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Abstract—Map learning is a fundamental task in mobile
robotics because maps are required for a series of high level
applications. In this paper, we address the problem of builihg
maps of large-scale areas like villages or small cities. Wagsent
our modi ed car-like robot which we use to acquire the data
about the environment. We introduce our localization syste
which is based on an information Iter and is able to merge
the information obtained by di erent sensors. We furthermore
describe out mapping technique that is able to compactly
model three-dimensional scenes and allows us eient and
accurate incremental map learning. We additionally apply a
global optimization techniques in order to accurately clos loops
in the environment. Our approach has been implemented and
deeply tested on a real car equipped with a series of sensors.

Experiments described in this paper illustrate the accurag and  Fig. 1. The left image depicts the vertically mounted SICK SNaser

e ciency of the presented techniques. range nders which are rotated with constant speed by arirelestep motor
. mounted under the lasers. The right image shows our robet.rdthot is a
I. Introduction standard Smart car. The model is a Smart fortwo coupé passithe year

Building models of the environment is a fundamental tagR00S Which is equipped with a 45 kW engine.

of mobile robots since maps are needed for most high-level
robotic applications. In the past, many rc_asearchers_ f(ni:usgf di erent approaches has been developed to address this
on the problem of learning maps and drent techniques

problem [4], [5], [7], [9], [210], [11], [18]. Recently, seval
have been proposed [5], [10], [11], [1.8]’ [20]. Most Of. thetechniques for acquiring three-dimensional data withthota
proposed approaches focus on learning models for indo range scanners installed on a mobile robot have been
environments like oce spaces. Recently, several groupg.,,

. . X eloped [8], [26], [27]. Other authors have studied the
addressed the problem of learning two and three-dimenisio e U . .
models of outdoor scenes [6], [12], [13], [14], [22]. I'flzlvawsmon of three-dimensional maps from vehicles that a

Since DARPA Grand Challenge [2], the usage of Carglssumed to operate on a at surface. For example, Thrun
instead of classical mobile robots became popular in theet al. [21] present an approach that employs two 2d range
Iresearch comm In't [1] '[23] [25]. Com areF()j Fou Star']darascanners for constructing volumetric maps. Whereas thte rs
unity 121, ' : P IS oriented horizontally and is used for localization, the

robots, cars oer the possibility to travel longer distances, . . ; . .
. . 'second points towards the ceiling and is applied for acogiri
carry more sensors, and thus being more suitable for mappigg point clouds

large areas. A | ion for 12di ional .
The contribution of this paper is an approach towards popular representation for zAdimensional maps in

mapping of large-scale areas like villages or small citie§.0bOtICS are elevation maps [17], [28]. In contrast to that,

We describe our system to learn three-dimensional modéets” agp(rjoach learns a three dllmen_S|onaI mo?](_alr:h_at c;n be
of the environment. We apply probabilistic state estinmatio'€9arded as an extention to ee\_/at|on map Which IS able to
techniques as well as classi cation approaches to obtaiseth store multiple Iayers_for each g.”d cell [24]. This allows us
models. Our implementation uses a modi ed Smart car dég model structures like, e.g., bridges, underpasses raed t

picted in Figure 1 equipped with a series of sensors, ranging & More accurate way. .We present our tec_hnlque to match
from proximity sensor, GPS, and an inertial measureme dividual surface maps into a globally consistent model of
unit (IMU) the environment using a global error minimization approach

All techniques have been implemented and tested on a real
Il. Related Work car.

The problem of learning models of the environment has In the context of autonomous cars, a series of successful
been studied intensively in the past. In the literatures thisystems [1], [23], [25] have been developed due to DARPA
problem is often referred to as simultaneous localizatimth a Grand Challenge. As a result of this challenge, there exist
mapping (SLAM). Most approaches to map learning generataitonomous cars that reliably avoid obstacles and navigate
two-dimensional models from range sensor data. A serie@mparably high speeds. The focus of the Grand Challenge



GPS/IMU/Gyro Inertial measurement uniiCrossbow NAV420): This unit

Localization

provides sensor data with a frequency of 100 Hz that contains
Y the measurements from 3 gyroscopes, 3 accelerometers, a 3D
Traversability magnetic eld sensor, and a GPS receiver. The internalaligit
' / Estimator signal processor of the unit combines the embedded sensors
_/ 32 5&;:1 \ ¢ tho p(rquide the Iteredh)orier(;ta:]ion of .the V(E|}hi'C|ed (rolll, pi.t, .
A eading to true north) and the position (latitude, longiu
]n?\:leat;;:al ™ S;;Z?r and altitude). This sensor, however, is not well adapted for
ground vehicle driving at low speed. We therefore disabled
Fig. 2. The information ow between the individual modules. the GPS and used the unit in angle mode: the unit outputs the

Itered roll ( imy), pitch (imy) and heading (imy) to magnetic
north. This improves the pose estimate when driving at low
was to nish the race as quickly as possible whereas certaépeed. The measurement model for this sensor is

issues like building consistent large-scale maps of the-env " # " #
ronment have been neglected since they where not needed Zm= ™ = + Vi Q)
for the race. imu n
Even so our Smart car applied similar techniques than
the winning vehicle Stanley [23] for following a speci ed imu= + Bimu+ Vhimu (2

trajectory, we have a derent aim compared to the teamsWherev denotes the sensor noise dng, the o set between

participating in the Grand Challenge. Our goal is to Iea”ﬁhe heading to true north and the heading measurement

consistent and accurate three-dimensional models of tla? the IMU. The biasbyn, is estimated by the Iter using
large-scale environments. ) mu

the heading measurements of the GPS which provides the

heading to true north.

) _ ) ) ) Car sensorsThe measurements taken by the car sensors
Our instrumented car is equipped with a series of sensoig. reported with a frequency of 100Hz and are accessible

One group of sensor is used for localization. It consisthief t | ;- e cAN bus of the vehicle. The car provides the motor

inertial measurement unit, the dirential GPS, the optical temperature, gas pedal position, steering wheel angleehe

gyro, and the wheel encoders. The second group of sensggg,ities, engine RPM, and some further status informatio

is given by the laser range nders. Three of them point tg-, localization, we use the velocitgq, Of the car from

the front of the car and two are rotating on top of the roof,,. AN bus. Unlike a ight vehicle, the motion of a

of the car (see Figure 1). wheeled vehicle on the ground is governed by nonholonomic

Our software system is based on the modular inter-procesgpstraints. Under ideal conditions, there is no motior nor
communication (IPC) architecture. In this framework, eaclﬁ]a| to the ground surface and no side slip: they can be

module can send a_nd receive mes_sage‘sotm_x other mod- written respectively agoso = 0 andyoedo = 0. In practice,
ules. The diagram in Figure 2 depicts the information oWihege constraints are often violated. Thus, as in [3], we use
between the most important modules. zero mean Gaussian noise to model the extent of constraint
violation. The measurement model for the odometry is then

o _ ) expressed as
Our localization system applies the inverse form of the
Xodo h i X
Zodo = + Vodo,

Ill. SystemOverview

IV. Localization

Kalman lter, i.e., the information Iter. This Iter has T
the property of summing information contributions from 0 = C) y
di erent sources in the update stage. This characteristic is 0 5 z
advantageous when many sensors are involved which is
case in our application. The localization is done in two ste
the state prediction and the state update.

®3)

n

t{R/‘Flerecg is the matrix for transforming velocities expressed

Pin the reference framk of the car into the navigation frame
n. The observation noise covariance is obtained using

oh it

n
Rodo=Cf diag 2.6 o & Cb 4

A. State Update

The localization algorithm estimates the state of the vehi-
cle in a xed navigation frame which is represented by the where 2. is the variance of the car velocity andy, 2 are
north, west, and the altitude. The state vector contains thiee amplitude of the noise related to the constraints.
coordinatesX, y, 2) of the vehicle and its three-dimensional Di erential GPS systerfOmnistar Furgo 8300HP): This
orientation (roll , pitch and heading to true north). We device provides the latitude, longitude, and altitude toge
de ne the body framé as the coordinate system attached tavith the corresponding standard deviation and the standard
the vehicle. This frame is aligned with the vehicle kinemati NMEA messages with a frequency of 5Hz. In case the
axes (forward, left, and altitude) and its origin is placéd asensor receives the GPS drift correction signal, the unit
the center of the rear axle. The measurements models of ttleanges automatically into the high precision GPS mode.
sensors are presented here. When no correction signal is available, the device outputs



standard GPS information. We use the WGS-84 standard tc
convert the GPS coordinates in Cartesian coordinatgs?)
expressed in a local navigation frameThe heading to true |
north is also provided by that unit in the RMC message. 3
The measurement model for the GPS is A

Xgps

_HB Yops ¥ _
Zps= § 0 § =
P Fig. 3. Obtained traversability map using the xed sick lasenge nders.
gps n n Black refers to non traversable cells and the/gealy arrows illustrate the
In order to reject the erroneous xes caused by satellit¥ectoTy taken by the car.
constellation and multi-path change, we use the following

gating function [19]

X
321 + Vgps: %)

whereT denotes the sampling period (10 ms). All the other
7K St AR ©) elements of the state vector are predicted as simple Gaussia
' processes. The covariance mat@y associated to the state

whereS is the innovation covariance of the observation. Th@rediction process is represented as

value of is set to reject innovations exceeding the 95%

threshold. Qc=Gk o Gy; (11)
Optical gyroscop€KVH DSP3000): This ber optic gyro-

scope can measure very low rotation rates with a frequen

of 100Hz. It is possible to use it as a heading sensor for

comparably long period of time by integrating the angular Oy = diagn 2 5 2 2 2 2 2 2

rate (the unit provides the integrated angle). Contrary to * B bop ('12)

compasses, the_ integrated hegding is _not s_ensitive to earth:inally, the matrix mapping the noise covariamgeto the
magnetic eld disturbances. Flnally, this umt ers mugh process covarianc@ is written as

better accuracy than mechanical gyro and is not sensitive to

shocks because it contains no moving parts. The measure- Ox i 0

ment model for the optical gyro is : :

@gﬁereqk is a diagonal matrix containing the variances of the

iadividual elements of the state vector
o]

Go=H: 9 : : (13)
Zopt= opt= + Dopt+ Vop 7 %
Pt oPt opt™ Tomt 0 0 2o diagsys(T) K
wherebgy is the angular oset between the heading to true
north and the actual measurement of the gyro. where
" #
B. Prediction model Oeyz = Tfl_=2 : (14)

We apply a standard prediction model for the car which
has the following form All in all, this information Iter framework allows us to
robustly and e ciently integrate the information from the

Fao ti 0 di erent sensor into a pose estimate of the car. The pose
B Fy _ information is provided with a high frequency and with small
Xl = e X+ Whe: (8) delays only. This is important for online control of the car.
z
0 i sk V. Traversability Estimation

The state vectorx contains the position and velocity Whenever driving with a robot car, a central issue is to
expressed in the navigation framme the orientation of the identify the obstacle-free terrain. Without a reliablei-est
vehicle represented by the three angles rolpitch , yaw mation of the traversable area, autonomous car driving is

, and the two biaselimy andbgpt: nearly impossible. This paper does not focus on autonomous
_ navigation, the estimation of the traversability, howevsr
h It regarded as a mapping task and therefore also addressed in
X= X X yy zz Bimu  Popt ) this work.

The position of the vehicle at timle+ 1 is predicted using ~ The car is equipped with ve SICK laser range nders
the position and velocity at timk This takes the form of a Whereas two are mounted on a rotating unit and three are

rst order process written as xed (compare Figure 1). We currently use the three static
" # laser range nders in order to estimate the traversability o

o= 17T (10) the area in front of the car. Given a laser range observation,

wrETo0 1) we rst compute the end points of the individual beams.



We then add the 3d points to the cells of a local two-
dimensional grid map according to they-coordinate of
the beam. We then parse the cells and compute the mean

and variance of the z-values for each cell. The decision RS
if a cell is locally traversable can be done based on these iy
two values. When adding the data of multiple laser range =
nders into a single grid, it is likely to get a series of g
obstacles at locations where actually no obstacle is ldcate f_

This phenomenon is also described by Thrinal. [23] _ \
as phantom obstacles. These phantom obstacles are caused >~

by small errors in the pitch estimate of the location of the _ _

car, between the individual laser range scans. Therefage, W9- 4- Example of a single local MLS map. The example showgpial
i~ . LT scene of an urban environment with street lights and trees.

compute the traversability estimate individually for eacln

and merged the independently estimated traversabilityegal

into @ common grid structure. We found that this yields good, the top of the car. Figure 1 depicts the two lasers and the
results when moving on streets as well as on unpaved roag, ric step motor. During data acquisition the step motor
and avoids phantom obstacles. An example for a resultingiaies the two laser range nders with a constant frequence
traversability estimate is shown in Figure 3. of 0.37 Hz. Due to this con guration the rotating lasers

provide data points which correspond to the environment in

all directions around the robot. To build a local MLS map,

During the mapping process, we create globally consisteffe now use the data points acquired during a complete 360
maps using the inputs of the localization module and thgeyree tumn by the rotating lasers. This setup is well-duite
ve laser range nders mounted on the robot. We use multiyg 1,iilg 3d maps of the environment. Furthermore, we add
level surface maps (MLS maps) as proposed in our previoyss gata points which are acquired with the three xed lasers
work [24]. MLS maps store in each cell of a discrete grid theyring this period of time. Figure 4 depicts an example of a
height of the surface in the corresponding area. In.contra§itng|e local MLS map. From this point on, we discard the
to elevation maps, MLS maps allow us to store multiple sut;sint clouds and perform all computations based on the local
faces in each cell of the grid. In the remalnde_r of this PaPef1L.S maps. The example shows a typical scene of an urban
these surfaces a referred to as patches. This representaligironment with street lights and trees. Note that the dfta
enables a mobile robot to model environments with strusturey| e siCK laser range nders are used for mapping. For
like bridges, underpasses, buildings or mines. Additiynal ggtimating the traversable area in front of the car, however

they enable the robot to represent vertical structures. o)y the three static sensor are used due to the comparable
The localization technique described in Section IV workgow rotation of the rotating laser sensors.

well for navigation issues. However, applying mapping with
known poses based on this pose estimate usually results .
in globally inconsistent maps. In practice, this typicaIIyB' Map Matching
becomes apparent when the robot encounters a loop, i.e.jn addition to the traversability analysis described in
when it returns to a previously visited place. To achieve thgection V, we can identify vertical objects based on the 3d
goal of globally consistent maps it is needed to associatfita. As a result, every patch in the MLS map is labeled
the data which is acquired when the robot reaches the same¢ 'traversable’, 'non-traversable’, and ‘vertical'. Thabels
place of the environment at dérent times. To achieve this, are used in the ICP-based map matching process to obtain a
we build local MLS maps and apply the ICP algorithm tomore robust and accurate registration.
iteratively nd constraints between poses and to solve this |cp seeks to nd a rotation matriR and a translation
data association problem. This is described in detail in thgactort that minimizes an error function computed based on
reminder of this section. After the map matching and l00ghe two maps we aim to match. We integrate the labels of
closing process the local MLS maps can be merged to of€e individual patches into the ICP error function in order
global consistent MLS map. to improve the matching result. We only consider matches
between patches of the same label.

Let u be the vertical patches, the traversable, ang the

During the data acquisition process, we collect thre&;,_traversable ones of the rst map. The cells of the second
dimensional points which corresponds directly to the sdansq.nap are indicated by primed variables. We can de ne the
environment. The data is collected while our robot is movm@ollowing error function:

continously through the environment using the ve SICK

VI. Mapping

A. Data Acquisition and Local Map Building

laser range nders. As explained before, three of them are X1 X2 X3
mounted in a xed position and provide data points about the(R;t) = d(ui;u?)+  d(vi;v])+  d(wi;w®): (15)
environment in front of our robot. Additionally, we mounted r=1 {z } le z ) r=1 {z }

two laser range nders in vertical direction on a rotatingtel vertical objects traversable non-traversable



In this equation,d is the Mahalanobis distance and thewas able to cope with GPS faults and provided accurate
indicesic and j. indicate the correspondence between thpositioning estimation, such as depicted in Figure 6.
patches. Minimizinge(R;t) as well as the computation of
the correspondences is iterated within the ICP algorithm. e

In practical experiments [16], we found that matching Fitered trajectory
only patches with the same label leads to more robust :
and accurate map estimates. Furthermore, the ICP algorithm
converges faster due to the smaller number of potential
correspondences.

GPS faults and occlusions

C. Loop Closing

The ICP-based scan matching technique described above
works well for the registratering robot poses into one globa
reference frame. However, the individual scan matching
processes result in small residual errors which accumulate
over time and usually result in globally inconsistent mapsrig. 6. This graph represents a part of the trajectory degiat Figure 5.
In practice, this typically becomes apparent when the robdt this urban environment, the GPS signal is disturbed byymatrjects
encounters a lo0p, e., when i Feturns 0 a previoushyasi ("ocs} 141G S0) 274 GPS fauts are of il ampabuerl meters
place. Accordingly, techniques for calculating globallyne  was able to reject erroneous GPS xes and to provide accesitmations.
sistent maps are necessary. Therefore, we apply an approdb labels a,b and ¢ mark areas where GPS is of poor qualityk(gpr
that combines the ideas of Lu and Milios [10] and Olsond"avalable (©).
algorithm [15] to globally correct the map. This approach
applies error minimization via stochastic gradient desoan
the whole vector of poses and yields accurate map estima
given a set of constraints between poses.

The uncertainty associated to the pose estimation mainly
%gpends on the quality of the GPS xes. As depicted in
igure 7, the standard deviation is low when ehential
GPS is available (3 cm) but increases as soon as xes are

VII. Experiments unavailable (up to 60 cm).
A. Localization e donatonor
Our localization system has been extensively tested and =
provides accurate pose estimates in a robust manner when 0 |
moving though urban environments. A typical result obtdine /

with our smart car is depicted in Figure 5. The gure
represents the estimated trajectory of the car overlayed on
the ortho-photo of the EPFL campus. 02

Sigma [m]
°
2

(9]

0 50 100 150 200 250 300 350 400
Time [s]

Fig. 7. Standard deviation along the north (x) and west akisdr the
trajectory depicted in Figure 6. The standard deviatiomeases when GPS
quality is poor and decreases as soon as it gets better. bbks Ig), (b)
and (c) corresponds to the zones marked in Figure 5.

B. Mapping
To acquire the data, we steered our robotic car depicted
in Figure 1 over streets of the EPFL campus. The goal of
these experiments is to demonstrate that our represamtatio
Fig. 5. Overlay of the estimated trajectory and the orthotplof the EPFL  Yi€lds @ signi cant reduction of the memory requirements
campus. The zones where the GPS was not available are higidigThe compared to a point cloud representation, while still pro-
total traveled distance is around 23@0The labels (a), (b), and (c) identify viding highly accurate maps. Additionally, they show that
areas which are later on referred to by Figure 6 and 7. . . . . .
5 our representation is well-suited for global pose estiomati
and loop closure. Furthermore, the experiments show the
During the experiment, the car drove in areas where theecessity of the loop closing procedure. Figure 8 show the
GPS quality was bad or not available, for example alongesulting map of a dataset acquired along a 2.3 km trajectory
narrow alleys bordered with trees, close to buildings, arin Figure 9 shows a cutout of two MLS maps from that dataset.
underground parking lot. However, the localization algori  The left image depicts the resulting MLS Map when only




Fig. 8. Top view of the resulting MLS map with a cell size of Bdx 50cm. The yellodlight gray surface patches are classi ed as traversabée.Th
area scanned by the robot spans approximately 300 by 250sn&mring the data acquisition, the robot traversed vetegédoops with a length of
approximately 2,300m.

local map matching is applied. The right image displays thsetup of our modi ed car and the techniques applied to learn
same part of the MLS map where we additionally appliedccurate models of the environment and localize the vehicle
our loop closing algorithm. in the world. Our map representation can be seen as an
In this experiment, we acquired 374 local point cloudgxtention of elevation maps which are able to storesdént
consisting of 68,162,000 data points. The area scanned byrfaces in the environment. In order to learn these maps, we
the robot spans approximately 300 by 250 meters. During thgresent our pose estimation technique as well as an approach
data acquisition, the robot traversed ve nested loops witto match sub-maps in order to correct the poses based on
a length of approximately 2,300m. Figure 8 shows a tothe proximity sensors. In order to accurately close loops, w
view of the resulting MLS map with a cell size of 50cm xapply a least square minimization approach. As a result, we
50cm. The yellodlight gray surface patches are classi edobtain high quality three-dimensional models. All techrég
as traversable. It requires 55 MB to store the computdtave been implemented and tested using a real car equipped
map, where 34% of 300,000 cells are occupied. Compar&dth di erent types of sensors. The experiments presented in
to this the storage of the 68,162,000 data points requiréisis paper, show the result of real world data obtained with
1,635 MB. The scan matching between the local MLS mapsis robot.
has been computed online during the data acquisition on a
2GHz dual core laptop computer. The loop closing step of Acknowledgment

our mapping algorithm is computed ane when the robot .
nished the data acquisition. In our current approach, the 1MiS work has partly been supported by the EC under
computation time for the optimization of the shown data segontract number FP6-1ST-027140-BACS, FP6-2005-1ST-5-

is approximately 15 minutes. m_uF_Iy, and by the G_er_man Science Foundation (DFG)
within the Research Training Group 1103 and under contract
VIIl. Conclusion number SFBTR-8. The authors would like to thank Sascha
In this paper, we presented our approach towards mappikglksi, Frederic Pont, and all other members of 8 MART-
of large-scale areas like villages or cities. We presertted t Teamwho contributed to this work.



Fig. 9.

This gure depicts the lower left corner of the MLS Mahown in Figure 8. The left image illustrates the resultinggSVIMap when only

local map matching is applied. The right image displays t@es part of the MLS map where we additionally applied our logsing algorithm. The
inconsistencies can be seen by the vertical poles in thee gburthermore, several traversable patches have beetassised as non traversable (rethrk
gray) due to the misalignment of the maps.
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