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Summary. The problem of generating maps with mobile robots has redetonsiderable
attention over the past years. Most of the techniques deedlso far have been designed for
situations in which the environment is static during the piag process. Dynamic objects,
however, can lead to serious errors in the resulting magsasispurious objects or misalign-
ments due to localization errors. In this chapter, we candlte problem of creating maps with
mobile robots in dynamic environments. We present two agates to deal with non-static
objects. The first approach interleaves mapping and lat#diz with a probabilistic technique
to identify spurious measurements. Measurements comegmpto dynamic objects are then
filtered out during the registration process. Additionallye present an approach that learns
typical configurations of dynamic areas in the environmera mobile robot. Our approach
clusters local grid maps to identify the typical configunas. This knowledge is then used
to improve the localization capabilities of a mobile vehielcting in dynamic environments.
In practical experiments carried out with a mobile robot itygical office environment, we
demonstrate the advantages of our approaches.

1.1 Introduction

Learning maps with mobile robots is one of the fundamentabl@ms in mobile
robotics. In the literature, the mobile robot mapping peoblis often referred to
as thesimultaneous localization and mapping problem (SLAM), 13, 16, 20, 21,
31, 33]. This is because mapping includes both, estimatiagpbsition of the robot
relative to the map and generating a map using the sensouy &mgl the estimates
about the robot’s pose.

Whereas most of todays mapping systems are able to dealovith im the odom-
etry and noise in the sensor data, they assume that the emeérd is static during
mapping. However, if a person walks through the sensor rafhgfee robot during
mapping, the resulting map will contain evidence about gaaitat the correspond-
ing location. Moreover, if the robot scans the same area@nskiime and registers
the two scans, the resulting pose estimates will be lessratecif the person has
moved in between. Thus, dynamic objects can lead to spuoiojsts in the result-
ing maps and at the same time can make localization harder.
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Throughout this chapter, we consider the problem of legrgind maps with
mobile robots in dynamic environments. In principle, thare different ways to
dealing with the dynamic aspects in an environment. The maise way of dealing
with dynamic objects is to apply the standard map updatinggons. Typical tech-
niques in this context are the occupancy grid algorithm @5he counting model
used throughout this chapter. Under both algorithms, axesismed as occupied will
certainly be regarded as free after the robot has seen thectupied for a long
enough period of time (and vice versa). This is due to thetfettthe map updating
operations are additive as can be seen, for example, frolodbhedds representation
of occupancy grid maps [25] or directly from the counting rbd\ccordingly, the
robot needs to see an area as free more often as it has seeunpiartto make it
belief that the corresponding area is free. An alternatiag i8 to identify whether
or not a beam is reflected by a dynamic object. One popular waglieve this is
to use features corresponding to dynamic objects and th $tach objects while the
robot moves through its environment [17, 34]. Before theotalpdates its map, it
can then simply filter all measurements that correspondnauntyc objects. Whereas
such approaches have been demonstrated to be quite rblgirstijsadvantage lies in
the fact that the features need to be known a priori. Througthis chapter, we will
describe an alternative technique that applies the Expie@ctaximization (EM)
algorithm. In the expectation step, we compute a probaibikstimate about which
measurements might correspond to static objects. In thénmieation step, we use
these estimates to determine the position of the robot amdntip. This process is
iterated until no further improvement can be achieved.

Whereas techniques for filtering dynamic aspects have bermipto be quite
robust, their major disadvantage lies in the fact that tlselting maps only contain
the static aspects of the environment. Throughout thisteihape therefore will also
describe an approach to explicitely model certain dynamspeats of environments,
namely the so-called low-dynamic or quasi-static states.approach is motivated
by the fact, that many dynamic objects appear only in a lidhitember of pos-
sible configurations. As an example, consider the doors inffice environment,
which are typically either open or closed. In such a situgtiechniques to filter
out dynamic objects produce maps which do not contain aesitdgbr. This can be
problematic since in many corridor environments doorsragmirtant features for lo-
calization. The knowledge about the different possiblefignmations can explicitly
improve the localization capabilities of a mobile roboteféfore, it is important to
integrate such information into the map of the environment.

The contribution of this chapter is novel approach to getimegagrid maps in
dynamic environments from range data. Our algorithm firstreges for each in-
dividual beam whether or not it has been reflected by a dynafject. It then
uses this information during the range registration predesestimate get better
pose estimates. It also learns the quasi-static stategas iy identifying sub-maps
which have typical configurations. This is achieved by @tisg local grid maps.
We present experiments illustrating the accuracy of theltieg maps and also an
extended Monte-Carlo localization algorithm, which udes ¢lusters of the local
maps to more accurately localize the robot.
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1.2 EM-based Filtering of Beams Reflected by Dynamic Objects

As described above, one of the key problems in the contextagipimg in dynamic
environments is to determine whether or not a measuremegitésted by a dynamic
object. Our approach to discover such measurements idysttiatistical. We use the
popular EM-algorithm to identify data items that cannot Rplained by the rest of
the data set. The input to our routine is a sequence of dawes ite= {z1,..., 2r}.
The output is a modeh obtained from these data items after incorporating the es-
timates about spurious measurements. In essence, ouragpmeeks to identify a
modelm that maximizes the likelihood of the data. Throughout tihiapter, we as-
sume that each measuremeptonsists of multiple data, i, ..., z; y as it is the
case, for example, for laser-range scans. Throughouttthjster, we assume that the
dataz, ,, are beams obtained with a laser-range scanner.

To accurately map a dynamic environment, we need to know wimieasure-
ments are caused by dynamic objects and therefore can dadelynored in the
alignment and map updating phase. To characterize spumeasurements in the
data, we introduce additional variablgs, that tell us for each and eact: whether
the data itemz, ,, is caused by a static object or not. Each such variableis a
binary variable that is eithéror 1. It is 1 if and only if thez, ,, is caused by a static
object. The vector of all these variables will be denoted.by

0 fxnk) 7,
O l
robot/laser beam endpoint

Fig. 1.1.Beam covering:,. cells of a map.

For the sake of simplicity, we give the derivation for beahwt tire parallel to the
xz-axis of the map. In this case, the length, directly corresponds to the number of
cells covered by this beam. We will later describe how to degd beams that are not
parallel to ther-axis. Letf be a function that returns for each positigrof the robot,
each beam number, and eaclt < z, ,, the indexf (z;, n, k) of k-th field covered by
that beam in the map (see Figure 1.1). To determine whetmat@arbeam is reflected
by a dynamic object, we need to define the likelihood of a memsent given the
current mapn of the environment, the poseof the robot, and the information about
whetherz, ,, is reflected by a maximum range reading. Typically, maxinmamge
readings have to be treated differently, since those measnts generally are not
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reflected by any object. Throughout this chapter, we intcedindicator variables
(t,n Which arel if and only if z, ,, iS a maximum range reading afgdotherwise.

The likelihood of a measuremest,, given the value ot, ,, and the mapr can thus

be computed as

Zt,n_l Ct,n
p(zt,n | Ct,n,xt,m) = [ H (1 - mj(zt,nk)))‘|
k=0
’ [[m.f(mt,n7zt,7l)]Ct’n : [1 - mf(wt,n,zt,n)](lict'n)
Zt,n_l (I_Ct,n)
I a- mm,n,k))] (1.1)
k=0

The first term of this equation specifies the likelihood of ble@am given it is a max-
imum range scan. In such a situation, we compute the liketiras the product of
the probabilities that the beam has covered the ¢etls 2, ,,_;. Please note that
the cell in which the beam ends does not provide any infoanatince we do not
know, whether there is an object or not given the beam is ammaxi range reading.
Thereby, the probability that a beam covers akell 2, ,, is equal tol —m(,, k)
The second row of this equation specifies how to deal with #se ¢hat a cell that
reflects a non-maximum range beamz{f, is not reflected by a dynamic object,
i.e.c;n = 1, thenthe likelihood equalsf (.., .-, ,.)- If, in contrast,z, ,, is reflected
by a dynamic object, the likelihood is—m (4, n,-, ,.)- AS well as for the maximum
range measurements, we have to consider in both cases ¢hla¢dim has covered
zt.n, — 1 cells before reaching cefl(x:, n, z¢ ).

Based on the definition of the observation likelihood, we neilv define the
likelihood p(z, ¢ | 2, m) of the data which we try to maximize in order to find the
most likely map of the environment.

=
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We obtain Equation (1.3) from Equation (1.2) by assuming tha z; andc¢; are
independent giver; andm. We furthermore consider, as independent from the
locationz; and the mapn, which leads to Equation (1.4). Finally, Equation (1.5) is
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derived from Equation (1.4) under the usual assumption thigeneighboring beams
of a single scan are independent given the map of the envenhm

Maximizing p(z,¢ | =, m) is equivalent to maximizing the corresponding log
likelihood, which can be derived from Equation (1.5) and &ipn (1.1) by straight-
forward mathematical transformations.

lnp(z,c|x m)

IHH Hp Ztna|ctn7xt7 ) (Ct)

t=1n=1
T N
=N Zlnpct —|—ZZ P(2tn, | Ct.n> T, M)
= t=1n=1
T N
=N . Zlnp(ct + Z Z [ 1- <t n)"” |:Ct,n : 1nmf(zt,n.,Zt,n)
t=1 t=1n=1
zt,n—1
+(1=cp) - In(l = mf(zt,n.,zt,n))} + > (=, nm)| (16)
k=0

Since the correspondence variahiese not observable in the first place, a com-
mon approach is to integrate over them, that is, to optintieesixpected log likeli-
hoodE.[lnp(c, z | ,m) | x,m,d] instead. Since the expectation is a linear operator,
we can move it inside the expression. By exploiting the faat the expectation of
ct,n only depends on the corresponding measuremgnand the position:; of the
robot at that time. we can derive the following equation:

E.lnp(z,c|x,m) | z,z,m] =

T N
v+ Z Z [et,n (1= Gen) Inmip oz )

t=1n=1
+(1 - et,n) . (1 - <t,n) . 1n(1 - mf(zt,n.,zt,n))

zt,n—1

+ 111(1 — mf(m’n,k))‘| (17)
k=0

For the sake of brevity, we use the term
Ct,n = Ec[ct,n | Zt,nvxtvm] (18)

in this equation. The term

T
y=N- ZEc[lnp(ct) | z,2,m)] (1.9)

t=1

is computed from the prigs(c;) of the measurements which is independent,af,
andm. Accordingly,y can be regarded as a constant.
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Unfortunately, optimizing Equation (1.7) is not an easyemabr. A typical ap-
proach to maximize log likelihoods is the EM algorithm. Ire tharticular problem
considered here, this amounts to generating a sequenceshmaf increasing like-
lihood. In the E-Step, we compute the expectations aboutittaen variables. In
the M-step, we then compute the most likely mapising the expectations computed
in the E-Step. Both steps are described in detail in the nedeaiof this section.

In the E-step, we compute the expectatiens = E¢[ct.n | 2t n, Tt, m] fOr each
ct,n given the measuremeni ,,, the locationz; of the robot and the current map
m. Exploiting the fact thae, ,, equalsp(c,.n, | zi,n, 1, m) and considering the two
cases that; ,, is @ maximum range reading or not, we obtain:

p(ct,n) y |f Ctﬂl =1
€tn =
p(ce.n)ern , Otherwise

where

1
T o) + (1= pleen))(——2 .y (1.10)

The first equation corresponds to the situation thatis a maximum range reading.
Then,e; ,, corresponds to the prior probabilityc; ,,) that a measurementis reflected
by a static object. Thus, a maximum range reading does netda@ny evidence
about whether or not the cell in the map in which the beam end®vered by a
dynamic object.

In the M-Step, we want to determine the valuesifoandz that maximize Equa-
tion (1.7) after computing the expectationg, about the hidden variables,, in the
E-step. Unfortunately, maximizing this equation is alsotrigial since it involves a
solution to a high-dimensional state estimation probleonddal with the enormous
complexity of the problem, many researchers phrase it an@emental maximum
likelihood process [33, 16]. The key idea of incrementakapphes is to calculate the
desired sequence of poses and the corresponding maps byiziagithe marginal
likelihood of thet-th pose and map relative to tlfie— 1)-th pose and map. In our
algorithm, we additionally consider the estimatiens that measurementat time
t is caused by a static object of the environment:

Mf(xy,n,z¢,n)

Iy = argmax {p(zt | ct,xt,m[tfl]) ~p(xy | ut,l,fct,l)} (1.11)

In this equation, the termp(z; | c;,z¢,m*~1) is the likelihood of the mea-
surementz; given the poset; and the mapn!t—! constructed so far. The term
p(x | we—1,24—1) represents the probability that the robot is at locatiprgiven
the robot previously was at positiap_; and has carried out (or measured) the mo-
tion u;_1. The registration procedure is then carried out using theesalgorithm as
described in our previous work [17].

It remains to describe how the measuremgns then used to generate a new
map !t given the resulting posg; and the expectations ,,. Fortunately, once
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M-Step: SLAM

—»= Scan Registratior} > Mapping —
i l
E-Step:

Determine Dynamic Measurements

Fig. 1.2.Iteration of SLAM and dynamic beam estimation.

x1,...,2, have been computed, we can derive a closed form solutiom fo. We
want to determme the value of each figldf the mapm!!! such that the overall
likelihood of m!* is maximized. To achieve this, we sum over individual fields
[1,...,J] of the map. Thereby, we use an indicator functig¢n) which is1, if y is
true and), otherwise.

J N
mlt = argmax (Z Z Z l (Tt,m, 26n) = J)

J=1 =1 n=1
(1= Gn) - (et Inmy + (1 — ern) In(1 — my))

zt,n—1

+ Z I(f(ze,m, k) =7) - ln(l—mj)]> (1.12)

Now suppose, we define

f(x,n,k,j) =I(f(z,n, k) =7)

and

j(It,” Ztnsy ] ) (1_<tn) €t.n
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<f(xt,n Ztm, J) - (L= Cen)
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zt,n—1
—etn) Z I(f(z,n, k) —j))

The quantitye; corresponds to the sum of the expectatiens that bean of scan

t is reflected by a static object of all beams that are not maxirmange beams and
that end in cellj. The termg;, on the other hand, is the sum of two terms. The first
term is the sum of the expectatiohs- e, ,, that beamn of scant is reflected by

a dynamic object of all beams that are not maximum-range beard that end in
cell j. The second value of the sum simply is the number of times elmewers;

but does not end is. Please note that this value is independent from whetheotor n
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the corresponding beam is reflected by a dynamic object oPtedse furthermore
note that in a static world with, ,, = 1 for all ¢ andn the termq; corresponds to
the number of times a beam that does not have the maximumhlemgts inj. In
contrast to thatj; is the number of times a beam covers a cell.

Using the definitions of.; andg;, Equation (1.12) turns into

J
m" = argmax Z a;Inm; + B;In(1 — m;) (1.13)
m .
Jj=1
Since allm; are independent, we maximize the overall sum by maximizaxhe
m;. A necessary condition to ensure that is a maximum is that the first derivative
equals zero:
o . .
om _ o B _, (1.14)

6mj mj 1-— mj
By straightforward mathematical transformations we abtai
Qj

m; = P (1.15)
Note that given the sensor model specified in Equation (thi) closed-form solu-
tion for the most likely mapn for given positions: and static environments corre-
sponds to the naive counting technique. In this approaud determines the prob-
ability that a map cell reflects a beam by counting how ofteeanto has ended in
that cell and how often a beam has covered it without endirity Trhis differs from
the occupancy mapping approach in which one seeks to detemiiether or not a
particular area in the environment is occupied or not. Toeustnd the difference
between the two approaches, consider an object that refldetam in70% of all
cases. Whereas the counting model yields a valwerdbr this cell, the value of the
same cell will typically converge tb in the context of occupancy grids.

The overall approach can be summarized as follows (see &soeF1.2). We
start with an initial mapn obtained by the incremental mapping approach. Thereby,
the expectations; ,, are initialized with the prior probability(c, ,,) that a measure-
ment is caused by a static object. Given the resulting thamnmd the corresponding
positionsz, we compute new expectations,, for each beam according to Equa-
tion (1.8). These expectations are then used to compute anregw The overall
process is iterated until no improvement of the overalllii@d (Equation (1.6))
can be achieved or a certain number of iterations has beerésd.

At the end of this section, we would like to discuss how to deithh beams that
are not parallel to the-axis. In this case, we no longer can compute the likelihood
that a beam covers a cglbf m as(1 — m;). Otherwise, transversal beams covering
more cells would accumulate a lower likelihood. The solutio this is to weigh the
beams according to the length by which they cover a cell. 8s@p is the set of
cells inm covered by a beam. Furthermore, supphse the length by which the
beam covers fielg € B. Then, the likelihood of covering all cells i is computed

aSHjeB (1- mj)lj-
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This concludes the description of our algorithm for filtgrimeasurements re-
flected from dynamic objects. As we will see in the experiragthtis approach dras-
tically improves the accuracy of the pose estimates and ulétyg of the resulting
map.

1.3 Learning Maps of Quasi-Static Environments

In certain situations, it can be advantageous to explicitebdel dynamic aspects
rather than simply filtering them out. As a motivating exaengdnsider the individ-
ual local maps depicted in Figure 1.3. These maps corresjpotypical configura-
tions of the same place and have been learned by a mobileapbrting in an office
environment. They show a part of a corridor including two idoand their typical
states. The approach described in this section learns soahdonfigurations and to
uses this information to improve the localization accuraicg mobile robot.

._._——-l_._'a: _‘“1 =

: TN T

Fig. 1.3.Possible states of a local area. The different configurataamrespond to open and
closed doors.

The key idea of our approach is to use the information aboahgés in the
environment during data acquisition to estimate possibéial configurations and
store them in the map model. To achieve this, we construcharsap for each area
in which dynamic aspects have been observed. We then lassterd of sub-maps
that represent possible environmental states in the qmnekng areas.

1.3.1 Map Segmentation

In general, the problem of learning maps in dynamic envirents is a high-
dimensional state estimation problem. A naive approaciddoe to store an indi-
vidual map of the whole environment for each potential st@taviously, using this
approach, one would have to store a number of maps that i:iergial in the num-
ber of dynamic objects. In real world situations, the stafdhe objects in one room
are typically independent of the states of the objects itteraoom. Therefore, it is
reasonable to marginalize the local configurations of tdévidual objects.

Our algorithm segments the environmentinto local arediedcsub-maps. In this
chapter, we use rectangular areas which inclose localbctkd dynamic aspects to
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segment the environment into sub-maps. For each sub-negyttamic aspects are
then modeled independently.

Note that in general the size of these local maps can vary fhensize of the
overall environment to the size of each grid cell. In the foase, we would have
to deal with the exponential complexity mentioned abovethesecond case, one
heavily relies on the assumption that neighboring cellsradependent, which is not
justified in the context of dynamic objects. In our currerdgtsyn, we first identify
positions in which the robot perceives contradictory obagons which are typically
caused by dynamic elements. Based on a region growing tpo#nareas which
inclose dynamic aspects are determined. By taking intow@ogsibility constraints
between regions, they are merged until they do not exceedxamam sub-map
size (currently set t@0m?). This limits the number of dynamic objects per local
map and in this way leads to a tractable complexity. An exarfgrithree sub-maps
constructed in such a way is depicted in Figure 1.11. Notegheh sub-map has an
individual size and different sub-maps can (slightly) dapr

1.3.2 Learning Environmental Configurations

To enable a robot to learn different states of the envirorimvea assume that the
robot observes the same areas at different points in timecl\ger the local maps
built from the different observations in order to extracsgible configurations of
the environment. To achieve this, we first segment the safetarperceived by the
robot into observation sequences. Whenever the robotdesmsab-map, the current
sequence ends and accordingly a new observation sequemteast soon as the
robot enters a new sub-map. Additionally, we start a new aecgl whenever the
robot moves through the same area for more than a certainrdarobtime @30 s).
This results in a sep of observation sequences for each sub-map

&= {p1,...,0n}, (1.16)

where each
¢ = Zstart(i)y + - - s Fend(i)+ (117)

Herez, describes an observation obtained at timEor each sequengg of obser-
vations, we build an individual grid map for the correspamndiocal area. Thereby,
we use the algorithm proposed in Section 1.2. Note that thigaach eliminates
highly dynamic aspects such as people walking by. Quascstapects like doors,
typically do not change their state frequently, so that tit®t can observe them as
static for the short time window. The different states aneallg observed when the
robot returns to a location at a later point in time.

Each grid computed for a local region is then transformeal@ector of proba-
bility values ranging fronf) to 1 and one additional valugto represent an unknown
(unobserved) cell. All vectors which correspond to the siuel area are clustered
using the fuzzy k-means algorithm [14]. During clustering, treat unknown cells
in an slightly different way, since we do not want to get arr@xiuster in case the
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sensor did not covered all parts of the local area. In our exy@at, we obtained the
best behavior using the following distance function for tvartorse andb during
clustering

(@i —b;) a; #ENb #§
d(a,b) = 0 ai=ENb =€ (1.18)

i € otherwise,

wheree is a constant close to zero.

When comparing two values representing unknown cells, oreneral should
use the average distance computed over all known cellsitoastthis quantity. In
our experiments, we experienced that this leads to additidnsters in case a big
part of a sub-map contains unknown cells even if the knowasaoé the maps were
nearly identical. Therefore, we use the distance functiwargin Equation (1.18)
which sets this distance value to zero.

Unfortunately, the number of different environmental ssais not known in ad-
vance. Therefore, we iterate over the number of clustercantpute in each step a
model using the fuzzy k-means algorithm. In each iteratiom create a new clus-
ter initialized using the input vector which has the lowdstlihood under the cur-
rent model. We evaluate each modelsing the Bayesian Information Criterion
(BIC) [30]:

BIC =logP(d | 0) — g logn (1.19)
The BIC is a popular approach to score a model during clusgjett trades off the
number|d| of clusters in the model multiplied by the logarithm of the number of
input vectorsn and the quality of the model with respect to the given datdhe
model with the highest BIC is chosen as the set of possibléigumations, in the
following also called patches, for that sub-map. This pssds repeated for all sub-
maps.
Note that our approach is an extension of the classical @suypgrid map [25]
or counting model, in which the environment is not supposelokt static anymore.
In situations without moving objects, the overall map reshio a standard grid map.
The complexity of our mapping approach depends linearlyr@nrtumberl”
of observations multiplied by the numberof sub-maps. Furthermore, the region
growing applied to build up local maps introduces in the woese a complexity
of p?log p, wherep is the number of grid cells considered as dynamic. This leads
to an overall complexity of)(T - s + p? log p). Using a standard PC, our current
implementation requires aroui@% of the time needed to record the log file.

1.4 Monte-Carlo Localization Using Patch-Maps

It remains to describe how our patch-map representatiobearsed to estimate the
pose of a mobile robot moving through its environment. Tiglwaut this chapter, we
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apply an extension of Monte-Carlo localization (MCL), wiibas originally been
developed for mobile robot localization in static envireemh[12]. MCL uses a set
of weighted particles to represent possible poses of thetrdlypically, the state
vector consists of the robot’s position as well as its oagoh. The sensor readings
are used to compute the weight of each particle by estim#ii@dikelihood of the
observation given the pose of the particle and the map.

Besides the pose of the robot, we want to estimate the coafigarof the envi-
ronment in our approach. Since we do not use a static mamligandard MCL, we
need to estimate the maplt! as well as the pose; of the robot at time

p(iﬂt,m[t] | Z1:t,uo:t—1) =
n-p(ze |z, m® 201, u0e-1) - plze, mY | 2141, u0.6-1). (1.20)

Heren is a normalization constant and_; refers to the motion command which
guides the robot from;_; to x;. The main difference to approaches on simultane-
ous localization and mapping (SLAM) is that we do not reasooua all possible
map configurations like SLAM approaches do. Our patch-maficts the possible
states according to the clustering of patches and therefdyea small number of
configurations are possible.

Under the Markov assumption, the second line of Equatiac®0jlcan be trans-
formed to

p(It ml | 21:t—1, UO:tfl)

/ / th[t] | rrt—l77/n[til]7Zl:t—laut—l)
P

(-1, m | 201, ug.—0) day—q dmlt™Y (1.21)

t—1
/ - P(ﬂﬁt | Itflam[ ];letflautfl)
zi_1 Jmlt—

'p( W gy wemg,m Y 21w y)

p(ri_1,m mlt= ]|Z1t 1, Uo:t—2) ATy L dmlt=1 (1.22)
/ / T !Et|$t 1, Ut— 1) ( [t |$t,m[t_l])
'P(Cﬂt—l,m[t Y| 21021, u0t—2) dag—1 dmlt=1., (1.23)

Equation (1.23) is obtained from Equation (1.22) by assgrtivat[! is indepen-
dent fromz;_1, 21.. 1, us—1 given we knowr, andm[t—1 as well as assuming that
x¢ is independent fromnt—1 21,4 given we knowz;_; andwu;_;. Combining
Equation (1.20) and Equation (1.23) leads to

P(fﬂmm[t] | Zl;t,uo:t—l)

=1 p(Zt | I’hm[t]v Zl:t717u0:t71)

/ /[ ; p(zy | xt_l,ut_l)p(m[t} | xt,m[tfl])
ri—1 Jmlt—

(i1, mlt—1] | 21:4—1, Uo:t—2) dxi—1 dmlt=1, (1.24)
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Equation (1.24) describes how to extend the standard MClroggh so that it
can deal with different environmental configurations. Hesi the motion model
p(xy | x—1,us—1) Of the robot, we need to specify a map transition mqnjei[t] |
Ty, m[t—”), which describes the change in the environment over time.

In our current implementation, we do not reason about thie sththe whole
map, since each sub-map would introduce a new dimensioreisttite vector of
each particle, which leads to a state estimation probleat,ithexponential in the
number of local sub-maps. Furthermore, the observatiotereds with a mobile
robot provide information only about the local environmefithe robot. Therefore,
we only estimate the state of the current patch the robot,is/ich leads to one
additional dimension in the state vector of the particlasgared to standard MCL.

In principle, the map transition modg{m!* | z;, ml‘~1) can be learned while
the robot moves through the environment. In our currentesystwe use a fixed
density for all patches. We assume, that with probabilitthe current state of the
environment does not change between timé andt. Accordingly, the state changes
to another configuration with probability— «. Whenever a particle stays in the same
sub-map between- 1 andt, we draw a new local map configuration for that sample
with probability 1 — «. If a particle moves to a new sub-map, we draw the new
map state from a uniform distribution over the possible lpasdn that sub-map. To
improve the map transition model during localization, ongiinciple can update
the values for for each patch according to the observations of the robaoieer,
adapting these densities can also be problematic in casdivdrged filter or a multi-
modal distribution about the pose of the robot. Thereforeecurrently do not adapt
the values ofv while the robot acts in the environment.

Note that our representation bears resemblance with agipesausing Rao-
Blackwellized particle filters to solve the simultaneousdlization and mapping
problem [26, 23], as it separates the estimate about the gfabe robot from the
estimate about the map. It computes the localization of #f@cle and uses this
knowledge to identify the current state of the (local) malpe Tifference is that we
aim to estimate the current state of the sub-map based om#sife configurations
represented in our enhanced environmental model.

1.5 Experiments

The approaches described above has been implemented aed oes different
robotic platforms, in different environments, and with 2dl&8d data acquired with
SICK laser range finders. In all experiments, we figured dwat dbur approach can
robustly filter out high-dynamic aspects. We present resigimonstrating that the
obtained maps contain fewer registration errors and las$®ps objects. Additional
experiments indicate that our approach can reliably mdeetiiasi-static aspects of
environments.
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Fig. 1.4. Maps of Wean Hall at Carnegie Mellon University obtainedheiit (top image)
and with filtering measurements corrupted by dynamic objéobttom image). The beams
identified as reflected by dynamic objects are indicated hyevdots.
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1.5.1 Filtering Dynamic aspects

In the first set of experiments, we illustrate that our filigralgorithm can be used
to reliably eliminate spurious measurements from rangessaad at the same time
reduces the registration errors.

Filtering People

The first experiments were carried out using a Pioneer | rab&/ean Hall of
Carnegie Mellon University. There were several people imglkhrough the envi-
ronment while the robot was mapping it. The top image of Fedu# shows the map
obtained by a standard scan-matching procedure. As canelefisam the figure,
the map contains many spurious objects and a huge numbegiefregion errors.
The most likely map resulting from the application of our eggeh is shown in the
bottom image of Figure 1.4. The beams labeled as dynamicravendvhite in this
figure. This demonstrates that our approach can reliabhytiigedynamic aspects
and is able to learn maps that include the static aspects only

Fig. 1.5.Map obtained in a populated corridor of the Wean Hall at Cgimellon University
using the raw input data.

Fig. 1.6.Map generated by our algorithm.

Improved Registration Accuracy by Filtering Dynamic Objects

Besides the fact that the resulting maps contain less gguadbjects, our approach
also increases the localization accuracy. If dynamic dbjame not handled appro-
priately during localization, matching errors become mikely. Figure 1.5 shows
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A

Fig. 1.7.Evolution of the map during EM. The images corresponds tafien 1, 2, and 6.
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Fig. 1.8. Typical evolution of the log likelihood (Equation (1.6)) ritag the individual itera-
tions of EM.

a typical map we obtained when mapping a densely populatdcbement. In this
case, we mapped a part of the Wean Hall Corridor at CarneglliMeniversity
during peak office hours when many persons were around. Sbthera were try-
ing to block the robot, so that the robot had to make detounsrat them. Therefore,
the robot traveled4 m with an average speed 6f15m/s (0.35 m/s maximum).
Despite the fact, that the huge amount of spurious objeckerntae map virtually
useless for navigation tasks, the map also shows serioossérr the alignment.
Some of the errors are indicated by arrows in the corresparfijure.

Figure 1.6 shows the map generated by our algorithm. As thecfidjustrates,
the spurious measurements (indicated by grey/orange Hat® been filtered out
completely. Additionally, the alignment of the scans is saccurate.

Figure 1.7 depicts the evolution of a part of the map in thiedéiht rounds of the
EM. It shows how the beams corresponding to dynamic objémtdysfade out and
how the improved estimates about these beams improve talizlation accuracy.

Figure 1.8 plots a typical evolution &.[In p(c, z | 2, m) | 2, m, d] over the dif-
ferent iterations of our algorithm. It illustrates that @lgorithm in fact maximizes
the overall log likelihood. Please note that this curve galheis not monotonic be-
cause of the incremental maximume-likelihood solution ®8LAM problem. Slight
variations in the pose can have negative effects in fut@gsstso that the map like-
lihood can decrease. However, we never observed signifaeerease of the log
likelihood.
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Fig. 1.9.Map of an outdoor scene after filtering dynamic objects.

Generating Large-Scale Outdoor Maps

To evaluate the capability of our technique to deal with taaly features, we
mounted a laser-range scanner on a car and drove approkimaia through Pitts-
burgh, PA, USA (Corner between Craig Street and Forbes Asjefiilne maximum
speed of the car wa MPH in this experiment. We then applied our approach to the
recorded data. The map generated by our algorithm is showigire 1.9. Whereas
the black dots correspond to the static objects in the s¢haeayhite dots are those
which are filtered out using our approach. Again, most of tyreadhics of the scene
could be removed. Only a few cars could not be identified ashyo objects. This
is mainly because we quickly passed cars waiting for turmskmtause we drove
along the path only once. Please also note that due to thefacPS, the map had
to be computed without any odometry information.

Fig. 1.10.The images show textured 3d models of the Wean Hall lobbyirmdxdavithout (left
image) and with filtering (right image) dynamic aspects.
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Generating Textured 3D Maps

To demonstrate that our approach is not limited to 2d range, adee carried out
several experiments with the mobile robot Robin which isigoed with a laser-
scanner mounted on an AMTEC panl/tilt unit. On top of this sesnwe installed a
camera which allows us to obtain textured 3d maps of an emviemt. Additionally,
this robot contains a horizontally scanning laser rangeefimehich we used in our
experiments to determine dynamic objects. To label the beanthe 3d data as
dynamic, we use a bounding box around the dynamic 2d poiotéltér dynamic
objects in the textures recorded with Robin’s cameras, voe®h for every polygon
that image which has the highest likelihood of containirsistaspects only. The
left image of Figure 1.10 shows one particular view of a mazghined without
filtering of dynamic objects. The arrow indicates a polygdmose texture contains
fractions of an image of a person which walked through th@eaeehile the robot
was scanning it. After applying our approach, the corredpanbeams and parts
of the pictures were filtered out. The resulting model showihe right image of
Figure 1.10 therefore only contains textures showingcstdijects.

1.5.2 Learning Configurations of Environments

The second set of experiments is designed to illustrateotira@pproach to learning
environmental configurations yields accurate models atiteatame time improves
the localization capabilities of a robot.

Application in an Office Environment

The first experiment on learning typical environmental agunfations has been car-
ried out in a typical office environment. The data was recdimesteering the robot
through the environment while the states of the doors chaneobtain a more ac-
curate pose estimation than the raw odometry informati@apply an incremental
scan-matching technique. Figure 1.11 depicts the regyt@ich-map. For the three
sub-maps that contain the doors whose states were changad the experiment

our algorithm was able to learn all configurations that oedir The sub-maps and
their corresponding patches are shown in the same figure.

[tbh]

The second experiment is designed to illustrate the adgaataf our map rep-
resentation for mobile robot localization in quasi-staiwiironments compared to
standard MCL. The data used for this experiment was obtdméte same office
environment as above. We placed a box at three differentitotsain the corridor.
The resulting map including all patches obtained via chirsgeis depicted in Fig-
ure 1.12. Note that the tiles in the map illustrate the averager all patches. To
evaluate the localization accuracy obtained with our mgpesentation, we com-
pare the pose estimates to that of a standard MCL using arpancy grid map as
well as a grid map obtained by filtering out dynamic objec.[1



1 Mobile Robot Map Learning from Range Data in Dynamic Erminents 19

13~

Ko

ol . Sl . Sl . il o

e i i e e o o

Fig. 1.11. A patch-map representing the different configurationsnedrfor the individual
sub-maps in a typical office environment.

Figure 1.13 plots the localization error over time for theethdifferent represen-
tations. The error was determined as the weighted averatgnde from the poses of
the particles to the ground truth, where each weight is gwetine importance factor
of the corresponding particle. In the beginning of this ekpent, the robot traveled
through static areas so that all localization methods peréd equally well. Close
to the end, the robot traveled through the dynamic areaghwiaisults in high pose
errors for both alternative approaches. In contrast tq thattechnique constantly
yields a high localization accuracy and correctly traclksribot.

To further illustrate, how our extended MCL is able to estient&ie current state
of the environment, Figure 1.14 shows the path of the robyotttph a non-static area.
Figure 1.15 plots the corresponding posterior probaedifor two different patches
belonging to one sub-map. At time stéf, the robot entered the corresponding sub-
map. At this point in time, the robot correctly identifiedattthe particles, which
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Fig. 1.12.A patch-map with the different configurations for the indival patches.
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Fig. 1.13.The error in the pose estimate over time. As can be seen, osingpproach the
quality of the localization is higher compared to approaalsing grid maps.
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Fig. 1.14.The traveled path of the robot with two time labels. Durirgyritotion, the robot
correctly identified the current state of the environmeae(Bigure 1.15).

localize the robot in patch 1, performed much better thars#tmples using patch 0.
Due to the re-samplings in MCL, particles with a low impotarweight are more
likely to be replaced by particles with a high importancegti Over a sequence
of integrated measurements and re-samplings, this led fwraability close tol
that the environment looked like the map represented byhpatéwhich exactly
corresponded to the ground truth in that situation).
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Fig. 1.15.The left image depicts the two possible patches whereagéph @n the right plots
the probability of both patches according to the samplefsetan be seen, the robot identified
that patch 1 correctly models the configuration of the emvitent.

phase 1 (door was closed) phase 2 (door was open)
& —~<—robot & robot
o m/’ﬁ/
truth door close door ope
map =
(door -
closed)
map
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Fig. 1.16.In the beginning the door was closed (left column) but wasrlah opened (right
column). The first row depicts the ground truth, whereas ¢oeisd row illustrates the particle
distributions in case the door is supposed to be closed indbapancy grid map, whereas no

door was mapped in the third row.

phase 1 (door was closed)

o

phase 2 (door was open)

Fig. 1.17.Particle clouds obtained with our algorithm for the sameadibns as depicted in

Figure 1.16.

Global Localization

Additionally, we evaluated all three techniques in a sirtedaglobal localization
task. We compared our approach using two patches to reptesestate of the door
with standard MCL using occupancy grid maps (see Figure aritb1.17). In one
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experiment, the occupancy grid map contained the closed alwb in the second
one the open door. During localization, the robot mostly atbin front of the door,
which was closed in the beginning and opened in the secorsgpighe experiment.
As can be seen in left column of Figure 1.16 and 1.17, the MQir@gch which

uses the occupancy grid that models the closed door as walrapproach lead to a
correct pose estimate. In contrast to that, the occupamdywghich models the open
door causes the filter to diverge. In the second phase of periexent, the door was
opened and the robot again moved some meters in front of trgsee right column
of the same figure). At this point in time, the MCL techniquéngsthe occupancy
grid, which models the closed door cannot track the correse@anymore, whereas
our approach is able to correctly estimate the pose of thetrdinis simulated ex-
periment again illustrates that the knowledge about ptessibnfigurations of the
environment is important for mobile robot localization.téut this knowledge, the
robot is not able to correctly estimate its pose in nonsktvironments.

Map Clustering

The last experiment is designed to illustrate the map alungteorocess. The input
to the clustering was a set o7 local grid maps. The fuzzy k-means clustering al-
gorithm started with a single cluster, which is given by theam computed over all
17 maps. The result is depicted in the first row of Figure 1.18 @&lgorithm then
increased the number of clusters and re-computed the meaasth step. In the fifth
iteration the newly created cluster is more or less equaluster 3. Therefore, the
BIC decreased and the clustering algorithm terminated thithmodel depicted in
the forth row of Figure 1.18.

1.6 Related Work

For mobile robots, there exist several approaches to mgppidynamic environ-
ments. The approaches mostly relevant to the approachedrfdtbeams reflected
by dynamic objects are the methods developed by Védirad) [34] and our previous
work described in [17]. Wangt al.[34] use a heuristic and feature-based approach to
identify dynamic objects in range scans. The correspongliegsurements are then
filtered out during 2d scan registration. In our perviouskdi7], we describe an
approach to track persons in range scans and to remove ttespgonding data dur-
ing the registration and mapping process. Recently, Maniest al. [24] describe
an algorithm for simultaneously tracking moving objectd astimating the pose of
the vehicle and landmarks. They also describe how to utiizeestimates during
navigation. Compared to these techniques, our algorittesgmted in this chapter
does not rely on any pre-defined features or motion modethieRat considers ev-
ery measurement individually and estimates a posterioutalvbether or not this
data item has been generated by a dynamic object.

From a more general perspective, the problem of estimatngmic aspects in
data can be regarded as an outlier detection problem, siecspturious measure-
ments are data items that do not correspond to the statictaspiethe environment
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Fig. 1.18.Iterations of the map clustering process. Our approactategly adds new clusters
until no improvement is achieved by introducing new clus{@rith respect to the BIC). Here,
the algorithm ended up with clusters, since cluster 3 and 5 are redundant.

which are to be estimated. The identification of outliersndgraportant subtask in
various application areas such as data mining [8, 19, 2Tjespondence establish-
ment [6, 11], clustering [14], or statistics [5]. In all tleefelds, errors in the data
reduce the accuracy of the resulting models and thus cantéeadlecreased per-
formance whenever the learned models are used for predlicticobot navigation,
for example. The problem considered in this chapter diffieos these approaches
in the fact that outliers cannot be detected solely baseti@ndistance to the other
data items. Rather, the measurements first have to be iatedpand transformed
into a global representation (map) before individual meaments can be identified
as outliers.

There has been work on updating maps or improving locatimati populated
environments. For example, in the system described in [@len static map is tem-
porarily updated using the most recent sensory input. Tilos/a the robot to con-
sider areas blocked by people in the environment duringplatiming. Montemerlo
et al.[22] present an approach to simultaneous localization aogle tracking. This
approach simultaneously maintains multiple hypothesestahe pose of the robot
and people in its vicinity and in this way yields more robustirates. Siegwart
al. [32] present a team of tour-guide robots that operates inpallpted exhibition.
Their system uses line features for localization and has beggorted to successfully
filter range-measurements reflected by personsefFak[15] present a probabilistic
technique to identify range measurements that do not qourekto the given model
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of the environment. In contrast to our approach, these nisthequire a given and
fixed map which is used for localization and for the extractib the features corre-
sponding to the people. Our filtering technique, in confr@ses not require a given
map. Rather it learns the map from scratch using the dataradquith the robot’s
sensors.

Additionally, several authors have proposed techniquelefoning dynamic ob-
jects of maps of dynamic aspects with mobile robots. For gta@mAnguelovet
al. [2] present an approach which aims to learn models of naieety objects
from proximity data. The object shapes are estimated byyapph hierarchical EM
algorithm based on occupancy grids recorded at differemtpdn time. The main
difference to our approach to model quasi-static aspedtsmiswve estimate typical
configurations of the environment and do not address thelgmobf learning geo-
metric models for different types of non-stationary obkgac

Schulz and Burgard [29] proposed a probabilistic algorithrastimate the state
of dynamic objects in an environment. Avasal. [4] apply a Rao-Blackwellized
particle filter to estimate the state of doors. Both appreachowever, require a
parameterized model of the environment that includes tmaufyc objects such as
doors. Angueloet al.[3] uses an EM-based approach to detect doors and to estimate
their states. Thereby, they take into account shape, cahor,motion properties of
wall-like objects. In contrast to these works, the apprqaelsented in this chapter is
independent of the type of quasi-static object and can lagbitrary configurations
of the environment.

Yamauchi and Beer [35] describe a network of places in whicksl model
a connection between different places. These links may rdiggly change their
traversability. To deal with these dynamic aspects, theyesd confidence value
which is updated according to successful or unsuccesg@rhats to traverses that
link. In the context of landmark-based mapping, the appgigaesented by Andrade-
Cetto and Senafeliu [1] is able to remove landmarks whicmatebserved anymore
from the posterior.

Romeroet al. [28] describe an approach to globally localize a mobile tabo
static environments in which a clustering algorithm is #&pto group similar places
in the environment. In this way, the robot is able to redueertimber of possible
pose hypotheses which speeds up the probabilistic lotializarocess.

In a very recent work, Bieber and Duckett [7] proposed an @pgh that incor-
porates changes of the environment into the map repregant&ompared to our
work, they model temporal changes of local maps whereas meaidentify the
different configurations of the environment.

Our approach to learning typical configurations is desigegkplicitely model
possible states of the environment, like, e.g., open arsgkdldoors or moved tables.
As we have demonstrated in this chapter, it can be used ii@ddo the filtering
techniques. We also demonstrated that the different emviemtal state hypotheses
enable a mobile robot to more reliably localize itself andlsp estimate the current
configuration of its surroundings.
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1.7 Conclusions

In this chapter, we presented probabilistic approachesagping in dynamic envi-
ronments. We first presented an algorithm based on the ENlitdgothat interleaves
the identification of measurements that correspond to dimabjects with a map-
ping and localization algorithm. In this way, it incremdhtamproves its estimate
about spurious measurements and the quality of the map. fd&ly/fobtained maps
contain less spurious objects and also are more accuraseideof the improved
range registration. Additionally, we presented a noveltapph to model quasi-static
environments using a mobile robot. In areas where dynangiects are detected,
our approach creates local maps and estimates for each aplziosters of possi-
ble configurations of the corresponding space in the enmgort. Furthermore, we
described how to extend Monte-Carlo localization to wutilthe information about
the different possible environmental states while lodadjza vehicle. Our approach
has been implemented and tested on real robots as well anufesion. The exper-
iments demonstrate, that our technique yields a highetifat®n accuracy com-
pared to Monte-Carlo localization based on standard grigse&en such obtained
after filtering out measurements reflected by dynamic object

Our techniques have been implemented and tested on diffegforms. In sev-
eral experiments carried out in indoor and outdoor enviremis we demonstrated
that our approaches vyield highly accurate maps. The reifluktrate that our ap-
proaches can reliably estimate filter beams reflected byrdimenvironments and
that quasi-static aspects can be modeled accurately.

Acknowledgment

The authors would like to thank Sebastian Thrun and Rudohmb@l for fruitful
discussions. This work has partly been supported by the &efResearch Foun-
dation (DFG) under contract number SFB/TR-8 (project A3) Ay the EC under
contract number FP6-004250-CoSy and FP6-1ST-027140-BACS

References

1. J. Andrade-Cetto and A. Sanfeliu. Concurrent map buildind localization in indoor
dynamic environmentsint. Journal of Pattern Recognition and Atrtificial Intelégce
16(3):361-274, 2002.

2. D. Anguelov, R. Biswas, D. Koller, B. Limketkai, S. Sannend S. Thrun. Learning
hierarchical object maps of non-stationary environmerits mobile robots. IrProc. of
the Conf. on Uncertainty in Artificial Intelligence (UAB002.

3. D. Anguelov, D. Koller, E. Parker, and S. Thrun. Detectargl modeling doors with
mobile robots. IrProc. of the IEEE Int. Conf. on Robotics & Automation (ICRgg9ges
3777-3774, New Orleans, LA, USA, 2004.



26

oo

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Wolfram Burgard Cyrill Stachniss Dirk Hahnel

D. Avots, E. Lim, R. Thibaux, and S. Thrun. A probabilistichnique for simultaneous

localization and door state estimation with mobile robetslynamic environments. In

Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots anst&ys (IROS)ages 521—

526, Lausanne, Switzerland, 2002.

. V. Barnett and T. LewisOutliers in Statistical DataWiley, New York, 1994.

P. Besl and N. McKay. A method for registration of 3d shag&ans. Patt. Anal. Mach.

Intell. 14(2) pages 239256, 1992.

. P. Biber and T. Duckett. Dynamic maps for long-term operadf mobile service robots.
In Proc. of Robotics: Science and Systems (RE¥)5. To appear.

. C.E. Brodley and M.A. Friedl. Identifying and eliminagimislabeled training instances.
In Proc. of the National Conference on Artificial Intelligen@eAAl), 1996.

. W. Burgard, A.B. Cremers, D. Fox, D. Hahnel, G. LakemgleiSchulz, W. Steiner, and

S. Thrun. Experiences with an interactive museum toureyuabot. Artificial Intelli-

gence 114(1-2), 2000.

J.A. Castellanos, J.M.M. Montiel, J. Neira, and J.Ddbar The SPmap: A probabilis-

tic framework for simultaneous localization and map buitdi IEEE Transactions on

Robotics and Automatioi5(5):948-953, 1999.

I.J. Cox and S.L. Hingorani. An efficient implementatfireid’s multiple hypothesis

tracking algorithm and its evaluation for the purpose ofigistracking. IEEE Transac-

tions on PAM] 18(2):138-150, February 1996.

F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte chrtalization for mobile robots.

In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICREguven, Belgium,

1998.

G. Dissanayake, H. Durrant-Whyte, and T. Bailey. A cotapanally efficient solution to

the simultaneous localisation and map building (SLAM) peal InICRA’2000 Work-

shop on Mobile Robot Navigation and Mappjr&an Francisco, CA, USA, 2000.

R. Duda, P. Hart, and D. StorRattern ClassificationWiley-Interscience, 2001.

D. Fox, W. Burgard, and S. Thrun. Markov localization fioobile robots in dynamic

environmentsJournal of Artificial Intelligence Research (JAIR)1:391-427, 1999.

J.-S. Gutmann and K. Konolige. Incremental mapping mfdayclic environments. In

Proc. of the IEEE Int. Symp. on Computational Intelligent&bbotics and Automation

(CIRA), 1999.

D. Hahnel, D. Schulz, and W. Burgard. Mobile robot magpn populated environments.

Journal of the Robotics Society of Japan (JR3(17):579-598, 2003.

D. Hahnel, R. Triebel, W. Burgard, and S. Thrun. Map diniy with mobile robots in

dynamic environments. IRroc. of the IEEE Int. Conf. on Robotics & Automation (ICRA)

2003.

George H. John. Robust decision trees: Removing asitfrem databases. IRirst

International Conference on Knowledge Discovery and Daiaihy, pages 174-179,

1995".

J.J. Leonard and H.J.S. Feder. A computationally efficreethod for large-scale concur-

rent mapping and localization. In J. Hollerbach and D. Kaxtiek, editorsProceedings

of the Ninth International Symposium on Robotics Resea@apes 169-179, 2000.

F. Lu and E. Milios. Globally consistent range scan alignt for environment mapping.

Autonomous Robqtd:333-349, 1997.

M. Montemerlo and S. Thrun. Conditional particle filtéys simultaneous mobile robot

localization and people-tracking (slap). Broc. of the IEEE Int. Conf. on Robotics &

Automation (ICRA)2002.



23.

24.

25.

26.

27.

28.

29.

30.
31

32.

33.

34.

35.

1 Mobile Robot Map Learning from Range Data in Dynamic Erminents 27

M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FRisAM: A factored solution to
simultaneous localization and mapping.Aroc. of the National Conference on Artificial
Intelligence (AAAI)Edmonton, Canada, 2002.

L. Montesano, J. Minguez, and L. Montano. Modeling tiisand the dynamic parts of
the environment to improve sensor-based navigatiorPra. of the IEEE Int. Conf. on
Robotics & Automation (ICRAR00S.

H.P. Moravec and A.E. Elfes. High resolution maps frordenvangle sonar. IRroc. of
the IEEE Int. Conf. on Robotics & Automation (ICRAxges 116-121, St. Louis, MO,
USA, 1985.

K. Murphy. Bayesian map learning in dynamic environraein Neural Info. Proc. Sys-
tems (NIPS)Denver, CO, USA, 1999.

S. Ramaswamy, R. Rastogi, and S. Kyuseok. Efficientigthgos for mining outliers from
large data sets. IRroc. of the ACM SIGMOD International Conference on Manageim
of Data 2000.

L. Romero, E. Morales, and E. Sucar. A hybrid approacloliceshe global localozation
problem for indoor mobile robots considering sensor’s getaal limitations. IrProc. of
the Int. Conf. on Artificial Intelligence (IJCAIR0O1.

D. Schulz and W. Burgard. Probabilistic state estinmatiodynamic objects with a mov-
ing mobile robot.Robotics and Autonomous Syste¥(2-3):107-115, 2001.

G. Schwarz. Estimating the dimension of a mod#le Annals of Statistic§(2), 1978.

H. Shatkay. Learning Models for Robot NavigationPhD thesis, Computer Science
Department, Brown University, Providence, RI, 1998.

R. Siegwart, K.O. Arras, S. Bouabdallah, D. Burnier, Goidflevaux, X. Greppin,
B. Jensen, A. Lorotte, L. Mayor, M. Meisser, R. PhilippsenPRjuet, G. Ramel, G. Ter-
rien, and N. Tomatis. Robox at Expo.02: A large-scale itesiah of personal robots.
Journal of Robotics & Autonomous Systed(3-4), 2003.

S. Thrun. A probabilistic online mapping algorithm feats of mobile robotdnt. Jour-
nal of Robotics ResearcR0(5):335-363, 2001.

C.-C. Wang and C. Thorpe. Simultaneous localizationraagdping with detection and
tracking of moving objects. IfProc. of the IEEE Int. Conf. on Robotics & Automation
(ICRA), 2002.

B. Yamauchi and R. Beer. Spatial learning for navigaitiasynamic environmentdEEE
Transactions on Systems, Man and Cyberngfl6$3):496-505, 1996.



