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Summary. Indoor environments can typically be divided into placethwiifferent function-
alities like corridors, kitchens, offices, or seminar rooM& believe that the ability to learn
such semantic categories from sensor data or in maps eralphebile robot to more effi-
ciently accomplish a variety of tasks such as human-rolietastion, path-planning, explo-
ration, or localization. In this work, we first propose anaggeh based on supervised learning
to classify the pose of a mobile robot into semantic clas®es.method uses AdaBoost to
boost simple features extracted from vision and laser ralag@ into a strong classifier. We
furthermore present two main applications of this appro&dtstly, we show how our ap-
proach can be utilized by a moving robot for robust onlinssiliication of the poses traversed
along its path using a hidden Markov model. Secondly, wethice a new approach to learn
topological maps from geometric maps by applying our seinatassification procedure in
combination with probabilistic labeling. Experimentasuéts obtained in simulation and with
real robots demonstrate the effectiveness of our appreecdrious environments.

1 Introduction

In the past, many researchers have considered the problenidihg accurate maps
of the environment from the data gathered with a mobile robbe question of
how to augment such maps by semantic information, howeseririually unex-
plored. Whenever robots are designed to interact with tregrs, semantic informa-
tion about places can be important. It can furthermore bd tsmtuitively segment
an environment into different places and learn accurateltgcal models.

In this work, we address the problem of classifying placethefenvironment
of a mobile robot using range finder and vision data as welluslihg topologi-
cal maps based on that knowledge. Indoor environmentsthi&eone depicted in
Figure 1, can typically be divided into areas with differémhctionalities such as
laboratories, office rooms, corridors, or kitchens. Whesgane of these places have
special geometric structures and can therefore be dissihgd merely based on laser
range data, other places can only be identified accordinget@bjects found there
like, for example, coffee machines in kitchens. To detechabjects, we use vision
data acquired by a camera system.
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Fig. 1. An environment with offices, doorways, a corridor, a kitchand a laboratory. Addi-
tionally, the figure shows typical observations obtained mgobile robot at different places.

In the approach described here, we apply the AdaBoost #igoii7] to boost
simple features, which on their own are insufficient for aatele categorization of
places, to a strong classifier for the semantic labeling efabses of a robot in an
indoor environment. Since the original version of AdaBopsivides only binary
decisions, we determine the decision list with the best segel of binary strong
classifiers. We then use this semantic classifier in two mgieations. Firstly, we
show how to classify the different poses of a mobile robonglits trajectory by ap-
plying a hidden Markov model (HMM) which estimates the labithe current pose
based on the current and the previous outputs of the senwassifier. Secondly,
we introduce a new approach to learn topological maps frocomancy grids. This
is achieved by simulating the laser scans of a mobile robdhetcorresponding
locations and applying our semantic classification alparitWe then apply a proba-
bilistic relaxation algorithm to smooth the classificatmutput, followed by a region
extraction. Experimental results presented in this pdpestiate that our classifica-
tion system yields recognition rates of more than 88% or 98&pénding on the
number of classes to distinguish between). We also pregpetienents illustrating
that the resulting classifier can even be used in environsriearh which no training
data were available. This offers the opportunity to labatpk and to learn accurate
topological maps from unknown environments.

In the past, several authors considered the problem of gd#imantic informa-
tion to places. Buschka and Saffiotti [4] describe a virtealsor that is able to iden-
tify rooms from range data. Also Koenig and Simmons [11] ggpbre-programmed
routine to detect doorways from range data. Althaus ands@hrsen [1] use line fea-
tures to detect corridors and doorways. Some authors afdg larning techniques
to localize the robot or to identify distinctive states ie gnvironment. For example,
Ooreet al.[20] train a neural network to estimate the location of a fetwbot in
its environment using the odometry information and ulttesbdata.

Learning algorithms have additionally been used to idgmtifjects. For exam-
ple, Anguelowet al.[2, 3] apply the EM algorithm to cluster different types ofetts
from sequences of range data and to learn the state of ddorketkaiet al. [16]
use relational Markov networks to detect objects like dayswased on laser range
data. Furthermore, they employ Markov Chain Monte Carleeto the parameters



of the models. Treptovet al. [29] utilize the AdaBoost algorithm to track a soc-
cer ball without color information. Finally, Torralba andlieagues [28] use hidden
Markov models for learning places from image data.

Compared to these approaches, our algorithm is able to canavbitrary fea-
tures extracted from different sensors to form a sequenb@afy strong classifiers
to label places. Our approach is also supervised, whichHeadvantage that the
resulting labels correspond to user-defined classes.

On the other hand, different algorithms for creating topatal maps have been
proposed. Kuipers and Byun [14] extract distinctive pointthe map. These points
are defined as local maxima using a measure of distinctigelpetsveen locations.
Kortenkamp and Weymouth [12] fuse the information obtaiweéH vision and ultra-
sound sensors to determine topologically relevant pl&&iestkey and Kaelbling [26]
apply a HMM learning approach to learn topological maps ifcivithe nodes repre-
sent points in the plane. Thrun [27] uses the Voronoi diagiafimd critical points,
which minimize the clearance locally. These points are tisad as nodes in a topo-
logical graph. Choset [5] encodes metric and topologidatinationin a generalized
Voronoi graph to solve the simultaneous localization angpireg problem. Addi-
tionally, Kuipers and Beeson [13] apply different learniigorithms to calculate
topological maps of environments of a mobile robot.

In contrast to these previous approaches, the techniqueiled in this paper
applies a supervised learning method to identify completgons in the map like
corridors, rooms or doorways that have a direct relatioh wihuman understanding
of the environment. The knowledge about semantic labeldagig is used to build
accurate topological maps with a mobile robot.

The rest of the chapter is organized as follows. In Sectiowe describe the
sequential AdaBoost classifier. In Section 3, we presenaipdication of a hidden
Markov model to the online place classification with a movingbile robot. Sec-
tion 4 contains our approach for topological map buildirigalty, Section 5 presents
experimental results obtained using our methods.

2 Semantic Place Labeling using AdaBoost

One of the key problems to be solved is to define a classifi¢raffaws us to cate-
gorize places in the environment according to a set of gietegories. Rather than
hand-coding such a classification system, our approach &ppty the AdaBoost
algorithm to learn a strong classifier from a large set of &nfigatures. In this sec-
tion, we first present the AdaBoost algorithm and our apgréaceal with multiple
classes. We then describe the different features extréwtedlaser and vision data
used in our current system.

2.1 The AdaBoost Algorithm

Boosting is a general method for creating an accurate strtasgifier by combining
a set of weak classifiers. The requirement for each weakifitass that its accu-
racy is better than a random guessing. In this work we apgytosting algorithm



AdaBoost in its generalized form presented by Schapire amge§[25]. The input
to this algorithm is a set of labeled training examples. Tigerihm repeatedly se-
lects a weak classifigr; (z) using a distributiorD over the training examples. The
selected weak classifier is expected to have a small cladsificerror on the train-
ing data. The idea of the algorithm is to modify the distribatD by increasing
the weights of the most difficult training examples in eachrm. The final strong
classifierH is a weighted majority vote of the beBtweak classifiers.

Throughout this work, we use the approach presented by SiudaJones [30] in
which the weak classifiers depend on single-valued featfires R. Two kinds of
weak classifiers are created in our current system. In adibi the classifier defined
by Viola and Jones, which has the form

oy Lt psfi(x) < p;b;
hj(x) = { —1 otherwise @

wheref; is a threshold ang; is either—1 or +1 and thus represents the direction of
the inequality, we designed a second type

oy 10 < fi(x) <63
hj() = { —pj othjerwise ’ (2)

wheref; and#? define an interval ang; is either+1 or —1 indicating whether ex-
amples inside the interval are positive or negative. Fan bgies of weak classifiers,
the output is+1 or —1 indicating whether the classification is positive or negati

The AdaBoost algorithm determines for each weak clasdifiet) the optimal pa-

rameters, such that the number of misclassified trainingngies is minimized. The
final AdaBoost algorithm place categorization is shown iggklthm 0.1.

The AdaBoost algorithm has been designed for binary claasifin problems.
To classify places in the environment, we need the abilityaodle multiple classes.

Algorithm 0.1 Generalized version of AdaBoost for place categorization.

Input: Set of N labeled example&e1,y1),. .., (N, y~), Wherey,, = +1 for positive
examples ang,, = —1 for negative examples.
1

Initialize weightsD: (n) = & for y, = +1andD:(n) = 5= fory, = —1,

n

wherel andm are the number of positive and negative examples resphctive

fort=1,...,Tdo
1. Normalize the weight®; (n) so thaty""_, D;(n) = 1.
2. For each featurg; train a weak classifief; usingD;.
3. For each classifigt; calculater; =5 Di(n)ynhj(zn),
with hj(zn) € {—1,+1}.
4.  Choose the classifiér; that maximizegr;| and set(h:, r:) = (h;,7;).
5.  Update the weight®;1(n) = Di(n) exp(—azynht(zn)),
wherea; = 3 In({32).
end for
Output: The final strong hypothesil () = sign(F(z)), whereF(z) = S| axhy(z).
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Fig. 2. A decision list classifier fof classes using binary classifiers.

To achieve this, we use a sequence of binary classifiers erdaah element of such
a sequence determines if an example belongs to one speeifis. ¢f the binary
classifier returns a positive result, the example is assumbd correctly classified.
Otherwise, it is recursively passed to the next elementigligt. Figure 2 illustrates
the structure of such a decision list classifier.

In our current system, we typically consider a small numbeclasses which
makes it feasible to evaluate all potential sequences aadsehthe best order of
binary classifiers. Although this approach is exponentighie number of classes,
the actual number of permutations considered is limitedundomain due to the
small number of classes. In practice, we found out that theistec which sorts the
classifiers in decreasing order according to their clasdifin rate also yields good
results and at the same time can be computed efficiently. @mdgo the optimal
order, the classifier generated by this heuristic for sifedént classes performed in
average only 1.3% worse as shown by Rottmeanal. [23].

To evaluate the performance of the decision list, we contpére the Ada-
Boost.M2 [7] algorithm, which is a multi-class variant of &B8oost. In our experi-
ments, the sequential AdaBoost classifier yields bettattethan the AdaBoost.M2
algorithm. A more detailed comparison between both algorit can be found in the
work by Martinez Mozos [17].

2.2 Features from Vision and Laser Data

In this section, we describe the features used to create #fad wlassifiers in the
AdaBoost algorithm. Our robot is equipped witlB60 degree field of view laser
sensor and a camera. Each laser observation consis&)dfieams. Each vision
observation consists of eight images which form a panorafeig. Figure 1 shows
typical laser range readings as well as fractions of panigrammages taken in an
office environment. Accordingly, each training exampletfae AdaBoost algorithm
consist of one laser observation, one vision observatiwhjta classification.

Our method for place classification is based on single-ehfaatures extracted
from laser and vision data. All features are invariant wébpect to rotation to make
the classification of a pose dependent only on the positicdhefobot and not on
its orientation. Most of our laser features are standardngiacal features used for
shape analysis [9, 24]. Typical examples considered by ystems are illustrated
in Figure 3. A detailed list of laser features is containedum previous work [18].
In the system described here, we implemented several addifieatures which are
listed in Table 1.



Fig. 3. Examples for features generated from laser data, namebwvrage distance between
two consecutive beams, the perimeter of the area coveredtyra and the mayor axis of the
ellipse that approximates the polygon described by the.scan

Table 1.New Laser Features

1. Average and standard deviation of the fraction betweenethgth of two consecutive
beams.

2. Average and standard deviation of the fraction betweerethgth of two consecutive
beams divided by the maximum beam length.

3. Circularity. LetP be the perimeter of the area covered by the beams\abd the area
covered by the beams. The circularity is define@®PagA..

4. Average and standard deviation of the distance from th&a@d of A to the shape
boundary ofA, divided by the maximum distance to the shape boundary.

5. Number of gaps. Two consecutive beams form a gap if theidrabetween the first
and the second is smaller than a threshold.

6. Kurtosis. The kurtosis is defined as

SN, (length(beam;) — 1)*

-3
N - o4

wherel is the average beam length andhe corresponding standard deviation.

In the case of vision, the selection of the features is mt&dvay the fact that typ-
ical objects appear with different probabilities at diffat places. For example, the
probability of detecting a computer monitor is larger in dfice than in a kitchen.
For each type of object, a vision feature is defined as a fondhiat takes as argu-
ment a panoramic vision observation and returns the nunftatected objects of
this type in it. This number represents the single-valuetliie f; within AdaBoost
according to Eqg. (1) and Eq. (2). In our case, we consider tamicoffee machines,
soap dispensers, office cupboards, frontal faces, facégwdfill human bodies, and
upper human bodies. An example of such objects is shown ir&ity. The individ-
ual objects are detected using classifiers also trained Adt#Boost and based on
the set of Haar-like features proposed by Lienkasl. [15].

In case the observations do not cover a 360 degree field of thewproperty of
the rotational invariance is lost. In such a situation, weest that more training data
will be necessary and that the classification will be lessisbb
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Fig. 4. The leftimage illustrates a classification outpuThe right image depicts probabilities
of possible transitions between places in the environmnincrease the visibility, we used
a logarithmic scale. Dark values indicate low probability.

3 Probabilistic Classification of Trajectories

The approach described so far is able to classify singlereatiens only but does not
take into account past classifications when determiningyihe of place the robot is
currently at. However, whenever a mobile robot moves thnaargenvironment, the
semantic labels of nearby places are typically identicattitermore, certain transi-
tions between classes are unlikely. For example, if thetrisbmurrently in a kitchen
then it is rather unlikely that the robot ends up in an offioeegiit moved a short
distance only. In many environments, to get from the kitcteetihe office, the robot
has to move through a doorway first.

To incorporate such spatial dependencies between thedodivclasses, we ap-
ply a hidden Markov model (HMM) and maintain a posteriyi(l;) about the type
of the placd, the robot is currently at

Bel(ly) = aP(z | 1t) Y P(ly | li—1,u—1)Bel(l,—1). (3)

ly—1

In this equationg is a normalizing constant ensuring that the left-hand sidass
up to one over all;. To implement this HMM, three components need to be known.
First, we need to specify the observation mo&é¢t; | ;) which is the likelihood
that the classification output is given the actual class i5. Second, we need to
specify the transition modé?(l; | I:—1,u:—1) which defines the probability that the
robot moves from class_; to clasd,; by executing actiom;_;. Finally, we need to
specify how the belieBel(ly) is initialized.

In our current system, we choose a uniform distribution itilize Bel(ly). Fur-
thermore, the classification outpytis represented by a histogram, as illustrated in
the left image of Figure 4. In this histogram, theéh bin stores the probability that
the classified location belongs to theh class according to the sequence of classi-
fiers in our decision list (compare Figure 2). To compute tigdividual values for
each bin of that histogram, we use the approach by Friedrhah[8]. It determines
a confidence valu€' € [0, 1] for a positive binary classification

eF(m)

C = P(y = +1 | CC) = —e—F(m) T eF(m)’

(4)
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Fig. 5. The distributions depicted in the first row show the learnistbigramsz;., (1) for the
individual classes (here corridor (1), doorway (2), kitct{d), lab (4), seminar room (5), and
office (6)). The left image in the second row depicts a possittdissification output:. In
the right image, each bar represents the correspondingbleel P(z; | I;) for the different
estimates of;.

whereF (z) is the output of the AdaBoost algorithm according to Aldomit0.1. Let
Cj, refer to the confidence value of theth binary classifier in our decision list. The
probability that the location belongs to tketh class is given by thg-th bin of the
histogramz computed as

k—1
M=o JTa-cy. (5)
j=1

Note that the confidence vald&; which is used to compute the last bi<! of
the histogram hold€'x = 1 according to the structure of the decision list (compare
Figure 2).

To determineP(z; | I;), we use the KL-divergence [6] between two distributions.
The first distribution is the current classification outputThe second one is learned
from a statistics: for each clagswe compute a histograf ., (1) usingh observa-
tions recorded within a place belonging to clagbereh = 50). This histogram
21.n(1) is obtained by averaging over the individual histogréms. . , 25, which are
computed according to Eq. (5). To determiRé&z, | I;), we use the KL-divergence
kld(- || -) which provides a measure about the similarity of two distitins

P(Zt | lt) — e*kld(Zt I 21:h,(lt)). (6)

To illustrate the computation of the observation likelidaB(z; | I;) consider
Figure 5. The first row depicts examples for the histogramg). The left image
in the second row depicts the outpytof the sequential classifier while the robot
was in an office. As can be seen, also the classes doorway anitkseoom have a



probability significantly larger than zero. This outpytand the histogranis.; (I;)

is than used to comput®(z; | I;) according to Eq. (6). The result for all classes is
depicted in the right image in the second row. In this imagehebin represents the
likelihood P(z; | I;) for the individual classe&. As can be seen, the observation
likelihood given the robot is in a doorway is close to zerogwdas the likelihood
given itis in an office is around 90%, which is actually thereot class.

To realize the transition modét(l; | l;—1,u:—1), we only consider the two ac-
tionsu;_1 € {Mowve, Stay}. The transition probabilities were learned in a manually
labeled environment by running 1000 simulation experimdnteach run, we started
the robot at a randomly chosen point and orientation. We éhetuted a random
movement so that the robot traveled between 20cm and 50ceseNalues corre-
spond to typical distances traveled by the robot betweencwisecutive updates
of the HMM. The finally obtained transition probability matrP(l; | l;—1,ui—1)
for the actionMowve is depicted in the right image of Figure 4. As can be seen, the
probability of staying in a place with the same classifiaai®higher than the prob-
ability of changing the place. Moreover, the probabilitynadving from a room to a
doorway is higher than the probability of moving from a rooimedtly to a corridor.
This indicates that the robot typically has to cross a dogriivat in order to reach
a different room. Furthermore, the matrix shows a lower phility of staying in a
doorway than staying at the same type of room. This is dueetfettt that a doorway
is usually a small area in which the robot never rests for géoperiod of time.

4 Topological Map Building

The second application of our classification system is legriopological maps from
occupancy grids. To take into account spatial dependehatgeen neighboring
places, we apply a probabilistic relaxation labeling. Aubdially, we describe how
to perform the region extraction and the final creation of @pfrrepresenting the
topological structure of the environment.

4.1 Probabilistic Relaxation Labeling

One of the key problems that need to be solved in order to kararate topological
maps, in which the nodes correspond to the individual roomtha environment,
is to eliminate classification errors. In this section, welgphe probabilistic relax-
ation labeling, which has been introduced by Rosenétldl. [21], to smooth the
classifications based on neighborhood relations.

Probabilistic relaxation labeling is defined as followst Ge= (V, £) be a graph
consisting of node® = {vy,...,ux} and edge€ C V x V. Let furthermore
L ={li,...,l1} be a set of labels. We assume that every ngd&tores a proba-
bility distribution about its label which is represented &¥istogramp;. Each bin
p;(1) of that histogram stores the probability that the nedbas the label. Thus,

ZlL:1 pi(l) =1



For each node;, A (v;) C V denotes its neighborhood which consists of the
nodesv; # v; that are connected tg. Each neighborhood relation is represented
by two values. Whereas the first one describes the compigtibdtween the labels
of two nodes, the second one represents the influence betiveeéwo nodes. The
termR = {r;;(l,I') | v; € N(v;)} defines the compatibility coefficients between
the label of nodev; and the label’ of v;. Finally,C = {c¢;; | v; € N'(v;)} is the set
of weights indicating the influence of nodg on nodev;.

Given an initial estimation for the probability distribati over Iabelspgo)(l)
for the nodev;, the probabilistic relaxation method iteratively compuéstimates

(1), r = 1,2,..., based on the initial probabilities’ (I), the compatibility
coefficientsk, and the weight€ in the form

- PV [T+ )]
=S5 "]’
Sra @) 1+ @)

(7)
where

M L
a1 =3¢y lz rij (1, l')Pj(l')] : (8)

j=1 =1

Note that the compatibility coefficients;(l,!’) € [—1,1] do not need to be
symmetric. A valuer;;(1,1’) close to—1 indicates that label is unlikely at nodey;
when labell occurs at node;, whereas values close foindicate the opposite. A
value of exactly—1 indicates that the relation is not possible and a value oftbxa
1 means that the relation always occurs.

Probabilistic relaxation provides a framework for smonthibut does not specify
how the compatibility coefficients are computed. In this kyave apply the coeffi-
cients as defined by Yamamoto [31]

i(l ;
ooy — L = (1 g ) i) < pig 1 0)
T —p;ji((ll‘i ) 1 otherwise

(9)

wherep;; (1 | I') is the conditional probability that node has label given that node
vj € N(v;) has label’.

So far we described the general method for relaxation lagelt remains to
describe how we apply this method for spatial smoothing efdlassifications ob-
tained by our AdaBoost classifier. To learn a topological nve@ assume a given
two-dimensional occupancy grid map [19] in which each gl ) stores the prob-
ability that it is occupied. We furthermore consider thehéigonnected graph in-
duced by such a grid. Let = v(,.,,) be a node corresponding to a cel},. ., from
the map. Then, this node is connected to all immediate neightf that cell

NS(U(m,y)) = { V(z—1,y—1) V(z—1,9) V(z—1,y+1)s V(z,y—1)>

V(a,y+1)> Vat1,y—1)s Vo+1,y) V(o+1,y+1) J- (10)



For the initial probabilitie@@y)(l), we use the output of the classifier described
in Section 2.1. Our set of label§ is composed of the labelorridor, doorway
room, andwall. For each node, , in the free space of the occupancy grid map,
we calculate the expected laser scan by ray-casting in the Wa then classify
the observation and obtain a probability distributioover all the possible places
according to Equation (5). The classification outpfibr each poséz, y) is used to
initialize the probability distributiorP((f?y) of nodev(, ).

For the nodes lying in the free space, the proba@ﬂigfly)(wall) of being a wall
is initialized with 0. Accordingly, the nodes corresponding to occupied celihé

map are initialized withp( (wall) = 1.

Each of the weights;; € C is initialized with the valu%, indicating that all the
eight neighbors; of nodew; are equally important. The compatibility coefficients
are calculated using Equation (9). The valpg$) andp;; (I | I') are obtained from
statistics in the given (occupancy grid) map corresponttitiige training data as will

be described in Section 5.

4.2 Region Extraction and Topological Mapping

We define a region; on an adjacency graph as a set of eight-connected nodes with
the same labdl For example, the regiok...., represents a room in the correspond-
ing occupancy grid map. If there is a different region witk tabelroom this will
represent a differentroom in the map. For each lake{ corridor, room, doorway},
regions are extracted from the adjacency graph using tloeitilgh by Rosenfeld and
Pfaltz [22]. In an analog way, we extract the connections/beh regions.

Finally, a topological grapt¥ = (Vr,&7) is constructed so that each node
v; € Vr represents a region and each edge= £ represents a connection. The
topological graph forms the resulting topological map. Wialfy apply a heuristic
region correction step to the topological map to increasethssification rate:

1. We mark each region corresponding to a room or a corridaselsize does not
exceed a given threshold of nsompared to the training set as classification
error and assign the label of one of its connected regiorns to i

2. We mark each region labeled as doorway whose size doexoetea given
threshold of 0.1rhsquare meters or that is connected to only one region as false
classification and assign the label of one of its connectgidmns to it.

5 Experiments

The approach described above has been implemented and ¢esteal robots as
well as in simulation. The robots used to carry out the expenits were an Activ-
Media Pioneer 2-DX8 equipped with two SICK laser range findes well as an
iRobot B21r robot which is additionally equipped with a camsystem.
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Fig. 6. Whereas the leftimage depicts the training data, the righgie shows the classification
result on the test set. The training and test data were @atdip simulating laser range scans
in the map.

The goal of the experiments is to demonstrate that our sifgaltures can be
boosted to a robust classifier of places. Additionally, walyre whether the result-
ing classifier can be used to classify places in environmfente’hich no training
data was available. Furthermore, we demonstrate the ayesof utilizing the vi-
sion information to distinguish between different roonkeJie.g., kitchens, offices,
or seminar rooms. Additionally, we illustrate the advaesgf the HMM filtering
for classifying places with a moving mobile robot. Throughthese experiments,
the term classification result refers to the most likely sleeported by the HMM or
respectively by the sequence of binary classifiers. Furbeg, we present results
applying our method for semantic topological maps. We fingtws the results for
a typical office environment. Then, we present an experinieistrating that our
approach is able to construct a topological map of a conlglatav environment

5.1 Results with the Sequential Classifier using Laser Data

The first experiment was performed using simulated data fsamoffice environ-
ment in building 79 at the University of Freiburg. The taskswa distinguish be-
tween three different types of places, namely rooms, dogsyand a corridor based
on laser range data only. In this experiment, we solely appte sequential clas-
sifier without the HMM filtering. For the sake of clarity, wepseated the test from
the training data by dividing the overall environment imteotareas. Whereas the
left part of the map contains the training examples, thetnpgint includes only test
data (see Figure 6). The optimal decision list for this dfacsgion problem, in which
the robot had to distinguish between three classes, is @momway. This decision
list correctly classifies 93.9% of all test examples (sebtrignage of Figure 6). For
alternative training and test sets we obtained similaressgcates. The worst config-
urations of the decision list are those in which the doorwlagsifier is in the first
place. This is probably due to the fact, that doorways ard ttadetect because typ-
ically most parts of a range scan obtained in a doorway ctnveadljacent room and
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Fig. 7. The left image depicts a trajectory of a robot and the comedimg classifications
based on real laser data. The robot used in this experimdapisted in the right image.

the corridor. The high error in the first element of the dexcidist then leads to a
high overall classification error.

The next experiment has been carried out with a real mohiletrihat we manu-
ally steered through the environment. We used the samefdass in the previous
experiment. The trajectory including the correspondirgsification results as well
as the mobile robot are depicted in Figure 7. As can be seen tins figure, the
learned classifier yields a robust labeling also for reabtalata.

Additionally, we performed an experiment using a map of thzance hall at
the University of Freiburg which contained four differedagses, namely rooms,
corridors, doorways, and hallways. The optimal decisish i corridor-hallway-
doorway with a success rate of 89.5%.

5.2 Transferring the Classifiers to New Environments

The second experiment is designed to analyze whether afidasarned in a par-
ticular environment can be used to successfully class#dypthces of a new environ-
ment. To carry out this experiment, we trained our sequksitiasifier in the left half
of the map shown in Figure 1. In the right half of this enviramh our approach was
able to correctly classify 97% of all places. The resultitagsifier was then evalu-
ated on scans simulated given the map of the Intel ResealximiSeattle depicted in
Figure 8. Although the classification rate decreased to?86tfe result indicates that
our algorithm yields good generalizations which can alsajggied to correctly la-
bel places of so far unknown environments. Note that a seceds of 86.0% is quite
high for this environment, since even humans typically cdmonsistently classify
the different places.

5.3 Classification of Trajectories using HMM Filtering

The third experiment was performed using real laser andwigiata obtained in
an office environment, which contains six different typeplaices, namely offices,
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Fig. 8. The left map depicts the occupancy grid map of the Intel Rebelaab and the right
image depicts the classification results obtained by apglte classifier learned from the
environment depicted in Figure 1 to this environment. Tl tlaat 86.0% of all places could
be correctly classified illustrates that the resulting sifeexs can be applied to so far unknown
environments.

doorways, a laboratory, a kitchen, a seminar room, and &ooriT he true classifi-
cation of the different places in this environments is shawfigure 9.

The classification performance of the classifier along a satngjectory taken
by a real robot is shown in left image of Figure 10. The clasaifon rate in this
experiment is 82.8%. If we additionally apply the HMM for tporal filtering, the
classification rate increases up to 87.9%. The labelingimddawith the HMM is
shown in the right image of Figure 10.

A further experiment was carried out using test data obthina different part
of the same building. We applied the same classifier as inrnvqus experiment.
Whereas the sequential classifier yields a classificatitnaia86.0%, the combina-
tion with the HMM generated the correct answer in 94.7% ofadles. A two-sample
t-test applied to the classification results obtained atbegrajectories for both ex-
periments showed that the improvements introduced by th&Hiv significant on
thea = 0.05 level. Furthermore, we classified the same data based smetle
laser features and ignoring the vision information. In ttése, only 67.7% could
be classified correctly without the HMM. The application bEtHMM increases
the classification performance to 71.7%. These three axgets illustrate that the
HMM seriously improves the overall rate of correctly cldiesl places. Moreover, the
third experiment shows that only the laser information issufficient to distinguish
robustly between places with similar structure (efficeandkitchenin Figure 10).

Finally we studied how the HMM improves the final classifioatrate accord-
ing to the output of AdaBoost. For this purpose, we analyheditnprovement of
the HMM using different classification rates from AdaBodkhis is achieved by



; j “t (® Laboratory S Semina

¥ L st Mo L

BlC) - @ @ Corridor @ Office
fj,‘ A 4 } (® Doorway QKitchen
ole] o

Pt

£
X
¥

S U S S L S B A NN 5T

Fig. 10.The left image depicts a typical classification result foest set obtained using only
the output of the sequence of classifiers. The right image/sitioe resulting classification in
case a HMM is additionally applied to filter the output of ttegjgential classifier.
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Fig. 11. Improvement of the HMM according to the percentage of weaksifiers used in
each of the binary AdaBoost classifiers.

increasing the percentage of weak classifiers used in eaclnybtlassifier of the
AdaBoost decision list. Here, 100% corresponds to the numbeeak classifiers
used in the previous experiments (Figure 10). For examps;lassification rate de-
creases to 60% if only 5% of the weak classifiers are used. 8hdts are shown in
Figure 11. In average, the HMM improves the classificatida by 5.0%.



5.4 Building Topological Maps

The next experiment is designed to analyze our approachitdirm topological
maps. It was carried out in the office environment depictetiénmotivating exam-
ple shown in Figure 1. The length of the corridor in this eamiment is approx. 20 m.
After applying the sequential AdaBoost classifier (see fédi2(a)), the classifica-
tion of the test set was 97%. Then, we applied the probabitistaxation method for
50 iterations. As can be seen from Figure 12(b), this metletktes more com-
pact regions and eliminates noise. Finally, the topoldgitap is created using the
connections between regions. Some regions detected asalodo not correspond
to real doorways and are marked with circles. After applythgsteps described in
Section 4.2 on the corresponding topological map, these faborways are elim-
inated. The final result gives a classification rate of 98.8%afl data points. The
different steps of the process are illustrated as colagg/pvels in Figure 12. The
doorway between the two right-most rooms under the coriigloorrectly detected
(Figure 12(c)). Therefore, the rooms are labeled as twefit regions in the final
topological map.

5.5 Topological Maps of New and Unknown Indoor Environments

This experiment is designed to analyze whether our approachve used to create
a topological map of a new unseen environment. To carry aue#periment we
trained a sequential AdaBoost classifier using the traimxgmples of the maps
shown in Figure 6 and Figure 12 with different scales. In daise only the classes
roomandcorridor were used in the training process. The resulting classifesrtiven
evaluated on scans simulated in the map denoted as “SDR "siteRadish [10].
This map represents an empty building in Virginia, USA. Tbericlor is approx. 26
meters long. The whole process for obtaining the topoldgitap is depicted in
Figure 13. The Adaboost classifier gives a first classificatib92.4%. As can be
seen in Figure 13(d), rooms number 11 and 30 are originalliygfathe corridor,
and thus falsely classified. Moreover, the corridor is deé@s only one region,
although humans potentially would prefer to separate i gix different corridors:
four horizontal and two vertical ones. In the final topol@&imap, 96.9% of the data
points are correctly classified.

We also analyzed the results obtained without applying ¢exation process.
Not using relaxation had several effects. Firstly, omitthe relaxation procedure
reduces the classification rate. Secondly, the finally abthiregions are typically
more sparse and do not represent the original ones as welltaelaxation. Finally,
omitting the relaxation procedure increases the numberrof®in the resulting
topological map. For example, the map of the SDR buildingaioed four incorrect
nodes without relaxation, whereas there were only two ismnodes when we used
the probabilistic relaxation.
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Fig. 12. This figure shows in image (a) the result of applying the setjaeAdaBoost with a

classification rate of 97%. (b) the result after applyin@xation including some incorrectly
labeled regions (marked with circles), and finally in imagktfe final tropological map with
the corresponding regions.

6 Conclusion

In this paper, we presented a novel approach to classiferdift places in the en-
vironment of a mobile robot into semantic classes, like rephallways, corridors,
offices, kitchens, or doorways. Our algorithm uses simplenggtric features ex-
tracted from a single laser range scan and information eetlafrom camera data
and applies the AdaBoost algorithm to form a binary stroaggifier. To distinguish
between more than two classes, we use a sequence of strary biassifiers ar-
ranged in a decision list.

We presented two applications of our approach. Firstly, edgom an online
classification of the positions along the trajectories ofabile robot by filtering the
classification output using a hidden Markov model. Secqnaéypresent a new ap-
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(c) Relaxation and region correction (d) Final topologicelp
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Fig. 13. This figure shows (a) the original map of the building, (b) tesults of applying the

sequential AdaBoost classifier with a classification rat@2%, (c) the resulting classifica-
tion after the relaxation and region correction, and (d)fitha topological map with semantic
information. The regions are omitted in each node. The romm@sumbered left to right and
top to bottom with respect to the map in (a). For the sake oitg]ahe corridor-node is drawn

maintaining part of its region structure.

proach to create topological graphs from occupancy gridsidpyying a probabilistic
relaxation labeling to take into account dependenciesdatmeighboring places to
improve the classifications.

Experiments carried out using real robots as well as in stion illustrate that
our technique is well-suited to reliably label places irfetiént environments. It al-
lows us to robustly separate different semantic regionsimuiois way it is able to
learn topologies of indoor environments. Further expenitmélustrate that a learned
classifier can even be applied to so far unknown environments
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