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Abstract—In this paper, we present an approach towards 11, 19]. In the literature, those approaches are often neder
mapping and safe navigation in real, large-scale environm#s to as solutions to the simultaneous mapping and localizatio
with an autonomous car. The goal is to enable the car to au- (SLAM) problem. Recently, several techniques for acqugirin

tonomously navigate on roads while avoiding obstacles andhile th di . | dat ith 2d installed
simultaneously learning an accurate three-dimensional mael of ree-dimensional data wi range scanners installed on

the environment. To achieve these goals, we apply probakstic @ mobile robot have been developed. A popular approach is
state estimation techniques, network-based pose optimitan, to use multiple scanners that point toward#etent direc-

and a sensor-based traversability analysis approach. In aler tions [41, 13, 42]. An alternative is to use ptilhdevices that
to achieve fast map learning, our system compresses the sens sweep the range scanner in an oscillating way [32, 26]. More

data using multi-level surface maps. The overall systems ns on tlvy. techni f tating 2d h b
a modified Smart car equipped with different types of sensors. recently, techniques tor rotating range scanners hagg be

We present several results obtained from extensive experiemts developed [17, 50].
which illustrate the capabilities of our vehicle. Many authors have studied the acquisition of three-

dimensional maps from vehicles that are assumed to operate
on a flat surface. For example, Thret al. [41] present an

) i ~_approach that employs two 2d range scanners for constguctin
Learning models of the environment and safely navigating|umetric maps. Whereas the first is oriented horizontally

based on that models is a fundamental task of mobile robofsq is used for localization, the second points towards the

Many researcher focused on learning map of indoor as Weijing and is applied for acquiring 3d point clouds. Friitda

as outdoor scenes. Recently, modified cars became a n&knor [10] apply a similar idea to the problem of learning

platform in robotics. Compared to standard robots, c#if&ro |5rge-scale models of outdoor environments. Their approac

the possibility to travel longer distances, carry more 6e31S combines laser, vision, and aerial images. Furthermoverak

and thus being more suitable for mapping large areas. On fi@hors have considered the problem of simultaneous mgppin

one hand, this fbers the opportunity to address_ robotic tz_;\sks Ofhd localization (SLAM) in an outdoor environment [5, 12,

a larger scale but on the other hand requitésient solutions 43]. These techniques extract landmarks from range data and

to common problems like mapping or localization. _calculate the map as well as the pose of the vehicles based on
In this paper, we describe our modified Smart car equippgthse landmarks. Our approach described in this paper does

with different sensor to monitor the environment. We preseqgt rely on the assumption that the surface is flat. It uses

our approach to mapping large outdoor areas with that vgjrface maps to capture the three-dimensional structuiteeof

hicle. Our map representation can be seen as an extenii@fironment and is able to estimate the pose of the robot in
of elevation maps that allows us to modefféent layers in g six degrees of freedom.

the environment and thereforefigirent drivable areas like, for - ope of the most popular representations are raw data points

example, bridges or underpasses. It overcomes seriousdimg, triangle meshes [1, 20, 32, 44]. Whereas these models are
tions of elevation maps and is able to model the environrmentH'igmy accurate and can easily be textured, their disadgant
an adequate way needing only a few more memory resourggs in the huge memory requirement, which grows linearly in
compared to elevation maps. _ the number of scans taken. Accordingly, several authors hav
The reminder of this paper is organized as follows. Aftes;gied techniques for simplifying point clouds by piecssvi
the discussion of related work, we present detail about oyfegr approximations. For example, Haheglal. [13] use a
modified Smart car. Then, we will explain our approach tRagion growing technique to identify planes. Lai al. [21]
localization using dferent sensors. In Section V, we introducgs well as Martin and Thrun [23] apply the EM algorithm to
our model of th_e environment and present a m_ethod to legdister range scans into planes. Recently, Trietiedl. [46]
these model. Finally, we present experiments illustrat® ,.on0sed a hierarchical version that takes into account the
maps obtained with our robot in real world experiments. parallelism of the planes during the clustering procedare.
alternative is to use three-dimensional grids [27] or trased
Il ReLarep Work representations [34], which only grow linearly in the side o
The problem of learning models of the environment hake environment. Still, the memory requirements for sucpsna
been studied intensively in the past. Most approaches genein outdoor environments are high.
two-dimensional models from range sensor data and a sdries dn order to avoid the complexity of full three-dimensional
different approach have been developed [22, 24, 37, 8, 7, AQaps, several researchers have considered elevation siaps a

|. INTRODUCTION



attractive alternative. The key idea underlying elevatioaps . power steeringThe power steering motor can deliver
is to store the %-dimensional height information of the terrain enough torque to steer the car. So, it is possible to "steer
in a two-dimensional grid. Barest al. [2] as well as Hebert by wire” with minor modification.

et al. [14] use elevation maps to represent the environment. auto gearshiftNo additional modification is required to
of a legged robot. They extract points with high surface switch gears while the car is driving.

curvatures and match these features to align maps coresfruct « easy access to the CAN blmportant sensory informa-
from consecutive range scans. Singh and Kelly [36] extract tion such as steering wheel angle and wheels velocities
elevation maps from laser range data and use these maps are directly accessible.

for navigating an all-terrain vehicle. Ye and Borensteid][5 All these features facilitate the process of modifying sach

propose an algorithm to acquire elevation maps with a movighicle for autonomous driving. The fully equipped SmartTe
vehicle carrying a tilted laser range scanner. They propgsedepicted in Fig. 1 and 2.

special filtering algorithms to eliminate measurement rsrro
or noise resulting from the scanner and the motions of the
vehicle. Wellingtoret al. [49] construct a representation based
on Markov Random Fields. They propose an environment
classification for agricultural applications. They congtite
elevation of the cell depending on the classification of the
cell and its neighbors. Compared to these techniques, the
contribution of the mapping approach presented in this pape
lies in two aspects. First, we classify the points in the atien

map into horizontal points see from above, vertical points,
and gaps. This classification is important especially when a
rover is deployed in an urban environment. In such environ-
ments, typical structures like the walls of buildings canipe
represented in standard elevation maps. Second, we describ
how this classification can be used to improve the matching
of different elevation maps.

In the context of autonomous cars, a series of successful
systems [45, 3, 48] have been developed for the DARPA el i :
Gran Challenge [4], which was a desert race for autonomous s o R
vehicles along an approximatively 130 mile course. As altes i
of this challenge, there exist autonomous cars that rgliablg'
avoid obstacle and navigate at comparably high speeds. The
focus of the Gran Challenge was to finish the race as quickly as
possible whereas certain issues like building consistaget
scale maps of the environment have been neglected since they
where not needed for the race. Our approach towards mapping
large areas therefore has affdient aim compared to the
vehicles participating in the Gran Challenge. Nevertrglear
Smart car also benefited fromfiirent techniques used within
the Gran Challenge. We apply a similar approach to follow a
given trajectory than the winning vehicle Stanley [45].

1. SmartTer front view

Il. V enicLE DEScRIPTION

Our vehicle, called SmartTer (Smart all Terrain), is a stan-
dard Smart car that has been enhanced for fully autonomous
driving in both urban and non-urban environments. The model
is a Smart fortwo coupé passion of year 2005, which is
equipped with a 45 kW engine. This model has been chosen
because it gathers several advantages: Fig. 2. SmartTer side view

. compact and lighSuch characteristics allow us to easily

transport the vehicle on a trailer to the testing araad
fits in our lab’s mechanical workshop. Furthermore, itd. Vehicle modifications
light weight yields fair locomotion performance in rough |, order to enhance the original model for autonomous
terrain. driving, several modifications have been performed on the ca
1Because the car has been deeply modified, it is not allowedite dn This section describes the mechanical and electrical cdfﬁing
public streets. that were necessary.




e Wheels with better grip and larger diameter have been ECU |=—» Rack0
mounted. This yields to an higher ground clearance and much
better traction in rough terrain.

e A 24V power generator has been installed in order to
power all the electronic devices and additional actuators. g
The generator is driven by a belt and pulley that is directly

»
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connected to the engine output axis (which is situated under
the trunk, at the rear of the car). Two batteries placed in
the trunk act as an energy fer. They have a total capacity
of 48Ah and are continuously recharged when the engine is
running. ) .

e TO pgrovide a clean interface to the vehicle, we integrateF(IJg 3 Steer by wire system

an a_luto_motive I_ECU designed for highly reliable real'timﬁetween normal or controlled mode.

applications. This ECU has four CAN interfaces as well as

a wide variety of analog and digitaf®. In the vehicle, it

is sitting between the computers on the one hand and fRe Sensors

vehicle CAN bus and our actuators on the other hand. InThe sensors used for outdoor applications must meet strong
this ECU, we implemented a state machine that allows us i@quirements such as mechanical robustness, ftagmproof-
enable diferent modes of operation (STOP, PAUSE and RUMess and limited sensitivity to sun light. Thus, in compamis

via wired buttons as well as by a wireless remote contreiith indoor applications, the choice is limited and the st
Besides these emergency buttons, the ECU handles timeftptimal sensors must be done carefully. In this sectidn, a

in the command coming from the computers and ensuresha sensors that have been mounted on the car are described.
safe vehicle state whenever those commands are missing.«A$hree navigation laser scanner sensq®ICK LMS291-

this system is in aspects of both hardware and software a hag@ds, outdoor version, rain proof, low sensitivity to surhtig
real-time system. These sensors are used mainly for obstacle avoidance ald loc

e The power steering system applies a torddgia on the npavigation. One sensor is placed at the lower front slightly
steering column that allows to minimize thé&at required |ooking down and the two others on the roof, looking to the
by the driver to steer the wheels (see Fig. 3). This tasfdes and slightly down. This 'A shape configuration enalale

is fulfilled by the driving assistance unit (DA unit), whichjarge field of view and is well adapted to all kind of terrains.
minimize the torque sensed in the steering column by apglyiThe three sensors are visible in Fig. 1 and Fig. 4 depicts a
an appropriate voltage to the power steering motor. The gaiyser view of the sensors mounted on the roof.

of the DA controller is set based on the car’s velocity, which

is broadcasted on the CAN bus of the vehicle. In order —— i~

to use the power steering motor for "steering by wire”, a |+« .
specific electronic board has been designed and insertbeé int | -
vehicle’s control loop. The Vehicle CAN bus was disconndcte  /
from the DA and routed to a computer (RackO in Fig. 3) so -
that the steering anglas can be read and used by our own
controller. An additional CAN bus, called Computer CAN,
allows to feed the DA unit with the minimal set of CAN
messages required for the proper operation of the unit i.e.;. - v
engine on and car velocity messages. The same bus is use_

to send commands to a CAN to analog module which "fakes”
the torque voltage needed by the DA unit. Finally, the stepri
angle is controlled with a PID controller running on the acoht
computer which minimizes the steering angle egera; —as,
where a; is the desired steering angle. A switch mounted
next to the steering wheel, enables the selection of manual

or controlled mode. Fig. 4. Sensors mounted on the roof

e A system of cable and pulleys is used to activate the break

pedal. The servo motor that pulls the cable is placed under # Rotating 3D scannefhis is a custom made sensor that is
driver’s seat and is commanded using the Computer CAN. mounted on the roof (see Fig. 5). In order to acquire 3D scans
¢ A dedicated electronic board has been developed to enablethe environment, two SICK LMS291-S05 are mounted
the use of a computer to set the gas command. The commaitttways on a plate rotating around the vertical axis. Aalign
voltage, originally provided by a potentiometer embedded is triggered each time the plate performs a full turn. Thay wa
the gas pedal, is simply generated by a CAN to analog devidteis possible to know its angular position at each time (gsin
This device receives commands through the Computer CAhe rotational velocity of the motor and the elapsed timeesin
bus. A button mounted inside the car allows us to chootiee last trigger). The data and power lines of the two SICK

electronic board Velocity
CAN

-
b -
.




sensors go through a slip ring, which is mounted along tAde internal digital signal processor of the unit combines
rotation axis. The 3D scans are mainly used to computettee embedded sensors to provide the filtered attitude of the
consistent 3D digital terrain model of the environment. vehicle (roll, pitch, heading to true north) and the positio
(latitude, longitude and altitude). However, this senser i
not well adapted for a ground vehicle driving at low speed
because of a bad sigriabise ratio of the inertial sensors.
Furthermore, the earth magnetic field can be strongly destor
when the vehicle drives next to iron structures. This causes
large error on the estimated heading. For better accurady an
robustness, we implemented our own localization algorjthm
which is presented in section IV. The algorithm combines the
measurements taken by the IMU, thetdiential gps, the car
sensors and the optical gyroscope.

C. Computational power and software architecture

The system consists of four compact PCI computer racks
communicating trough a gigabit Ethernet link. All the racks
have the same core architecture which is a Pentium M proces-
sor running at 2GHz, equipped with 1.5GB of RAM, Gigabit
and Fast Ethernet, two RS232 serial ports, USB ports and a
30GB hard disk. Each rack is dedicated to specific tasks and
acquires measurement fromffédirent sensors as it is depicted

Fig. 5. Rotating scanner and omnidirectional camera

e Omnidirectional cameré&Sony XCD-SX910CR, focal length in Fig. 6.

12mm, with parabolic mirror and dust protection) The SeBIP i venicie sensors optical gyro U

mounted in front of the rotating scanner (see Fig. 5). It égmab 2" actarrs \9 —
. = s

the acquisition of panoramic images that are used to suppl_ 4§
texture information for the 3D digital terrain maps. The gea { ! ) DbePs
are also exploited to detect artificial object in the scene. Vehicle (rack0) -~

e Monocular camera(Sony XCD-SX910CR, focal length

4.2mm) This camera is placed in the car, behind the wind Navigation sicks

Camera

shield. Like the omnidirectional camera, it is used to detec “~ Navigation (rack1) - s s ﬂ
R

artificial object in the scene.
e Differential GPS systenfOmnistar Furgo 8300HP) This 1[
device provides the latitude, longitude and altitude thget

with the corresponding standard deviation and the standard omnicam
NMEA messages with a frequency of 5Hz. When geostation- -
ary satellites providing the GPS drift correction are Jisib -
from the car, the unit enters thefiirential GPS mode (high

precision GPS). When no correction signal is available, the

device outputs standard precision GPS. Fig. 6. Architecture of the system

e Car sensorsThe measurements taken by the car sensors are

reported with a frequency of 100Hz and are accessible viaThe computer racks run the Linux operating system and
the CAN bus of the vehicle. The car provides motor RPMhe software architecture is based on both GenoM [9] and
temperatures, steering wheel angle, wheel velocitiespgdal Carmen [25] robotic software architectures. The functiona
position, and some further status information. modules running on élierent computers exchange data using

e Optical gyroscopgKVH DSP3000) This fibre optic gyro- the Inter Process Communication (IPC) [35]. To guarantee
scope can measure very low rotation rates with a frequerityat the time stamp associated to each data packet is glob-
of 100Hz. It is possible to use it as a heading sensor foradly consistent, the CPU clocks are synchronized using the
comparably long period of time by integrating the angulée.ra Network Time Protocol Daemon (NTPD). In order to reduce
Contrary to compasses, the integrated heading is not sensitommunication delays, the architecture has been designed i
to earth magnetic field disturbances. Finally, this urfers such a way that it minimizes the amount of transmitted data.
much better accuracy than mechanical gyro and is not semsiti The Vehicle rackis endowed with a CAN interface that is

to shocks because it contains no moving parts. used to access the vehicle CAN bus. The measurements of
e Inertial measurement uniiCrossbow NAV420, waterproof) the car sensors are continuously read and the car commands
This unit provides sensor data with a frequency of 100 Hach as the vehicle velocity and steering angle are passed to
that contains the measurements from 3 accelerometersth8 ECU. The other sensor i.e. the DGPS, the IMU and the
gyroscopes, a 3D magnetic field sensor and a GPS receieggtical gyro are connected to the rack through RS232 serial

3D Mapping (rack2) -— s Rotating sicks

Scene interpretation (rack3)




ports. The main tasks of the Vehicle rack are to keep track. Differential GPSWe use the WGS-84 standard to convert

of the vehicle position and to control its motion (steering, the GPS coordinates in Cartesian coordinates, ¢)

breaking, velocity control, etc.). expressed in a local navigation frameThe heading to
The Navigation rackacquires range data from the three  true northy is also output by the unit and is available in

navigation scanners through high speed RS422 serial ports. the RMC message. The measurement model for the GPS

It is endowed with a firewire interface (IEEE 1394) which is

allows to grab images from the navigation camera. The main

task of this computer is to plan a safe path to the goal usiag th Xgps X
sensor measurements (images and range data) and to provide Zgps = Yos | | Y | Ly (1)
. i ps 7 gps
the motion commands to the Vehicle rack. Zgps
A 3D map of the traversed environment is updated on the Yaps 1, ¥,

3D Mapping rackusing the measurements acquired by the |n order to reject the erroneous fixes caused by multi-path
rotating 3D scanner (RS422 board). Like on the Navigation and satellite constellation change, we use the following
rack, the scanner data is acquired through RS422 ports. The gating function [39]

index signal is detected using a multi-purpose 10 board and

the motor speed is set using an RS232 interface. For more Z7(k)-St 2k <y, 2)
realistic rendering, the texture information acquired bg t

omnidirectional camera is mapped on the 3D model as it is whereS is the innovation covariance of the observation.
depicted in Fig. 7 The value ofy is set to reject innovations exceeding the

95% threshold.
. Car sensordor localization, we use the velocitgg, of

the car from the CAN bus. Unlike in the case of a flight
i vehicle, the motion of a wheeled vehicle on the ground

T is governed by nonholonomic constraints. Under ideal
conditions, there is no side slip and no motion normal
to the ground surface: the constraints sg, = 0 and
Zodo = 0. In any practical situation, these constraints are
often violated. Thus, as in [6], we use zero mean Gaussian
noise to model the extent of constraint violation. The
measurement model for the odometry is then expressed

as
xodo T X
n .
Zdo=| O | =[Ch] | V| +Voto (3
0 b z n
Fig. 7. 3D scan with texture. One recognize a tree on the lafidhside, where CB_ is the matrix for. tranSformir?g YelOCities €x-
yellow street markings (-x- shape), a pink box (next to theettmarkings) pressed in the car’s franteinto the navigation frame.
and persons (on the right, with arms extended) The observation noise covariance is obtained using
Finally, the scene analysis is performed on tBeene ; 2 2 2 T
y y P Rodo = Cj, - diag {a'eno Top a'vz} [Cg] , 4)

interpretation rack The artificial objects are extracted from
the textured 3D maps and raw omni-cam images and their wherec?, is the variance of the car velocity amiy,(r\z,z
representation and location are stored in memory as theleehi  are the amplitude of the noise related to the constraints.

moves along the path. « Optical gyroscopd he measurement model for the optical
gyro is
IV. L ocaLizaTioN b 5
o : . . = =Y+ + Vopts
Our localization algorithm is based on the inverse form of Zopt = Yopt = ¥+ Dopt + Vopt ®)
the Kalman filter, i.e., the information filter. This filter fithe where by is the angular fiset between the heading to
property of summing information contributions fromfférent true northy and the actual measurement of the gyro.

sources in the update stage. This characteristic is adyemtiz ~ « Inertial measurement uniFor the reasons mentioned
when many sensors are involved, which is the case in our before, we disabled the GPS and used the unit in angle
system. The localization is done in two steps, namely thie sta  mode: roll, pitch and heading to magnetic north. The

prediction and the state update. measurement model for this sensor is
A. State Update Zimu = [ (g_'m” = [ (z + Vimu (6)
imu n

The car state is updated using the measurements taken by
several complementary sensors. Yimu = ¥ + Dimu + Vhimu, (7)



wherebim, is the angular fiset betweeg and the heading -”711
measurement of the IMU. | !
y Ay il
‘-’
B. Prediction model z | Jid
We apply a standard prediction model for the car which has o ‘
the following form R

Fx ... 0 7
©F /
X+l = y . - Xk + Wk. (8) 3 3 3 3 3
F, X
0 R | Fig. 8. Example of dferent cells in an MLS Map. Cells can have many

: " : _surface patches (cell A), represented by the mean and tlienwarof the
The state vectok contains the position and velocity ex measured height. Each surface patch can have a depth, ékeatbh in cell

pressed in the navigation framegthe orientation of the vehicle B. Flat objects are represented by patches with depth 0,caenshy the patch
represented by the three angles glipitch ¢ and yawy and in cell C.

the two biasedim, and byt , :
o, as well as alepth value dHere,u ando define a Gaussian

T distribution that reflects the uncertainty of the measueidt
X = [ X X'y Vy zz¢ 0 ¢ Dbmu Dopt ] (9) of an object’s surface. The depth valdeepresents the length
of a vertical interval starting gt and pointing downwards.
The motivation behind this is to represent flat objects, sagh
street, ground etc., and non-flat objects such as buildmtsei
same framework. A surface patch of a building will usually
1 h } have a large depth value, while the depth of a street patch

k

The position of the vehicle at timle+ 1 is predicted using
the position and velocity at timk. This takes the form of a
first order process written as

Fxyz= 0 1 (10) s in general 0. Figure 8 illustratesfiiirent possible surface

patches in an MLS map.

whereh denotes the sampling periott € 10 ms). All the
other elements of the state vector are predicted as simgle - ) )
Gaussian processes. The covariance madixassociated to B- Traversability Analysis and Feature Extraction

the state prediction process is represented as One main goal of the MLS map representation is the
ability to classify the terrain in which the robot moves. Fhi
Qk =Gk k- GI (11) classification is important to use the map for path planning.

. . . - . Another design goal for the MLS maps was the possiblity to
where gy is a diagonal matrix containing the variances of h local MLS maps to one bia mab. without relving on
the elements of the state vector fatc : p © big map, ying
the raw point cloud data. This matching process is usually
Oy = diag{ % oy o3 O’; o2 o-i aﬁimuagm } (12) performed using the iterative closest point algorithm (ICP
The map matching using ICP has been shown to be very
efficient when applying it to subsets of features rather than
to the entire data set [28, 33]. Therefore, we first classify
the surface patches into the three classes 'traversahlen-’
_ ) traversable’ and 'vertical’. Then we subsample each ofehes
Ge=| ° 9 : (13) classes and look for corresponding patches in the other map.
0z This will be described in the next section. For the patch
0 ... diagsxs(h) 1, classification, we define vertical patches as those havimg no
zero depth values. A patch is considered as traversable if it
is flat (the depth is 0) and the distance between its height the
h?/2 height of the neighboring patches does not exceeanl@ll
Oxyz = [ h ] (14)  other flat patches are classified as non-traversable.

Finally, the matrix mapping the noise covariargeto the
process covarianc@y is written as

Ox --- 0

where

V. Map Buping C. Map Matching

A. Map Representation To calculate the alignments between two local MLS maps
To represent the 3D data acquired with the rotating lasealculated from individual scans, we apply the ICP algonith
scanners, we use Multi-Level Surface (MLS) maps [47]. The3ée goal of this process is to find a rotation matRxand
maps can be regarded as an extension to elvation maps [2,d 4ranslation vectort that minimize an appropriate error
36, 31, 29, 18]. The idea here is that each cell in a 2D grfdnction. Assuming that the two maps are represented by a
can contain many representations of 3D objects callethce set of Gaussians, the algorithm first computes two sets of
patches A surface patch consists of a mearand a variance feature pointsX = {Xi,...,Xn,} andY = {y1,...,yn,}. In



a second step, the algorithm computes a sef @afidex pairs still remains and is visible in the maps. Therefore, we agply
or correspondence€, j1),...,(ic, jc) such that the poink;, global pose estimation technique similar to the one present
in X corresponds to the poit, in Y forc=1,...,C. Then, in [30]. For the details of this technique we refer to [47].
in a third step, the error functioa defined by We only note that it is based on a non-linear minimization
c of the diference between the 3D transformation parameters
eR 1) = 1 Z (i, = (Ryj. + t))Tzfl(xic - (Ryj, +1)), (15) (%Y, Z ¢, 9, ¥) resulting from the robot poses and those given
C = by local pose constraints between overlapping local malps. T
is minimized. HereX denotes the covariance matrix of thd0Cal pose constraints are obtained by applying ICP magchin
Gaussian corresponding to each pair ¥;). In other words, Petween overlapping local maps.
the error functione is defined by the sum of squared Maha-

lanobis distances between the poirisand the transformed V1. Parn PLanivg
pointy;.. In the following, we denote this Mahalanobis dis- In order to acquire data about the environment, the car
tance agd(Xi, Yj.)- needs to drive through its environment and visit thedent

In principle, one could define this function to directijocations. This can be done by manually driving the car or in
operate on the Gaussians when aligning twfiedént MLS a more challenging way by autonomous navigation. A realisti
maps. However, this would result in a high computationalpproach is to provide a route description to the car and let i
effort, especially if the maps are very big and many Gausdn autonomously along that route. However, it is ndfisient
sians are stored. Additionally, we need to take care of tfier safe navigation to only follow a predefined route since
problem that the intervals corresponding to vertical strrgss  obstacle might block the route and the car has to plan an
vary substantially depending on the view-point. Moreotlee, admissible trajectory around them.
same vertical structure may lead to varying heights in the The current version of our planning system follows the
surface map when sensed fronffeient locations. In practical ideas of Kelly and Stentz [15] and is closely related to the
experiments, we observed that this introduces seriougserrapproach of Thruet al.[45]. The idea is to generate variations
and often prevents the ICP algorithm from convergence. b the originally specified route. The robot then evaluates
overcome this problem, we separate Eq. (15) into three cothe diferent trajectories and selects the best admissible one
ponents each minimizing the error over the individual @assgiven a cost function. The trajectories are evaluated adogr
of points. These three terms correspond to the three ingivid to traversability, curvature, and alignment with the sfiedi
classes, namely surface patches corresponding to veotical route. The chosen trajectory is then sent to a low level
jects, traversable surface patches, and non-traversalifecs  controller, that keeps the car on the selected trajectomg T
patches. controller itself does not change the speed of the vehitle, i

Let us assume thati, and uj are corresponding points,only adapts the steering angle of the car. The bigger the erro
extracted from vertical objects. The number of points sarbetween the car and the trajectory it should follow, the more
pled from every interval classified as vertical depends dhe car tries to steer towards the given trajectory. We exfart
the height of this structure. In our current implementationvith a controller that was also applied by Thrun et al. [45]
we typically uniformly sample four points per meter. Thevhich is given by the control low
corresponding pointe;_ andv}c are extracted from traversable
surface patchesy;, andw’_are extracted from not traversable alt) = o)+ atan(

a7)
surfaces. The resulting error function then is

X(t)
. v(t))’
e c c \(/jv_rf}erea ref(feri to the new sFeering Icomr(r;afr]m{,t) .to th(_a f
_ Sy o o ifference of the current steering angle and the orientation o
&R = ; dh(uic, uj,) + ; dvie: Vio) + ; d(wi., i) (16) the trajectory the car should follow(t) refers to the current
distance between the position of the robot and the trajgctor
) i ) ) and v(t) describes the velocity of the car. The control gain
In this equation, the distance functiah calculates the Ma- juf ences, how intensive the car steers back to the trajecto
halanobis distance between the lowest points in the paticus (oo high value leads to oscillation and a too small value
cells. To increase thefeciency of the matching process, Weeaq 10 a comparably slow convergence rate to the reference
only consider a subset of these features by sub-sampling. rajectory. We determined the gain through experiments and
) obtain good results fox € [0.2,0.4].
D. Loop Closing This controller follows the given trajectory but can lead
Usually, the map matching process described in the previdassmall overshoots in curves and to slightly shaky steering
section works well in cases where the robot travels only @mmmands of the car. To overcome this problem, we do not
short distance. However, for longer distance the accumdlause the raw velocity information but apply a post filtering
local matching errors may be so large, that the overall map a Kalman filter fashion. This leads to smoother velocity
becomes inconsistent. This becomes visible especiallynwhestimates and helps to stabilize the steering command. We
the robot returns to areas where it has been before, whicHusthermore do not compute(t) only based on the closest
usually calledloop closing In our case, this matching errorpoint on the route but rather averaging of a few poses in
is bounded due to the high accurate GPS based global lodadnt of the car. This compensates for slightly un-smoothuin
ization described before. However, a smaller matchingrerrpajectories and reduces the risk of slight overshoots measi

vertical cells traversable non-traversable



VII. SmmuraTiON TECHNIQUES the real vehicle. The right image on Figure 10, for example,

The need for a sophisticated simulation environment f&€picts the simulated Smart car driving on a surface moag| th
our autonomous vehicle mainly originated in two facts. tirshas automatlcally been constructed from real data acqaired
the complex software architecture developed by several i outdoor test site.
searchers at fferent labs had to be tested as a comple_
system as early as possible to verify the appropriateness
interfaces, interaction protocols, and data rates. Secasd
the development of software and hardware was conduct
in parallel from the early beginning of the project on, ther
was an inherent need for physically plausible data sets
test the algorithms, especially in the area of 3d mapping a
navigation.

As a consequence, we have built a 3d simulation envi-
ronment for our autonomous vehicle, its main sensors, aﬁg. 10. The simulated environments can be composed of siggbmetric
the outdoor terrain. An example for such a simulation isbjects (left) or can be automatically build from 3d lasenga finder data
depicted in Figure 9. The developed system is based on &jered by the real vehicle (right).

Gazebo simulator [16], which is part of the Plgiginge

project. Gazebo uses the Open Dynamics Engine [38] to

yield physically plausible simulations in three dimensidty B. Experiences with the Simulator

taking into account friction, forces, and rigid body dynasii  There are often controversial discussions, whether the
It includes a wide variety of pre-build models for roboticgchievements possible through simulation are worth ffets
applications and is relatively easy to extend. We develapedhecessary for developing and maintaining the simulateffits
number of plug-in models for our autonomous smart car agglom our experience, one should not spend an excessive
its primary sensors which are three static laser range &ndefmount of time on optimizing system parameters in simu-
two rotating laser range finders, an GPS and inertial sensoktion since the real system typicallyfitirs substantially in
these aspects. On the other hand, the development of the 3d
mapping capabilities, the navigation system, and espptied
combination of both in one control loop was clearly factitz

by the simulation system.

For the 3d mapping algorithms, the main benefits lay in
the possibility to set up simple geometric environments and
to compare the mapping results with the known ground truth.
Additionally, by simulating a moving vehicle with its phygsil
properties we were able to get an intuition on how accurate th
Fig. 9. The simulated autonomous Smart car in outdoor terfleft). The localization system has .tO be for achieving dense and atecura
simulation includes two rotating laser range finders madinie top of the Maps. It was also relatively easy to compare the results for
vehicle (right). The laser beams are visualized in blue. different sensor placements, configurations, and data rates.

For the development of the navigation system, the avail-

Instances of these models can be configured and inseréglity of simple geometric environments was less impdrtan
into a simulated world using a simple XML-based descriptioas this could be simulated more easily and faster by a simple
language. At the same time, the plug-in models implement thianar simulation directly build into the navigation moelul
necessary interfaces and IPC-based communication pistogear more important was the possibility to test the navigatio
to our navigation and mapping system so they can readdjgorithm in a dynamic setting together with the real local
be exchanged for real hardware components. There are traversability maps calculated online. This could neithave
simulator specific message types build into the overallesyst been achieved by replaying real log files nor by using less
to ensure that the architecture is clearly focused on the regalistic simulation.
application domain.

VIII. E XPERIMENTS
A. The Simulated Environment A. Localization

In general, there are severalffdrent ways how the sim-  Our approach to localization has been extensively testdd an
ulated environment can be specified. For testing basic naproved to be accurate and reliable in an urban environment. A
gation capabilities, the simulator supports a flat grourashel typical result obtained during the validation phase is diepi
and simple geometric objects as obstacles, see the lefeimfagin Fig. 11. The figure represents the estimated trajectory of
Figure 10. More complex and realistic ground surfaces can thex car overlayed on the ortho-photo of the EPFL campus.
defined in terms of elevation maps or surface maps. By usingDuring the experiment, the car drove on areas were GPS
the interface to the surface map data structure, one can was not available or of bad quality (close to buildings,
simulation experiments on terrain that has been traversbd wunderground, along narrow alleys bordered with trees).etc.
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Fig. 13. Standard deviation along the north (x) and west é&Risor the
trajectory depicted in Fig. 12. The standard deviation éases when GPS
quality is poor and decreases as soon as it gets better. baks la,b and ¢
corresponds to the zones marked in Fig. 12

our representation is well-suited for global pose estiomadind
Fig. 11. Overlay of the estimated trajectory on the orthotphof EPFL. l00p closure. Furthermore we show that our representasion i
The zones where the GPS was not available are highlightezitolal traveled easy to apply to our simulator.

distance is 235®. . . .

In the experiment we acquired 312 local point clouds
ponsisting of 22,700,000 data points. The area scannedeby th
robot spans approximately 250 by 200 meters. During the data
acquisition, the robot traversed three nested loops wiémgth
of approximately 1,200m. Figure 14 shows a top view of the
GPS fauts and occlusions resulting MLS map with a cell size of 50cm x 50cm and 3

pe Y gotimated — ' 3 {\kﬂ ] cutouts with a visualized smart. The yelldight grey surface
patches are classified as traversable. It requires 17.15¢4By

However, the localization algorithm was able to cope wit
GPS faults and provided accurate positioning estimatiooh s
as depicted in Fig. 12.

40 -

x X

30

l to store the computed map, where 36% of 200,300 cells are
occupied. Compared to this the storage of the 22,700,0@0 dat
¢ 1 points requires 544,8 Mbytes.
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\/ IX. CoNCLUSION

10
b / In this paper, we presented our approach to mapping of
20 — £/ large-scale areas using an autonomous car. We first degcribe
out modifies Smart car and setup. Then, we presented out
00 150 100 = 0 50 100 approach to localization which is based on an information
filter that merges the information obtained by a variety of
Fig. 12. The graph represents a part of the trajectory depian Fig. different sensors. We furthermore presented our compact map

11. In this urban environment the GPS signal is disturbed byyrobjects ; ; ; ;
(trees, buildings, etc.) and GPS faults are of high ammdituche localization model that is suitable to model outdoor environment in an

algorithm was able to reject erroneous GPS fixes and to peositurate aPpropriate way. We showed how to construct a model given
estimations. The labels a,b and ¢ mark areas where GPS isoofoqumlity a set of smaller map build on the fly. We describe our

(a, b) or unavailable (c). approach to consistently merge the individual map into a

) . - world data obtained with this robot.
(~ 3cm) but increases as soon as fixes become unavailable

(up to 60cm).
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Fig. 14. The left handed image shows a top view of the regulkih. S map of a military test sight with a cell size of 50cm x 50cfhe area scanned by
the robot spans approximately 250 by 200 meters. During #te acquisition, the robot traversed three nested loogs aviength of approximately 1,200m.
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