described above has been implemented and tested on different
robotic platforms, in different environments, and with 2d and 3d data acquired with
SICK laser range finders. In all experiments, we figured out, that our approach can
robustly filter out high-dynamic aspects. We present results demonstrating that the
obtained maps contain fewer registration errors and less spurious objects. Additional
experiments indicate that our approach can reliably model the quasi-static aspects of
environments.
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Fig. 1.4. Maps of Wean Hall at Carnegie Mellon University obtained without (top image)
and with filtering measurements corrupted by dynamic objects (bottom image). The beams
identified as reflected by dynamic objects are indicated by white dots.
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1.5.1 Filtering Dynamic aspects

In the first set of experiments, we illustrate that our filtering algorithm can be used
to reliably eliminate spurious measurements from range scans and at the same time
reduces the registration errors.

Filtering People

The first experiments were carried out using a Pioneer I robotin Wean Hall of
Carnegie Mellon University. There were several people walking through the envi-
ronment while the robot was mapping it. The top image of Figure 1.4 shows the map
obtained by a standard scan-matching procedure. As can be seen from the figure,
the map contains many spurious objects and a huge number of registration errors.
The most likely map resulting from the application of our approach is shown in the
bottom image of Figure 1.4. The beams labeled as dynamic are drawn white in this
figure. This demonstrates that our approach can reliably identify dynamic aspects
and is able to learn maps that include the static aspects only.

Fig. 1.5.Map obtained in a populated corridor of the Wean Hall at Carnegie Mellon University
using the raw input data.

Fig. 1.6.Map generated by our algorithm.

Improved Registration Accuracy by Filtering Dynamic Objects

Besides the fact that the resulting maps contain less spurious objects, our approach
also increases the localization accuracy. If dynamic objects are not handled appro-
priately during localization, matching errors become morelikely. Figure 1.5 shows
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Fig. 1.7.Evolution of the map during EM. The images corresponds to iteration 1, 2, and 6.
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Fig. 1.8.Typical evolution of the log likelihood (Equation (1.6)) during the individual itera-
tions of EM.

a typical map we obtained when mapping a densely populated environment. In this
case, we mapped a part of the Wean Hall Corridor at Carnegie Mellon University
during peak office hours when many persons were around. Some of them were try-
ing to block the robot, so that the robot had to make detours around them. Therefore,
the robot traveled74 m with an average speed of0.15 m/s (0.35 m/s maximum).
Despite the fact, that the huge amount of spurious objects make the map virtually
useless for navigation tasks, the map also shows serious errors in the alignment.
Some of the errors are indicated by arrows in the corresponding figure.

Figure 1.6 shows the map generated by our algorithm. As the figure illustrates,
the spurious measurements (indicated by grey/orange dots)have been filtered out
completely. Additionally, the alignment of the scans is more accurate.

Figure 1.7 depicts the evolution of a part of the map in the different rounds of the
EM. It shows how the beams corresponding to dynamic objects slowly fade out and
how the improved estimates about these beams improve the localization accuracy.

Figure 1.8 plots a typical evolution ofEc[ln p(c, z | x, m) | x, m, d] over the dif-
ferent iterations of our algorithm. It illustrates that ouralgorithm in fact maximizes
the overall log likelihood. Please note that this curve generally is not monotonic be-
cause of the incremental maximum-likelihood solution to the SLAM problem. Slight
variations in the pose can have negative effects in future steps, so that the map like-
lihood can decrease. However, we never observed significantdecrease of the log
likelihood.
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Fig. 1.9.Map of an outdoor scene after filtering dynamic objects.

Generating Large-Scale Outdoor Maps

To evaluate the capability of our technique to deal with arbitrary features, we
mounted a laser-range scanner on a car and drove approximately 1 km through Pitts-
burgh, PA, USA (Corner between Craig Street and Forbes Avenue). The maximum
speed of the car was35 MPH in this experiment. We then applied our approach to the
recorded data. The map generated by our algorithm is shown inFigure 1.9. Whereas
the black dots correspond to the static objects in the scene,the white dots are those
which are filtered out using our approach. Again, most of the dynamics of the scene
could be removed. Only a few cars could not be identified as dynamic objects. This
is mainly because we quickly passed cars waiting for turns and because we drove
along the path only once. Please also note that due to the lackof a GPS, the map had
to be computed without any odometry information.

Fig. 1.10.The images show textured 3d models of the Wean Hall lobby obtained without (left
image) and with filtering (right image) dynamic aspects.
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Generating Textured 3D Maps

To demonstrate that our approach is not limited to 2d range data, we carried out
several experiments with the mobile robot Robin which is equipped with a laser-
scanner mounted on an AMTEC pan/tilt unit. On top of this scanner, we installed a
camera which allows us to obtain textured 3d maps of an environment. Additionally,
this robot contains a horizontally scanning laser range finder which we used in our
experiments to determine dynamic objects. To label the beams in the 3d data as
dynamic, we use a bounding box around the dynamic 2d points. To filter dynamic
objects in the textures recorded with Robin’s cameras, we choose for every polygon
that image which has the highest likelihood of containing static aspects only. The
left image of Figure 1.10 shows one particular view of a modelobtained without
filtering of dynamic objects. The arrow indicates a polygon whose texture contains
fractions of an image of a person which walked through the scene while the robot
was scanning it. After applying our approach, the corresponding beams and parts
of the pictures were filtered out. The resulting model shown in the right image of
Figure 1.10 therefore only contains textures showing static objects.

1.5.2 Learning Configurations of Environments

The second set of experiments is designed to illustrate thatour approach to learning
environmental configurations yields accurate models and atthe same time improves
the localization capabilities of a robot.

Application in an Office Environment

The first experiment on learning typical environmental configurations has been car-
ried out in a typical office environment. The data was recorded by steering the robot
through the environment while the states of the doors changed. To obtain a more ac-
curate pose estimation than the raw odometry information, we apply an incremental
scan-matching technique. Figure 1.11 depicts the resulting patch-map. For the three
sub-maps that contain the doors whose states were changed during the experiment
our algorithm was able to learn all configurations that occurred. The sub-maps and
their corresponding patches are shown in the same figure.

[tbh]
The second experiment is designed to illustrate the advantages of our map rep-

resentation for mobile robot localization in quasi-staticenvironments compared to
standard MCL. The data used for this experiment was obtainedin the same office
environment as above. We placed a box at three different locations in the corridor.
The resulting map including all patches obtained via clustering is depicted in Fig-
ure 1.12. Note that the tiles in the map illustrate the average over all patches. To
evaluate the localization accuracy obtained with our map representation, we com-
pare the pose estimates to that of a standard MCL using an occupancy grid map as
well as a grid map obtained by filtering out dynamic objects [18].
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Fig. 1.11. A patch-map representing the different configurations learned for the individual
sub-maps in a typical office environment.

Figure 1.13 plots the localization error over time for the three different represen-
tations. The error was determined as the weighted average distance from the poses of
the particles to the ground truth, where each weight is givenby the importance factor
of the corresponding particle. In the beginning of this experiment, the robot traveled
through static areas so that all localization methods performed equally well. Close
to the end, the robot traveled through the dynamic areas, which results in high pose
errors for both alternative approaches. In contrast to that, our technique constantly
yields a high localization accuracy and correctly tracks the robot.

To further illustrate, how our extended MCL is able to estimate the current state
of the environment, Figure 1.14 shows the path of the robot through a non-static area.
Figure 1.15 plots the corresponding posterior probabilities for two different patches
belonging to one sub-map. At time step15, the robot entered the corresponding sub-
map. At this point in time, the robot correctly identified, that the particles, which
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Fig. 1.12.A patch-map with the different configurations for the individual patches.
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Fig. 1.13.The error in the pose estimate over time. As can be seen, usingour approach the
quality of the localization is higher compared to approaches using grid maps.

33
15

Fig. 1.14.The traveled path of the robot with two time labels. During its motion, the robot
correctly identified the current state of the environment (see Figure 1.15).

localize the robot in patch 1, performed much better than thesamples using patch 0.
Due to the re-samplings in MCL, particles with a low importance weight are more
likely to be replaced by particles with a high importance weight. Over a sequence
of integrated measurements and re-samplings, this led to anprobability close to1
that the environment looked like the map represented by patch 1 (which exactly
corresponded to the ground truth in that situation).
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Fig. 1.15.The left image depicts the two possible patches whereas the graph on the right plots
the probability of both patches according to the sample set.As can be seen, the robot identified
that patch 1 correctly models the configuration of the environment.

phase 1 (door was closed) phase 2 (door was open)

ground
truth

robot
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robot
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map
(door
closed)

map
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Fig. 1.16.In the beginning the door was closed (left column) but was later on opened (right
column). The first row depicts the ground truth, whereas the second row illustrates the particle
distributions in case the door is supposed to be closed in theoccupancy grid map, whereas no
door was mapped in the third row.

phase 1 (door was closed) phase 2 (door was open)

Fig. 1.17.Particle clouds obtained with our algorithm for the same situations as depicted in
Figure 1.16.

Global Localization

Additionally, we evaluated all three techniques in a simulated global localization
task. We compared our approach using two patches to represent the state of the door
with standard MCL using occupancy grid maps (see Figure 1.16and 1.17). In one
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experiment, the occupancy grid map contained the closed door and in the second
one the open door. During localization, the robot mostly moved in front of the door,
which was closed in the beginning and opened in the second phase of the experiment.

As can be seen in left column of Figure 1.16 and 1.17, the MCL approach which
uses the occupancy grid that models the closed door as well asour approach lead to a
correct pose estimate. In contrast to that, the occupancy grid, which models the open
door causes the filter to diverge. In the second phase of the experiment, the door was
opened and the robot again moved some meters in front of the door (see right column
of the same figure). At this point in time, the MCL technique using the occupancy
grid, which models the closed door cannot track the correct pose anymore, whereas
our approach is able to correctly estimate the pose of the robot. This simulated ex-
periment again illustrates that the knowledge about possible configurations of the
environment is important for mobile robot localization. Without this knowledge, the
robot is not able to correctly estimate its pose in non-static environments.

Map Clustering

The last experiment is designed to illustrate the map clustering process. The input
to the clustering was a set of17 local grid maps. The fuzzy k-means clustering al-
gorithm started with a single cluster, which is given by the mean computed over all
17 maps. The result is depicted in the first row of Figure 1.18. The algorithm then
increased the number of clusters and re-computed the means in each step. In the fifth
iteration the newly created cluster is more or less equal to cluster 3. Therefore, the
BIC decreased and the clustering algorithm terminated withthe model depicted in
the forth row of Figure 1.18.

1.6 Related Work

For mobile robots, there exist several approaches to mapping in dynamic environ-
ments. The approaches mostly relevant to the approach to filtering beams reflected
by dynamic objects are the methods developed by Wanget al. [34] and our previous
work described in [17]. Wanget al.[34] use a heuristic and feature-based approach to
identify dynamic objects in range scans. The correspondingmeasurements are then
filtered out during 2d scan registration. In our pervious work [17], we describe an
approach to track persons in range scans and to remove the corresponding data dur-
ing the registration and mapping process. Recently, Montesanoet al. [24] describe
an algorithm for simultaneously tracking moving objects and estimating the pose of
the vehicle and landmarks. They also describe how to utilizethe estimates during
navigation. Compared to these techniques, our algorithm presented in this chapter
does not rely on any pre-defined features or motion models. Rather, it considers ev-
ery measurement individually and estimates a posterior about whether or not this
data item has been generated by a dynamic object.

From a more general perspective, the problem of estimating dynamic aspects in
data can be regarded as an outlier detection problem, since the spurious measure-
ments are data items that do not correspond to the static aspects of the environment



1 Mobile Robot Map Learning from Range Data in Dynamic Environments 23

↓ ↓

↓ ↓ ↓

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓ ↓

Fig. 1.18.Iterations of the map clustering process. Our approach repeatedly adds new clusters
until no improvement is achieved by introducing new clusters (with respect to the BIC). Here,
the algorithm ended up with4 clusters, since cluster 3 and 5 are redundant.

which are to be estimated. The identification of outliers is an important subtask in
various application areas such as data mining [8, 19, 27], correspondence establish-
ment [6, 11], clustering [14], or statistics [5]. In all these fields, errors in the data
reduce the accuracy of the resulting models and thus can leadto a decreased per-
formance whenever the learned models are used for prediction or robot navigation,
for example. The problem considered in this chapter differsfrom these approaches
in the fact that outliers cannot be detected solely based on their distance to the other
data items. Rather, the measurements first have to be interpreted and transformed
into a global representation (map) before individual measurements can be identified
as outliers.

There has been work on updating maps or improving localization in populated
environments. For example, in the system described in [9], agiven static map is tem-
porarily updated using the most recent sensory input. This allows the robot to con-
sider areas blocked by people in the environment during pathplanning. Montemerlo
et al.[22] present an approach to simultaneous localization and people tracking. This
approach simultaneously maintains multiple hypotheses about the pose of the robot
and people in its vicinity and in this way yields more robust estimates. Siegwartet
al. [32] present a team of tour-guide robots that operates in a populated exhibition.
Their system uses line features for localization and has been reported to successfully
filter range-measurements reflected by persons. Foxet al.[15] present a probabilistic
technique to identify range measurements that do not correspond to the given model
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of the environment. In contrast to our approach, these methods require a given and
fixed map which is used for localization and for the extraction of the features corre-
sponding to the people. Our filtering technique, in contrast, does not require a given
map. Rather it learns the map from scratch using the data acquired with the robot’s
sensors.

Additionally, several authors have proposed techniques for learning dynamic ob-
jects of maps of dynamic aspects with mobile robots. For example, Anguelovet
al. [2] present an approach which aims to learn models of non-stationary objects
from proximity data. The object shapes are estimated by applying a hierarchical EM
algorithm based on occupancy grids recorded at different points in time. The main
difference to our approach to model quasi-static aspects isthat we estimate typical
configurations of the environment and do not address the problem of learning geo-
metric models for different types of non-stationary obstacles.

Schulz and Burgard [29] proposed a probabilistic algorithmto estimate the state
of dynamic objects in an environment. Avotset al. [4] apply a Rao-Blackwellized
particle filter to estimate the state of doors. Both approaches, however, require a
parameterized model of the environment that includes the dynamic objects such as
doors. Anguelovet al.[3] uses an EM-based approach to detect doors and to estimate
their states. Thereby, they take into account shape, color,and motion properties of
wall-like objects. In contrast to these works, the approachpresented in this chapter is
independent of the type of quasi-static object and can learnarbitrary configurations
of the environment.

Yamauchi and Beer [35] describe a network of places in which links model
a connection between different places. These links may dynamically change their
traversability. To deal with these dynamic aspects, they store a confidence value
which is updated according to successful or unsuccessful attempts to traverses that
link. In the context of landmark-based mapping, the approach presented by Andrade-
Cetto and Senafeliu [1] is able to remove landmarks which arenot observed anymore
from the posterior.

Romeroet al. [28] describe an approach to globally localize a mobile robot in
static environments in which a clustering algorithm is applied to group similar places
in the environment. In this way, the robot is able to reduce the number of possible
pose hypotheses which speeds up the probabilistic localization process.

In a very recent work, Bieber and Duckett [7] proposed an approach that incor-
porates changes of the environment into the map representation. Compared to our
work, they model temporal changes of local maps whereas we aim to identify the
different configurations of the environment.

Our approach to learning typical configurations is designedto explicitely model
possible states of the environment, like, e.g., open and closed doors or moved tables.
As we have demonstrated in this chapter, it can be used in addition to the filtering
techniques. We also demonstrated that the different environmental state hypotheses
enable a mobile robot to more reliably localize itself and toalso estimate the current
configuration of its surroundings.
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1.7 Conclusions

In this chapter, we presented probabilistic approaches to mapping in dynamic envi-
ronments. We first presented an algorithm based on the EM algorithm that interleaves
the identification of measurements that correspond to dynamic objects with a map-
ping and localization algorithm. In this way, it incrementally improves its estimate
about spurious measurements and the quality of the map. The finally obtained maps
contain less spurious objects and also are more accurate because of the improved
range registration. Additionally, we presented a novel approach to model quasi-static
environments using a mobile robot. In areas where dynamic aspects are detected,
our approach creates local maps and estimates for each sub-map clusters of possi-
ble configurations of the corresponding space in the environment. Furthermore, we
described how to extend Monte-Carlo localization to utilize the information about
the different possible environmental states while localizing a vehicle. Our approach
has been implemented and tested on real robots as well as in simulation. The exper-
iments demonstrate, that our technique yields a higher localization accuracy com-
pared to Monte-Carlo localization based on standard grid maps even such obtained
after filtering out measurements reflected by dynamic objects.

Our techniques have been implemented and tested on different platforms. In sev-
eral experiments carried out in indoor and outdoor environments we demonstrated
that our approaches yield highly accurate maps. The resultsillustrate that our ap-
proaches can reliably estimate filter beams reflected by dynamic environments and
that quasi-static aspects can be modeled accurately.
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