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Summary. Indoor environments can typically be divided into places with different function-
alities like corridors, kitchens, offices, or seminar rooms. We believe that the ability to learn
such semantic categories from sensor data or in maps enablesa mobile robot to more effi-
ciently accomplish a variety of tasks such as human-robot interaction, path-planning, explo-
ration, or localization. In this work, we first propose an approach based on supervised learning
to classify the pose of a mobile robot into semantic classes.Our method uses AdaBoost to
boost simple features extracted from vision and laser rangedata into a strong classifier. We
furthermore present two main applications of this approach. Firstly, we show how our ap-
proach can be utilized by a moving robot for robust online classification of the poses traversed
along its path using a hidden Markov model. Secondly, we introduce a new approach to learn
topological maps from geometric maps by applying our semantic classification procedure in
combination with probabilistic labeling. Experimental results obtained in simulation and with
real robots demonstrate the effectiveness of our approach in various environments.

1 Introduction

In the past, many researchers have considered the problem ofbuilding accurate maps
of the environment from the data gathered with a mobile robot. The question of
how to augment such maps by semantic information, however, is virtually unex-
plored. Whenever robots are designed to interact with theirusers, semantic informa-
tion about places can be important. It can furthermore be used to intuitively segment
an environment into different places and learn accurate topological models.

In this work, we address the problem of classifying places ofthe environment
of a mobile robot using range finder and vision data as well as building topologi-
cal maps based on that knowledge. Indoor environments, likethe one depicted in
Figure 1, can typically be divided into areas with differentfunctionalities such as
laboratories, office rooms, corridors, or kitchens. Whereas some of these places have
special geometric structures and can therefore be distinguished merely based on laser
range data, other places can only be identified according to the objects found there
like, for example, coffee machines in kitchens. To detect such objects, we use vision
data acquired by a camera system.



office

corridor

laboratory kitchen

doorway

room

��

Fig. 1. An environment with offices, doorways, a corridor, a kitchen, and a laboratory. Addi-
tionally, the figure shows typical observations obtained bya mobile robot at different places.

In the approach described here, we apply the AdaBoost algorithm [7] to boost
simple features, which on their own are insufficient for a reliable categorization of
places, to a strong classifier for the semantic labeling of the poses of a robot in an
indoor environment. Since the original version of AdaBoostprovides only binary
decisions, we determine the decision list with the best sequence of binary strong
classifiers. We then use this semantic classifier in two main applications. Firstly, we
show how to classify the different poses of a mobile robot along its trajectory by ap-
plying a hidden Markov model (HMM) which estimates the labelof the current pose
based on the current and the previous outputs of the semanticclassifier. Secondly,
we introduce a new approach to learn topological maps from occupancy grids. This
is achieved by simulating the laser scans of a mobile robot atthe corresponding
locations and applying our semantic classification algorithm. We then apply a proba-
bilistic relaxation algorithm to smooth the classificationoutput, followed by a region
extraction. Experimental results presented in this paper illustrate that our classifica-
tion system yields recognition rates of more than 88% or 98% (depending on the
number of classes to distinguish between). We also present experiments illustrating
that the resulting classifier can even be used in environments from which no training
data were available. This offers the opportunity to label places and to learn accurate
topological maps from unknown environments.

In the past, several authors considered the problem of adding semantic informa-
tion to places. Buschka and Saffiotti [4] describe a virtual sensor that is able to iden-
tify rooms from range data. Also Koenig and Simmons [11] apply a pre-programmed
routine to detect doorways from range data. Althaus and Christensen [1] use line fea-
tures to detect corridors and doorways. Some authors also apply learning techniques
to localize the robot or to identify distinctive states in the environment. For example,
Ooreet al. [20] train a neural network to estimate the location of a mobile robot in
its environment using the odometry information and ultrasound data.

Learning algorithms have additionally been used to identify objects. For exam-
ple, Anguelovet al.[2, 3] apply the EM algorithm to cluster different types of objects
from sequences of range data and to learn the state of doors. Limketkaiet al. [16]
use relational Markov networks to detect objects like doorways based on laser range
data. Furthermore, they employ Markov Chain Monte Carlo to learn the parameters



of the models. Treptowet al. [29] utilize the AdaBoost algorithm to track a soc-
cer ball without color information. Finally, Torralba and colleagues [28] use hidden
Markov models for learning places from image data.

Compared to these approaches, our algorithm is able to combine arbitrary fea-
tures extracted from different sensors to form a sequence ofbinary strong classifiers
to label places. Our approach is also supervised, which has the advantage that the
resulting labels correspond to user-defined classes.

On the other hand, different algorithms for creating topological maps have been
proposed. Kuipers and Byun [14] extract distinctive pointsin the map. These points
are defined as local maxima using a measure of distinctiveness between locations.
Kortenkamp and Weymouth [12] fuse the information obtainedwith vision and ultra-
sound sensors to determine topologically relevant places.Shatkey and Kaelbling [26]
apply a HMM learning approach to learn topological maps in which the nodes repre-
sent points in the plane. Thrun [27] uses the Voronoi diagramto find critical points,
which minimize the clearance locally. These points are thenused as nodes in a topo-
logical graph. Choset [5] encodes metric and topological information in a generalized
Voronoi graph to solve the simultaneous localization and mapping problem. Addi-
tionally, Kuipers and Beeson [13] apply different learningalgorithms to calculate
topological maps of environments of a mobile robot.

In contrast to these previous approaches, the technique described in this paper
applies a supervised learning method to identify complete regions in the map like
corridors, rooms or doorways that have a direct relation with a human understanding
of the environment. The knowledge about semantic labels of places is used to build
accurate topological maps with a mobile robot.

The rest of the chapter is organized as follows. In Section 2,we describe the
sequential AdaBoost classifier. In Section 3, we present theapplication of a hidden
Markov model to the online place classification with a movingmobile robot. Sec-
tion 4 contains our approach for topological map building. Finally, Section 5 presents
experimental results obtained using our methods.

2 Semantic Place Labeling using AdaBoost

One of the key problems to be solved is to define a classifier that allows us to cate-
gorize places in the environment according to a set of given categories. Rather than
hand-coding such a classification system, our approach is toapply the AdaBoost
algorithm to learn a strong classifier from a large set of simple features. In this sec-
tion, we first present the AdaBoost algorithm and our approach to deal with multiple
classes. We then describe the different features extractedfrom laser and vision data
used in our current system.

2.1 The AdaBoost Algorithm

Boosting is a general method for creating an accurate strongclassifier by combining
a set of weak classifiers. The requirement for each weak classifier is that its accu-
racy is better than a random guessing. In this work we apply the boosting algorithm



AdaBoost in its generalized form presented by Schapire and Singer [25]. The input
to this algorithm is a set of labeled training examples. The algorithm repeatedly se-
lects a weak classifierhj(x) using a distributionD over the training examples. The
selected weak classifier is expected to have a small classification error on the train-
ing data. The idea of the algorithm is to modify the distribution D by increasing
the weights of the most difficult training examples in each round. The final strong
classifierH is a weighted majority vote of the bestT weak classifiers.

Throughout this work, we use the approach presented by Violaand Jones [30] in
which the weak classifiers depend on single-valued featuresfj ∈ R. Two kinds of
weak classifiers are created in our current system. In addition to the classifier defined
by Viola and Jones, which has the form

hj(x) =

{

+1 if pjfj(x) < pjθj

−1 otherwise,
(1)

whereθj is a threshold andpj is either−1 or +1 and thus represents the direction of
the inequality, we designed a second type

hj(x) =

{

pj if θ1
j < fj(x) < θ2

j

−pj otherwise,
(2)

whereθ1
j andθ2

j define an interval andpj is either+1 or −1 indicating whether ex-
amples inside the interval are positive or negative. For both types of weak classifiers,
the output is+1 or −1 indicating whether the classification is positive or negative.
The AdaBoost algorithm determines for each weak classifierhj(x) the optimal pa-
rameters, such that the number of misclassified training examples is minimized. The
final AdaBoost algorithm place categorization is shown in Algorithm 0.1.

The AdaBoost algorithm has been designed for binary classification problems.
To classify places in the environment, we need the ability tohandle multiple classes.

Algorithm 0.1 Generalized version of AdaBoost for place categorization.

Input: Set ofN labeled examples(x1, y1), . . . , (xN , yN), whereyn = +1 for positive
examples andyn = −1 for negative examples.

Initialize weightsD1(n) = 1
2l

for yn = +1 andD1(n) = 1
2m

for yn = −1,
wherel andm are the number of positive and negative examples respectively.

for t = 1, . . . , T do
1. Normalize the weightsDt(n) so that

PN

n=1 Dt(n) = 1.
2. For each featurefj train a weak classifierhj usingDt.
3. For each classifierhj calculaterj =

P

n Dt(n)ynhj(xn),
with hj(xn) ∈ {−1, +1}.

4. Choose the classifierhj that maximizes|rj | and set(ht, rt) = (hj , rj).
5. Update the weightsDt+1(n) = Dt(n) exp(−αtynht(xn)),

whereαt = 1
2

ln( 1+rt

1−rt
).

end for
Output: The final strong hypothesisH(x) = sign(F (x)), whereF (x) =

PT

t=1 αtht(x).
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Fig. 2. A decision list classifier forK classes using binary classifiers.

To achieve this, we use a sequence of binary classifiers, where each element of such
a sequence determines if an example belongs to one specific class. If the binary
classifier returns a positive result, the example is assumedto be correctly classified.
Otherwise, it is recursively passed to the next element in this list. Figure 2 illustrates
the structure of such a decision list classifier.

In our current system, we typically consider a small number of classes which
makes it feasible to evaluate all potential sequences and choose the best order of
binary classifiers. Although this approach is exponential in the number of classes,
the actual number of permutations considered is limited in our domain due to the
small number of classes. In practice, we found out that the heuristic which sorts the
classifiers in decreasing order according to their classification rate also yields good
results and at the same time can be computed efficiently. Compared to the optimal
order, the classifier generated by this heuristic for six different classes performed in
average only 1.3% worse as shown by Rottmannet al. [23].

To evaluate the performance of the decision list, we compared it to the Ada-
Boost.M2 [7] algorithm, which is a multi-class variant of AdaBoost. In our experi-
ments, the sequential AdaBoost classifier yields better results than the AdaBoost.M2
algorithm. A more detailed comparison between both algorithms can be found in the
work by Martı́nez Mozos [17].

2.2 Features from Vision and Laser Data

In this section, we describe the features used to create the weak classifiers in the
AdaBoost algorithm. Our robot is equipped with a360 degree field of view laser
sensor and a camera. Each laser observation consists of360 beams. Each vision
observation consists of eight images which form a panoramicview. Figure 1 shows
typical laser range readings as well as fractions of panoramic images taken in an
office environment. Accordingly, each training example forthe AdaBoost algorithm
consist of one laser observation, one vision observation, and its classification.

Our method for place classification is based on single-valued features extracted
from laser and vision data. All features are invariant with respect to rotation to make
the classification of a pose dependent only on the position ofthe robot and not on
its orientation. Most of our laser features are standard geometrical features used for
shape analysis [9, 24]. Typical examples considered by our system are illustrated
in Figure 3. A detailed list of laser features is contained inour previous work [18].
In the system described here, we implemented several additional features which are
listed in Table 1.



Fig. 3.Examples for features generated from laser data, namely theaverage distance between
two consecutive beams, the perimeter of the area covered by ascan, and the mayor axis of the
ellipse that approximates the polygon described by the scan.

Table 1.New Laser Features

1. Average and standard deviation of the fraction between the length of two consecutive
beams.

2. Average and standard deviation of the fraction between the length of two consecutive
beams divided by the maximum beam length.

3. Circularity. LetP be the perimeter of the area covered by the beams andA be the area
covered by the beams. The circularity is defined asP

2/A.
4. Average and standard deviation of the distance from the centroid of A to the shape

boundary ofA, divided by the maximum distance to the shape boundary.
5. Number of gaps. Two consecutive beams form a gap if the fraction between the first

and the second is smaller than a threshold.
6. Kurtosis. The kurtosis is defined as

PN

i=1 (length(beami) − l)4

N · σ4
− 3

wherel is the average beam length andσ the corresponding standard deviation.

In the case of vision, the selection of the features is motivated by the fact that typ-
ical objects appear with different probabilities at different places. For example, the
probability of detecting a computer monitor is larger in an office than in a kitchen.
For each type of object, a vision feature is defined as a function that takes as argu-
ment a panoramic vision observation and returns the number of detected objects of
this type in it. This number represents the single-valued featurefj within AdaBoost
according to Eq. (1) and Eq. (2). In our case, we consider monitors, coffee machines,
soap dispensers, office cupboards, frontal faces, face profiles, full human bodies, and
upper human bodies. An example of such objects is shown in Figure 1. The individ-
ual objects are detected using classifiers also trained withAdaBoost and based on
the set of Haar-like features proposed by Lienhartet al. [15].

In case the observations do not cover a 360 degree field of view, the property of
the rotational invariance is lost. In such a situation, we expect that more training data
will be necessary and that the classification will be less robust.
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Fig. 4.The left image illustrates a classification outputz. The right image depicts probabilities
of possible transitions between places in the environment.To increase the visibility, we used
a logarithmic scale. Dark values indicate low probability.

3 Probabilistic Classification of Trajectories

The approach described so far is able to classify single observations only but does not
take into account past classifications when determining thetype of place the robot is
currently at. However, whenever a mobile robot moves through an environment, the
semantic labels of nearby places are typically identical. Furthermore, certain transi-
tions between classes are unlikely. For example, if the robot is currently in a kitchen
then it is rather unlikely that the robot ends up in an office given it moved a short
distance only. In many environments, to get from the kitchento the office, the robot
has to move through a doorway first.

To incorporate such spatial dependencies between the individual classes, we ap-
ply a hidden Markov model (HMM) and maintain a posteriorBel(lt) about the type
of the placelt the robot is currently at

Bel(lt) = αP (zt | lt)
∑

lt−1

P (lt | lt−1, ut−1)Bel (lt−1). (3)

In this equation,α is a normalizing constant ensuring that the left-hand side sums
up to one over alllt. To implement this HMM, three components need to be known.
First, we need to specify the observation modelP (zt | lt) which is the likelihood
that the classification output iszt given the actual class islt. Second, we need to
specify the transition modelP (lt | lt−1, ut−1) which defines the probability that the
robot moves from classlt−1 to classlt by executing actionut−1. Finally, we need to
specify how the beliefBel (l0) is initialized.

In our current system, we choose a uniform distribution to initialize Bel(l0). Fur-
thermore, the classification outputzt is represented by a histogram, as illustrated in
the left image of Figure 4. In this histogram, thek-th bin stores the probability that
the classified location belongs to thek-th class according to the sequence of classi-
fiers in our decision list (compare Figure 2). To compute the individual values for
each bin of that histogram, we use the approach by Friedmanet al. [8]. It determines
a confidence valueC ∈ [0, 1] for a positive binary classification

C = P (y = +1 | x) =
eF (x)

e−F (x) + eF (x)
, (4)
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Fig. 5. The distributions depicted in the first row show the learned histogramŝz1:h(l) for the
individual classes (here corridor (1), doorway (2), kitchen (3), lab (4), seminar room (5), and
office (6)). The left image in the second row depicts a possible classification outputzt. In
the right image, each bar represents the corresponding likelihood P (zt | lt) for the different
estimates oflt.

whereF (x) is the output of the AdaBoost algorithm according to Algorithm 0.1. Let
Ck refer to the confidence value of thek-th binary classifier in our decision list. The
probability that the location belongs to thek-th class is given by thek-th bin of the
histogramz computed as

z[k] = Ck

k−1
∏

j=1

(1 − Cj). (5)

Note that the confidence valueCK which is used to compute the last binz[K] of
the histogram holdsCK = 1 according to the structure of the decision list (compare
Figure 2).

To determineP (zt | lt), we use the KL-divergence [6] between two distributions.
The first distribution is the current classification outputzt. The second one is learned
from a statistics: for each classl, we compute a histogram̂z1:h(l) usingh observa-
tions recorded within a place belonging to classl (hereh = 50). This histogram
ẑ1:h(l) is obtained by averaging over the individual histogramsẑ1, . . . , ẑh, which are
computed according to Eq. (5). To determineP (zt | lt), we use the KL-divergence
kld(· ‖ ·) which provides a measure about the similarity of two distributions

P (zt | lt) = e−kld(zt ‖ ẑ1:h(lt)). (6)

To illustrate the computation of the observation likelihood P (zt | lt) consider
Figure 5. The first row depicts examples for the histogramsẑ1:h(l). The left image
in the second row depicts the outputzt of the sequential classifier while the robot
was in an office. As can be seen, also the classes doorway and seminar room have a



probability significantly larger than zero. This outputzt and the histogram̂z1:h(lt)
is than used to computeP (zt | lt) according to Eq. (6). The result for all classes is
depicted in the right image in the second row. In this image, each bin represents the
likelihood P (zt | lt) for the individual classeslt. As can be seen, the observation
likelihood given the robot is in a doorway is close to zero, whereas the likelihood
given it is in an office is around 90%, which is actually the correct class.

To realize the transition modelP (lt | lt−1, ut−1), we only consider the two ac-
tionsut−1 ∈ {Move,Stay}. The transition probabilities were learned in a manually
labeled environment by running 1000 simulation experiments. In each run, we started
the robot at a randomly chosen point and orientation. We thenexecuted a random
movement so that the robot traveled between 20cm and 50cm. These values corre-
spond to typical distances traveled by the robot between twoconsecutive updates
of the HMM. The finally obtained transition probability matrix P (lt | lt−1, ut−1)
for the actionMove is depicted in the right image of Figure 4. As can be seen, the
probability of staying in a place with the same classification is higher than the prob-
ability of changing the place. Moreover, the probability ofmoving from a room to a
doorway is higher than the probability of moving from a room directly to a corridor.
This indicates that the robot typically has to cross a doorway first in order to reach
a different room. Furthermore, the matrix shows a lower probability of staying in a
doorway than staying at the same type of room. This is due to the fact that a doorway
is usually a small area in which the robot never rests for a longer period of time.

4 Topological Map Building

The second application of our classification system is learning topological maps from
occupancy grids. To take into account spatial dependenciesbetween neighboring
places, we apply a probabilistic relaxation labeling. Additionally, we describe how
to perform the region extraction and the final creation of a graph representing the
topological structure of the environment.

4.1 Probabilistic Relaxation Labeling

One of the key problems that need to be solved in order to learnaccurate topological
maps, in which the nodes correspond to the individual rooms an the environment,
is to eliminate classification errors. In this section, we apply the probabilistic relax-
ation labeling, which has been introduced by Rosenfeldet al. [21], to smooth the
classifications based on neighborhood relations.

Probabilistic relaxation labeling is defined as follows. Let G = (V , E) be a graph
consisting of nodesV = {v1, . . . , vN} and edgesE ⊆ V × V . Let furthermore
L = {l1, . . . , lL} be a set of labels. We assume that every nodevi stores a proba-
bility distribution about its label which is represented bya histogramPi. Each bin
pi(l) of that histogram stores the probability that the nodevi has the labell. Thus,
∑L

l=1 pi(l) = 1.



For each nodevi, N (vi) ⊂ V denotes its neighborhood which consists of the
nodesvj 6= vi that are connected tovi. Each neighborhood relation is represented
by two values. Whereas the first one describes the compatibility between the labels
of two nodes, the second one represents the influence betweenthe two nodes. The
termR = {rij(l, l

′) | vj ∈ N (vi)} defines the compatibility coefficients between
the labell of nodevi and the labell′ of vj . Finally,C = {cij | vj ∈ N (vi)} is the set
of weights indicating the influence of nodevj on nodevi.

Given an initial estimation for the probability distribution over labelsp(0)
i (l)

for the nodevi, the probabilistic relaxation method iteratively computes estimates
p
(r)
i (l), r = 1, 2, . . . , based on the initial probabilitiesp(0)

i (l), the compatibility
coefficientsR, and the weightsC in the form

p
(r+1)
i (l) =

p
(r)
i (l)

[

1 + q
(r)
i (l)

]

∑L

l′=1 p
(r)
i (l′)

[

1 + q
(r)
i (l′)

] , (7)

where

q
(r)
i (l) =

M
∑

j=1

cij

[

L
∑

l′=1

rij(l, l
′)pj(l

′)

]

. (8)

Note that the compatibility coefficientsrij(l, l
′) ∈ [−1, 1] do not need to be

symmetric. A valuerij(l, l
′) close to−1 indicates that labell′ is unlikely at nodevj

when labell occurs at nodevi, whereas values close to1 indicate the opposite. A
value of exactly−1 indicates that the relation is not possible and a value of exactly
1 means that the relation always occurs.

Probabilistic relaxation provides a framework for smoothing but does not specify
how the compatibility coefficients are computed. In this work, we apply the coeffi-
cients as defined by Yamamoto [31]

rij(l, l
′) =







1
1−pi(l)

(

1 − pi(l)
pij(l|l′)

)

if pi(l) < pij(l | l′)
pij(l|l

′)
pi(l)

− 1 otherwise,
(9)

wherepij(l | l′) is the conditional probability that nodevi has labell given that node
vj ∈ N (vi) has labell′.

So far we described the general method for relaxation labeling. It remains to
describe how we apply this method for spatial smoothing of the classifications ob-
tained by our AdaBoost classifier. To learn a topological map, we assume a given
two-dimensional occupancy grid map [19] in which each cellm(x,y) stores the prob-
ability that it is occupied. We furthermore consider the eight-connected graph in-
duced by such a grid. Letvi = v(x,y) be a node corresponding to a cellm(x,y) from
the map. Then, this node is connected to all immediate neighbors of that cell

N8(v(x,y)) = { v(x−1,y−1), v(x−1,y), v(x−1,y+1), v(x,y−1),

v(x,y+1), v(x+1,y−1), v(x+1,y), v(x+1,y+1) }. (10)



For the initial probabilitiesp(0)
(x,y)(l), we use the output of the classifier described

in Section 2.1. Our set of labelsL is composed of the labelscorridor, doorway,
room, andwall. For each nodev(x,y) in the free space of the occupancy grid map,
we calculate the expected laser scan by ray-casting in the map. We then classify
the observation and obtain a probability distributionz over all the possible places
according to Equation (5). The classification outputz for each pose(x, y) is used to

initialize the probability distributionP (0)
(x,y) of nodev(x,y).

For the nodes lying in the free space, the probabilityp
(0)
(x,y)(wall ) of being a wall

is initialized with0. Accordingly, the nodes corresponding to occupied cells inthe
map are initialized withp(0)

(x,y)(wall ) = 1.

Each of the weightscij ∈ C is initialized with the value18 , indicating that all the
eight neighborsvj of nodevi are equally important. The compatibility coefficients
are calculated using Equation (9). The valuespi(l) andpij(l | l′) are obtained from
statistics in the given (occupancy grid) map correspondingto the training data as will
be described in Section 5.

4.2 Region Extraction and Topological Mapping

We define a regionλl on an adjacency graphA as a set of eight-connected nodes with
the same labell. For example, the regionλroom represents a room in the correspond-
ing occupancy grid map. If there is a different region with the labelroom, this will
represent a different room in the map. For each labell ∈ {corridor , room , doorway},
regions are extracted from the adjacency graph using the algorithm by Rosenfeld and
Pfaltz [22]. In an analog way, we extract the connections between regions.

Finally, a topological graphT = (VT , ET ) is constructed so that each node
vi ∈ VT represents a region and each edgees ∈ ET represents a connection. The
topological graph forms the resulting topological map. We finally apply a heuristic
region correction step to the topological map to increase the classification rate:

1. We mark each region corresponding to a room or a corridor whose size does not
exceed a given threshold of 1m2 compared to the training set as classification
error and assign the label of one of its connected regions to it.

2. We mark each region labeled as doorway whose size does not exceed a given
threshold of 0.1m2 square meters or that is connected to only one region as false
classification and assign the label of one of its connected regions to it.

5 Experiments

The approach described above has been implemented and tested on real robots as
well as in simulation. The robots used to carry out the experiments were an Activ-
Media Pioneer 2-DX8 equipped with two SICK laser range finders as well as an
iRobot B21r robot which is additionally equipped with a camera system.
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Fig. 6.Whereas the left image depicts the training data, the right image shows the classification
result on the test set. The training and test data were obtained by simulating laser range scans
in the map.

The goal of the experiments is to demonstrate that our simplefeatures can be
boosted to a robust classifier of places. Additionally, we analyze whether the result-
ing classifier can be used to classify places in environmentsfor which no training
data was available. Furthermore, we demonstrate the advantages of utilizing the vi-
sion information to distinguish between different rooms like, e.g., kitchens, offices,
or seminar rooms. Additionally, we illustrate the advantages of the HMM filtering
for classifying places with a moving mobile robot. Throughout these experiments,
the term classification result refers to the most likely class reported by the HMM or
respectively by the sequence of binary classifiers. Furthermore, we present results
applying our method for semantic topological maps. We first show the results for
a typical office environment. Then, we present an experimentillustrating that our
approach is able to construct a topological map of a completely new environment

5.1 Results with the Sequential Classifier using Laser Data

The first experiment was performed using simulated data fromour office environ-
ment in building 79 at the University of Freiburg. The task was to distinguish be-
tween three different types of places, namely rooms, doorways, and a corridor based
on laser range data only. In this experiment, we solely applied the sequential clas-
sifier without the HMM filtering. For the sake of clarity, we separated the test from
the training data by dividing the overall environment into two areas. Whereas the
left part of the map contains the training examples, the right part includes only test
data (see Figure 6). The optimal decision list for this classification problem, in which
the robot had to distinguish between three classes, is room-doorway. This decision
list correctly classifies 93.9% of all test examples (see right image of Figure 6). For
alternative training and test sets we obtained similar success rates. The worst config-
urations of the decision list are those in which the doorway classifier is in the first
place. This is probably due to the fact, that doorways are hard to detect because typ-
ically most parts of a range scan obtained in a doorway cover the adjacent room and
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Fig. 7. The left image depicts a trajectory of a robot and the corresponding classifications
based on real laser data. The robot used in this experiment isdepicted in the right image.

the corridor. The high error in the first element of the decision list then leads to a
high overall classification error.

The next experiment has been carried out with a real mobile robot that we manu-
ally steered through the environment. We used the same classifier as in the previous
experiment. The trajectory including the corresponding classification results as well
as the mobile robot are depicted in Figure 7. As can be seen from this figure, the
learned classifier yields a robust labeling also for real robot data.

Additionally, we performed an experiment using a map of the entrance hall at
the University of Freiburg which contained four different classes, namely rooms,
corridors, doorways, and hallways. The optimal decision list is corridor-hallway-
doorway with a success rate of 89.5%.

5.2 Transferring the Classifiers to New Environments

The second experiment is designed to analyze whether a classifier learned in a par-
ticular environment can be used to successfully classify the places of a new environ-
ment. To carry out this experiment, we trained our sequential classifier in the left half
of the map shown in Figure 1. In the right half of this environment, our approach was
able to correctly classify 97% of all places. The resulting classifier was then evalu-
ated on scans simulated given the map of the Intel Research Lab in Seattle depicted in
Figure 8. Although the classification rate decreased to 86.0%, the result indicates that
our algorithm yields good generalizations which can also beapplied to correctly la-
bel places of so far unknown environments. Note that a success rate of 86.0% is quite
high for this environment, since even humans typically cannot consistently classify
the different places.

5.3 Classification of Trajectories using HMM Filtering

The third experiment was performed using real laser and vision data obtained in
an office environment, which contains six different types ofplaces, namely offices,
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Fig. 8. The left map depicts the occupancy grid map of the Intel Research Lab and the right
image depicts the classification results obtained by applying the classifier learned from the
environment depicted in Figure 1 to this environment. The fact that 86.0% of all places could
be correctly classified illustrates that the resulting classifiers can be applied to so far unknown
environments.

doorways, a laboratory, a kitchen, a seminar room, and a corridor. The true classifi-
cation of the different places in this environments is shownin Figure 9.

The classification performance of the classifier along a sample trajectory taken
by a real robot is shown in left image of Figure 10. The classification rate in this
experiment is 82.8%. If we additionally apply the HMM for temporal filtering, the
classification rate increases up to 87.9%. The labeling obtained with the HMM is
shown in the right image of Figure 10.

A further experiment was carried out using test data obtained in a different part
of the same building. We applied the same classifier as in the previous experiment.
Whereas the sequential classifier yields a classification rate of 86.0%, the combina-
tion with the HMM generated the correct answer in 94.7% of allcases. A two-sample
t-test applied to the classification results obtained alongthe trajectories for both ex-
periments showed that the improvements introduced by the HMM are significant on
the α = 0.05 level. Furthermore, we classified the same data based solelyon the
laser features and ignoring the vision information. In thiscase, only 67.7% could
be classified correctly without the HMM. The application of the HMM increases
the classification performance to 71.7%. These three experiments illustrate that the
HMM seriously improves the overall rate of correctly classified places. Moreover, the
third experiment shows that only the laser information is not sufficient to distinguish
robustly between places with similar structure (seeofficeandkitchenin Figure 10).

Finally we studied how the HMM improves the final classification rate accord-
ing to the output of AdaBoost. For this purpose, we analyzed the improvement of
the HMM using different classification rates from AdaBoost.This is achieved by
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the output of the sequence of classifiers. The right image shows the resulting classification in
case a HMM is additionally applied to filter the output of the sequential classifier.
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Fig. 11. Improvement of the HMM according to the percentage of weak classifiers used in
each of the binary AdaBoost classifiers.

increasing the percentage of weak classifiers used in each binary classifier of the
AdaBoost decision list. Here, 100% corresponds to the number of weak classifiers
used in the previous experiments (Figure 10). For example, the classification rate de-
creases to 60% if only 5% of the weak classifiers are used. The results are shown in
Figure 11. In average, the HMM improves the classification rate by 5.0%.



5.4 Building Topological Maps

The next experiment is designed to analyze our approach to building topological
maps. It was carried out in the office environment depicted inthe motivating exam-
ple shown in Figure 1. The length of the corridor in this environment is approx. 20 m.
After applying the sequential AdaBoost classifier (see Figure 12(a)), the classifica-
tion of the test set was 97%. Then, we applied the probabilistic relaxation method for
50 iterations. As can be seen from Figure 12(b), this method generates more com-
pact regions and eliminates noise. Finally, the topological map is created using the
connections between regions. Some regions detected as doorways do not correspond
to real doorways and are marked with circles. After applyingthe steps described in
Section 4.2 on the corresponding topological map, these false doorways are elim-
inated. The final result gives a classification rate of 98.7% for all data points. The
different steps of the process are illustrated as colors/grey levels in Figure 12. The
doorway between the two right-most rooms under the corridoris correctly detected
(Figure 12(c)). Therefore, the rooms are labeled as two different regions in the final
topological map.

5.5 Topological Maps of New and Unknown Indoor Environments

This experiment is designed to analyze whether our approachcan be used to create
a topological map of a new unseen environment. To carry out the experiment we
trained a sequential AdaBoost classifier using the trainingexamples of the maps
shown in Figure 6 and Figure 12 with different scales. In thiscase only the classes
roomandcorridor were used in the training process. The resulting classifier was then
evaluated on scans simulated in the map denoted as “SDR site B” in Radish [10].
This map represents an empty building in Virginia, USA. The corridor is approx. 26
meters long. The whole process for obtaining the topological map is depicted in
Figure 13. The Adaboost classifier gives a first classification of 92.4%. As can be
seen in Figure 13(d), rooms number 11 and 30 are originally part of the corridor,
and thus falsely classified. Moreover, the corridor is detected as only one region,
although humans potentially would prefer to separate it into six different corridors:
four horizontal and two vertical ones. In the final topological map, 96.9% of the data
points are correctly classified.

We also analyzed the results obtained without applying the relaxation process.
Not using relaxation had several effects. Firstly, omitting the relaxation procedure
reduces the classification rate. Secondly, the finally obtained regions are typically
more sparse and do not represent the original ones as well as with relaxation. Finally,
omitting the relaxation procedure increases the number of errors in the resulting
topological map. For example, the map of the SDR building contained four incorrect
nodes without relaxation, whereas there were only two incorrect nodes when we used
the probabilistic relaxation.



(a) Sequential classification (b) Relaxation (circles identify incorrect regions)
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Fig. 12.This figure shows in image (a) the result of applying the sequential AdaBoost with a
classification rate of 97%. (b) the result after applying relaxation including some incorrectly
labeled regions (marked with circles), and finally in image (c) the final tropological map with
the corresponding regions.

6 Conclusion

In this paper, we presented a novel approach to classify different places in the en-
vironment of a mobile robot into semantic classes, like rooms, hallways, corridors,
offices, kitchens, or doorways. Our algorithm uses simple geometric features ex-
tracted from a single laser range scan and information extracted from camera data
and applies the AdaBoost algorithm to form a binary strong classifier. To distinguish
between more than two classes, we use a sequence of strong binary classifiers ar-
ranged in a decision list.

We presented two applications of our approach. Firstly, we perform an online
classification of the positions along the trajectories of a mobile robot by filtering the
classification output using a hidden Markov model. Secondly, we present a new ap-



(a) Original map (b) Sequential AdaBoost classification
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Fig. 13.This figure shows (a) the original map of the building, (b) theresults of applying the
sequential AdaBoost classifier with a classification rate of92.4%, (c) the resulting classifica-
tion after the relaxation and region correction, and (d) thefinal topological map with semantic
information. The regions are omitted in each node. The roomsare numbered left to right and
top to bottom with respect to the map in (a). For the sake of clarity, the corridor-node is drawn
maintaining part of its region structure.

proach to create topological graphs from occupancy grids byapplying a probabilistic
relaxation labeling to take into account dependencies between neighboring places to
improve the classifications.

Experiments carried out using real robots as well as in simulation illustrate that
our technique is well-suited to reliably label places in different environments. It al-
lows us to robustly separate different semantic regions andin this way it is able to
learn topologies of indoor environments. Further experiments illustrate that a learned
classifier can even be applied to so far unknown environments.
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