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yEidgenössische Technische Hochschule (ETH), IRIS, ASL, 8092 Zurich, Switzerland

Abstract— Map learning is a fundamental task in mobile
robotics because maps are required for a series of high level
applications. In this paper, we address the problem of building
maps of large-scale areas like villages or small cities. We present
our modi�ed car-like robot which we use to acquire the data
about the environment. We introduce our localization system
which is based on an information �lter and is able to merge
the information obtained by di� erent sensors. We furthermore
describe out mapping technique that is able to compactly
model three-dimensional scenes and allows us e� cient and
accurate incremental map learning. We additionally apply a
global optimization techniques in order to accurately close loops
in the environment. Our approach has been implemented and
deeply tested on a real car equipped with a series of sensors.
Experiments described in this paper illustrate the accuracy and
e� ciency of the presented techniques.

I. Introduction

Building models of the environment is a fundamental task
of mobile robots since maps are needed for most high-level
robotic applications. In the past, many researchers focused
on the problem of learning maps and di� erent techniques
have been proposed [5], [10], [11], [18], [20]. Most of the
proposed approaches focus on learning models for indoor
environments like o� ce spaces. Recently, several groups
addressed the problem of learning two and three-dimensional
models of outdoor scenes [6], [12], [13], [14], [22].

Since DARPA Grand Challenge [2], the usage of cars
instead of classical mobile robots became popular in the
research community [1], [23], [25]. Compared to standard
robots, cars o� er the possibility to travel longer distances,
carry more sensors, and thus being more suitable for mapping
large areas.

The contribution of this paper is an approach towards
mapping of large-scale areas like villages or small cities.
We describe our system to learn three-dimensional models
of the environment. We apply probabilistic state estimation
techniques as well as classi�cation approaches to obtain these
models. Our implementation uses a modi�ed Smart car de-
picted in Figure 1 equipped with a series of sensors, ranging
from proximity sensor, GPS, and an inertial measurement
unit (IMU).

II. Related Work

The problem of learning models of the environment has
been studied intensively in the past. In the literature, this
problem is often referred to as simultaneous localization and
mapping (SLAM). Most approaches to map learning generate
two-dimensional models from range sensor data. A series

Fig. 1. The left image depicts the vertically mounted SICK LMS laser
range �nders which are rotated with constant speed by an electric step motor
mounted under the lasers. The right image shows our robot. The robot is a
standard Smart car. The model is a Smart fortwo coupé passion of the year
2005, which is equipped with a 45 kW engine.

of di� erent approaches has been developed to address this
problem [4], [5], [7], [9], [10], [11], [18]. Recently, several
techniques for acquiring three-dimensional data with rotating
2d range scanners installed on a mobile robot have been
developed [8], [26], [27]. Other authors have studied the
acquisition of three-dimensional maps from vehicles that are
assumed to operate on a �at surface. For example, Thrun
et al. [21] present an approach that employs two 2d range
scanners for constructing volumetric maps. Whereas the �rst
is oriented horizontally and is used for localization, the
second points towards the ceiling and is applied for acquiring
3d point clouds.

A popular representation for 21
2-dimensional maps in

robotics are elevation maps [17], [28]. In contrast to that,
our approach learns a three dimensional model that can be
regarded as an extention to elevation map which is able to
store multiple layers for each grid cell [24]. This allows us
to model structures like, e.g., bridges, underpasses, and trees
in a more accurate way. We present our technique to match
individual surface maps into a globally consistent model of
the environment using a global error minimization approach.
All techniques have been implemented and tested on a real
car.

In the context of autonomous cars, a series of successful
systems [1], [23], [25] have been developed due to DARPA
Grand Challenge. As a result of this challenge, there exist
autonomous cars that reliably avoid obstacles and navigateat
comparably high speeds. The focus of the Grand Challenge



Fig. 2. The information �ow between the individual modules.

was to �nish the race as quickly as possible whereas certain
issues like building consistent large-scale maps of the envi-
ronment have been neglected since they where not needed
for the race.

Even so our Smart car applied similar techniques than
the winning vehicle Stanley [23] for following a speci�ed
trajectory, we have a di� erent aim compared to the teams
participating in the Grand Challenge. Our goal is to learn
consistent and accurate three-dimensional models of the
large-scale environments.

III. SystemOverview

Our instrumented car is equipped with a series of sensors.
One group of sensor is used for localization. It consists of the
inertial measurement unit, the di� erential GPS, the optical
gyro, and the wheel encoders. The second group of sensors
is given by the laser range �nders. Three of them point to
the front of the car and two are rotating on top of the roof
of the car (see Figure 1).

Our software system is based on the modular inter-process
communication (IPC) architecture. In this framework, each
module can send and receive messages to/from other mod-
ules. The diagram in Figure 2 depicts the information �ow
between the most important modules.

IV. L ocalization

Our localization system applies the inverse form of the
Kalman �lter, i.e., the information �lter. This �lter has
the property of summing information contributions from
di� erent sources in the update stage. This characteristic is
advantageous when many sensors are involved which is the
case in our application. The localization is done in two steps:
the state prediction and the state update.

A. State Update

The localization algorithm estimates the state of the vehi-
cle in a �xed navigation framen which is represented by the
north, west, and the altitude. The state vector contains the
coordinates (x, y, z) of the vehicle and its three-dimensional
orientation (roll� , pitch � and heading to true north). We
de�ne the body frameb as the coordinate system attached to
the vehicle. This frame is aligned with the vehicle kinematic
axes (forward, left, and altitude) and its origin is placed at
the center of the rear axle. The measurements models of the
sensors are presented here.

� Inertial measurement unit(Crossbow NAV420): This unit
provides sensor data with a frequency of 100 Hz that contains
the measurements from 3 gyroscopes, 3 accelerometers, a 3D
magnetic �eld sensor, and a GPS receiver. The internal digital
signal processor of the unit combines the embedded sensors
to provide the �ltered orientation of the vehicle (roll, pitch,
heading to true north) and the position (latitude, longitude,
and altitude). This sensor, however, is not well adapted for
ground vehicle driving at low speed. We therefore disabled
the GPS and used the unit in angle mode: the unit outputs the
�ltered roll ( � imu), pitch (� imu) and heading ( imu) to magnetic
north. This improves the pose estimate when driving at low
speed. The measurement model for this sensor is
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wherev denotes the sensor noise andbimu the o� set between
the heading to true north and the heading measurement
of the IMU. The biasbimu is estimated by the �lter using
the heading measurements of the GPS which provides the
heading to true north.
� Car sensors: The measurements taken by the car sensors
are reported with a frequency of 100 Hz and are accessible
via the CAN bus of the vehicle. The car provides the motor
temperature, gas pedal position, steering wheel angle, wheel
velocities, engine RPM, and some further status information.
For localization, we use the velocity �xodo of the car from
the CAN bus. Unlike a �ight vehicle, the motion of a
wheeled vehicle on the ground is governed by nonholonomic
constraints. Under ideal conditions, there is no motion nor-
mal to the ground surface and no side slip: they can be
written respectively as �zodo = 0 and �yodo = 0. In practice,
these constraints are often violated. Thus, as in [3], we use
zero mean Gaussian noise to model the extent of constraint
violation. The measurement model for the odometry is then
expressed as
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whereCn
b is the matrix for transforming velocities expressed

in the reference frameb of the car into the navigation frame
n. The observation noise covariance is obtained using
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where� 2
enc is the variance of the car velocity and� 2

vy,�
2
vz are

the amplitude of the noise related to the constraints.
� Di� erential GPS system(Omnistar Furgo 8300HP): This
device provides the latitude, longitude, and altitude together
with the corresponding standard deviation and the standard
NMEA messages with a frequency of 5 Hz. In case the
sensor receives the GPS drift correction signal, the unit
changes automatically into the high precision GPS mode.
When no correction signal is available, the device outputs



standard GPS information. We use the WGS-84 standard to
convert the GPS coordinates in Cartesian coordinates (x; y; z)
expressed in a local navigation framen. The heading to true
north  is also provided by that unit in the RMC message.
The measurement model for the GPS is
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In order to reject the erroneous �xes caused by satellite
constellation and multi-path change, we use the following
gating function [19]

zT(k) � S� 1 � z(k) � ; (6)

whereS is the innovation covariance of the observation. The
value of  is set to reject innovations exceeding the 95%
threshold.
� Optical gyroscope(KVH DSP3000): This �ber optic gyro-
scope can measure very low rotation rates with a frequency
of 100 Hz. It is possible to use it as a heading sensor for a
comparably long period of time by integrating the angular
rate (the unit provides the integrated angle). Contrary to
compasses, the integrated heading is not sensitive to earth
magnetic �eld disturbances. Finally, this unit o� ers much
better accuracy than mechanical gyro and is not sensitive to
shocks because it contains no moving parts. The measure-
ment model for the optical gyro is

zopt =  opt =  + bopt + vopt; (7)

wherebopt is the angular o� set between the heading to true
north  and the actual measurement of the gyro.

B. Prediction model

We apply a standard prediction model for the car which
has the following form
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The state vectorx contains the position and velocity
expressed in the navigation framen, the orientation of the
vehicle represented by the three angles roll� , pitch � , yaw
 , and the two biasesbimu andbopt:

x =
h
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The position of the vehicle at timek+ 1 is predicted using
the position and velocity at timek. This takes the form of a
�rst order process written as

Fx;y;z =
"
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Fig. 3. Obtained traversability map using the �xed sick laser range �nders.
Black refers to non traversable cells and the red/gray arrows illustrate the
trajectory taken by the car.

whereT denotes the sampling period (10 ms). All the other
elements of the state vector are predicted as simple Gaussian
processes. The covariance matrixQk associated to the state
prediction process is represented as

Qk = Gk � qk � GT
k ; (11)

whereqk is a diagonal matrix containing the variances of the
individual elements of the state vector
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Finally, the matrix mapping the noise covarianceqk to the

process covarianceQk is written as
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All in all, this information �lter framework allows us to
robustly and e� ciently integrate the information from the
di� erent sensor into a pose estimate of the car. The pose
information is provided with a high frequency and with small
delays only. This is important for online control of the car.

V. Traversability Estimation

Whenever driving with a robot car, a central issue is to
identify the obstacle-free terrain. Without a reliable esti-
mation of the traversable area, autonomous car driving is
nearly impossible. This paper does not focus on autonomous
navigation, the estimation of the traversability, however, is
regarded as a mapping task and therefore also addressed in
this work.

The car is equipped with �ve SICK laser range �nders
whereas two are mounted on a rotating unit and three are
�xed (compare Figure 1). We currently use the three static
laser range �nders in order to estimate the traversability of
the area in front of the car. Given a laser range observation,
we �rst compute the end points of the individual beams.



We then add the 3d points to the cells of a local two-
dimensional grid map according to thex; y-coordinate of
the beam. We then parse the cells and compute the mean
and variance of the z-values for each cell. The decision
if a cell is locally traversable can be done based on these
two values. When adding the data of multiple laser range
�nders into a single grid, it is likely to get a series of
obstacles at locations where actually no obstacle is located.
This phenomenon is also described by Thrunet al. [23]
as phantom obstacles. These phantom obstacles are caused
by small errors in the pitch estimate of the location of the
car, between the individual laser range scans. Therefore, we
compute the traversability estimate individually for eachscan
and merged the independently estimated traversability values
into a common grid structure. We found that this yields good
results when moving on streets as well as on unpaved roads
and avoids phantom obstacles. An example for a resulting
traversability estimate is shown in Figure 3.

VI. M apping

During the mapping process, we create globally consistent
maps using the inputs of the localization module and the
�ve laser range �nders mounted on the robot. We use multi-
level surface maps (MLS maps) as proposed in our previous
work [24]. MLS maps store in each cell of a discrete grid the
height of the surface in the corresponding area. In contrast
to elevation maps, MLS maps allow us to store multiple sur-
faces in each cell of the grid. In the remainder of this paper,
these surfaces a referred to as patches. This representation
enables a mobile robot to model environments with structures
like bridges, underpasses, buildings or mines. Additionally,
they enable the robot to represent vertical structures.

The localization technique described in Section IV works
well for navigation issues. However, applying mapping with
known poses based on this pose estimate usually results
in globally inconsistent maps. In practice, this typically
becomes apparent when the robot encounters a loop, i.e.,
when it returns to a previously visited place. To achieve the
goal of globally consistent maps it is needed to associate
the data which is acquired when the robot reaches the same
place of the environment at di� erent times. To achieve this,
we build local MLS maps and apply the ICP algorithm to
iteratively �nd constraints between poses and to solve this
data association problem. This is described in detail in the
reminder of this section. After the map matching and loop
closing process the local MLS maps can be merged to one
global consistent MLS map.

A. Data Acquisition and Local Map Building

During the data acquisition process, we collect three-
dimensional points which corresponds directly to the sensed
environment. The data is collected while our robot is moving
continously through the environment using the �ve SICK
laser range �nders. As explained before, three of them are
mounted in a �xed position and provide data points about the
environment in front of our robot. Additionally, we mounted
two laser range �nders in vertical direction on a rotating plate

Fig. 4. Example of a single local MLS map. The example shows a typical
scene of an urban environment with street lights and trees.

on the top of the car. Figure 1 depicts the two lasers and the
electric step motor. During data acquisition the step motor
rotates the two laser range �nders with a constant frequence
of 0.37 Hz. Due to this con�guration the rotating lasers
provide data points which correspond to the environment in
all directions around the robot. To build a local MLS map,
we now use the data points acquired during a complete 360
degree turn by the rotating lasers. This setup is well-suited
to build 3d maps of the environment. Furthermore, we add
the data points which are acquired with the three �xed lasers
during this period of time. Figure 4 depicts an example of a
single local MLS map. From this point on, we discard the
point clouds and perform all computations based on the local
MLS maps. The example shows a typical scene of an urban
environment with street lights and trees. Note that the dataof
all �ve SICK laser range �nders are used for mapping. For
estimating the traversable area in front of the car, however,
only the three static sensor are used due to the comparable
slow rotation of the rotating laser sensors.

B. Map Matching

In addition to the traversability analysis described in
Section V, we can identify vertical objects based on the 3d
data. As a result, every patch in the MLS map is labeled
as 'traversable', 'non-traversable', and 'vertical'. Thelabels
are used in the ICP-based map matching process to obtain a
more robust and accurate registration.

ICP seeks to �nd a rotation matrixR and a translation
vectort that minimizes an error function computed based on
the two maps we aim to match. We integrate the labels of
the individual patches into the ICP error function in order
to improve the matching result. We only consider matches
between patches of the same label.

Let u be the vertical patches,v the traversable, andw the
non-traversable ones of the �rst map. The cells of the second
map are indicated by primed variables. We can de�ne the
following error function:

e(R; t) =
C1X
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+
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In this equation,d is the Mahalanobis distance and the
indices ic and jc indicate the correspondence between the
patches. Minimizinge(R; t) as well as the computation of
the correspondences is iterated within the ICP algorithm.

In practical experiments [16], we found that matching
only patches with the same label leads to more robust
and accurate map estimates. Furthermore, the ICP algorithm
converges faster due to the smaller number of potential
correspondences.

C. Loop Closing

The ICP-based scan matching technique described above
works well for the registratering robot poses into one global
reference frame. However, the individual scan matching
processes result in small residual errors which accumulate
over time and usually result in globally inconsistent maps.
In practice, this typically becomes apparent when the robot
encounters a loop, i.e., when it returns to a previously visited
place. Accordingly, techniques for calculating globally con-
sistent maps are necessary. Therefore, we apply an approach
that combines the ideas of Lu and Milios [10] and Olson's
algorithm [15] to globally correct the map. This approach
applies error minimization via stochastic gradient descent on
the whole vector of poses and yields accurate map estimates
given a set of constraints between poses.

VII. Experiments

A. Localization

Our localization system has been extensively tested and
provides accurate pose estimates in a robust manner when
moving though urban environments. A typical result obtained
with our smart car is depicted in Figure 5. The �gure
represents the estimated trajectory of the car overlayed on
the ortho-photo of the EPFL campus.

GPS
loss

GPS loss
c

a

b

Fig. 5. Overlay of the estimated trajectory and the ortho-photo of the EPFL
campus. The zones where the GPS was not available are highlighted. The
total traveled distance is around 2300m. The labels (a), (b), and (c) identify
areas which are later on referred to by Figure 6 and 7.
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During the experiment, the car drove in areas where the
GPS quality was bad or not available, for example along
narrow alleys bordered with trees, close to buildings, or inan
underground parking lot. However, the localization algorithm

was able to cope with GPS faults and provided accurate
positioning estimation, such as depicted in Figure 6.
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Fig. 6. This graph represents a part of the trajectory depicted in Figure 5.
In this urban environment, the GPS signal is disturbed by many objects
(trees, buildings, etc.) and GPS faults are of high amplitude (several meters
in the horizontal plane and up to 16 m vertically). The localization algorithm
was able to reject erroneous GPS �xes and to provide accurateestimations.
The labels a,b and c mark areas where GPS is of poor quality (a), (b) or
unavailable (c).

The uncertainty associated to the pose estimation mainly
depends on the quality of the GPS �xes. As depicted in
Figure 7, the standard deviation is low when di� erential
GPS is available (� 3 cm) but increases as soon as �xes are
unavailable (up to 60 cm).
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Fig. 7. Standard deviation along the north (x) and west axis (y) for the
trajectory depicted in Figure 6. The standard deviation increases when GPS
quality is poor and decreases as soon as it gets better. The labels (a), (b)
and (c) corresponds to the zones marked in Figure 5.

B. Mapping

To acquire the data, we steered our robotic car depicted
in Figure 1 over streets of the EPFL campus. The goal of
these experiments is to demonstrate that our representation
yields a signi�cant reduction of the memory requirements
compared to a point cloud representation, while still pro-
viding highly accurate maps. Additionally, they show that
our representation is well-suited for global pose estimation
and loop closure. Furthermore, the experiments show the
necessity of the loop closing procedure. Figure 8 show the
resulting map of a dataset acquired along a 2.3 km trajectory.
Figure 9 shows a cutout of two MLS maps from that dataset.
The left image depicts the resulting MLS Map when only



Fig. 8. Top view of the resulting MLS map with a cell size of 50cm x 50cm. The yellow/light gray surface patches are classi�ed as traversable.The
area scanned by the robot spans approximately 300 by 250 meters. During the data acquisition, the robot traversed �ve nested loops with a length of
approximately 2,300m.

local map matching is applied. The right image displays the
same part of the MLS map where we additionally applied
our loop closing algorithm.

In this experiment, we acquired 374 local point clouds
consisting of 68,162,000 data points. The area scanned by
the robot spans approximately 300 by 250 meters. During the
data acquisition, the robot traversed �ve nested loops with
a length of approximately 2,300m. Figure 8 shows a top
view of the resulting MLS map with a cell size of 50cm x
50cm. The yellow/light gray surface patches are classi�ed
as traversable. It requires 55 MB to store the computed
map, where 34% of 300,000 cells are occupied. Compared
to this the storage of the 68,162,000 data points requires
1,635 MB. The scan matching between the local MLS maps
has been computed online during the data acquisition on a
2GHz dual core laptop computer. The loop closing step of
our mapping algorithm is computed o� ine when the robot
�nished the data acquisition. In our current approach, the
computation time for the optimization of the shown data set
is approximately 15 minutes.

VIII. Conclusion

In this paper, we presented our approach towards mapping
of large-scale areas like villages or cities. We presented the

setup of our modi�ed car and the techniques applied to learn
accurate models of the environment and localize the vehicle
in the world. Our map representation can be seen as an
extention of elevation maps which are able to store di� erent
surfaces in the environment. In order to learn these maps, we
present our pose estimation technique as well as an approach
to match sub-maps in order to correct the poses based on
the proximity sensors. In order to accurately close loops, we
apply a least square minimization approach. As a result, we
obtain high quality three-dimensional models. All techniques
have been implemented and tested using a real car equipped
with di� erent types of sensors. The experiments presented in
this paper, show the result of real world data obtained with
this robot.
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Fig. 9. This �gure depicts the lower left corner of the MLS Mapshown in Figure 8. The left image illustrates the resulting MLS Map when only
local map matching is applied. The right image displays the same part of the MLS map where we additionally applied our loopclosing algorithm. The
inconsistencies can be seen by the vertical poles in the �gure. Furthermore, several traversable patches have been misclassi�ed as non traversable (red/dark
gray) due to the misalignment of the maps.
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