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Abstract— Whereas probabilistic approaches are a powerful
tool for mobile robot localization, they heavily rely on the
proper definition of the so-called observation model which
defines the likelihood of an observation given the position and
orientation of the robot and the map of the environment. Most
of the sensor models for range sensors proposed in the past ei-
ther consider the individual beam measurements independently
or apply uni-modal models to represent the likelihood function.
In this paper, we present an approach that learns place-
dependent sensor models for entire range scans using Gaussian
mixture models. To deal with the high dimensionality of the
measurement space, we utilize principle component analysis for
dimensionality reduction. In practical experiments carried out
with data obtained from a real robot, we demonstrate that our
model substantially outperforms existing and popular sensor
models.

I. INTRODUCTION

In the past, probabilistic localization techniques have

been demonstrated to be a robust approach to mobile robot

localization as they allow the vehicles to globally localize

themselves, to efficiently keep track of their position, and

to even recover from localization failures. One of the key

challenges in context of probabilistic localization, however,

lies in the design of the so-called observation model p(z |
x,m) which is a likelihood function that specifies how to

compute the likelihood of an observation z given the robot

is at pose x in a given map m. For probabilistic approaches

the proper design of the likelihood function is essential.

Too optimistically specified sensor models might make the

vehicle overly confident in its position. In the context of

Monte-Carlo-Localization [4], this can lead to a depletion of

particles and finally might cause a divergence of the filter.

Too conservative models, in contrast, might result in a high

pose uncertainty or even prevent the robot from localizing

itself as the sensor information cannot compensate for the

uncertainty introduced by the motion of the vehicle.

In the past, sophisticated sensor models have been devel-

oped for probabilistic approaches to robot localization. Some

of them take into account various aspects such as objects

not contained in the map or sensor cross-talk. Whereas such

approaches have been proven to be robust even in real-world

situations, they do not appropriately take into account poten-

tial effects not stemming from the measurement process it-

self. This, for example, regards the fact that the map typically

is only an approximation of the real world. Additionally, such

sensor models are sensitive to discontinuities in the map. For
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Fig. 1. In mobile robot localization, small variations in the robot pose can
cause large variations of the range measurements. This leads to multi-modal
distributions of beam-lengths even in small areas around a potential pose.

example, when the environment is cluttered, slight changes

in the pose of the robot in the map might lead to huge

differences in the length of the expected measurement at that

particular location. This fact is illustrated in Figure 1. The

figure shows to different scans obtained with a laser range

scanner with a robot that passes a doorway. Whereas the two

positions, at which the scans were taken, are close to each

other, the obtained scans differ largely. Accordingly, even

small errors in the pose estimate can lead to an extremely

small likelihood of the measurement. This in turn can lead

to a divergence of the filter.

One sensor model that has been especially designed

to cope with such situations are the so-called likelihood

fields [17]. This “beam-end-point-model” provides smooth

and multi-modal likelihood functions to better deal with

clutter in the environment but ignores the information along

the individual beam of a range measurement. Therefore,

likelihood fields are less effective in situations in which the

robot has to perform global localization. Most observation

models furthermore assume the independency of the individ-

ual beams of a laser range scan. However, the more beams

a scan has, the more this assumption is violated, which then

might lead to overly confident estimates. Recently, some

techniques have been developed that explicitely consider the

dependencies of individual beams [14], [16]. However, these

techniques have the drawback that they assume an uni-modal

distribution.

In this paper, we propose a novel probabilistic observation

model for proximity sensors such as laser range finders. Our

model has two advantages over most previous approaches.

First, it explicitely considers the dependencies between the

individual beams of a range scan, and second, is accounts for



the multi-modal nature of the observation function. It does

so while still considering that the observation is obtained

from a time-of-flight proximity sensor (such as laser range

finders or sonars). This is achieved by considering place-

dependent measurement models and utilizing a Gaussian

mixture model together with a dimensionality reduction

technique. In practical experiments carried out with data

obtained with a real robot we demonstrate that our new

model substantially outperforms existing sensor models.

This paper is organized as follows. After discussing related

work in the next section, we briefly describe in Section III

Monte Carlo localization and the principle of likelihood

models. In Section IV, we introduce our novel likelihood

model based on high-dimensional mixtures of Gaussians

and finally, in Section V, we present experimental results

illustrating that our sensor model outperforms other popular

likelihood models.

II. RELATED WORK

In the literature, various techniques for computing the like-

lihood function for probabilistic localization methods with

proximity sensors have been introduced [3], [8], [17], [18].

These approaches either directly approximate the physical

characteristics of the sensor or try to provide smooth like-

lihood models to increase the robustness of the localization

process. In the past, is has been observed that the likelihood

function can have a major influence on the performance of

Monte Carlo Localization. Thrun et al. [19], for example,

observed that more particles are required if the likelihood

function is peaked. In the limit, i.e., for a perfect sensor,

the number of required particles becomes infinite. To deal

with this problem, Lenser and Veloso [10] and Thrun et

al. [19] introduced techniques to directly sample from the

observation model and in this way ensure that there is

a critical mass of samples at the important parts of the

state space. Unfortunately, this approach depends on the

ability to sample from observations, which can often only

be done in an approximate, inaccurate way. An alternative

strategy to deal with this problem is to artificially inflate

the measurement uncertainty to achieve a regularization of

the likelihood function, e.g., see the Scaling Series approach

presented by Petrovskaya et al. [12].

The classical Kalman filter has limitations since it requires

Gaussian observation likelihoods and thus cannot handle

multi-modalities or ambiguous situations. To overcome this

problem, several researchers used Gaussian mixture models.

Duckett and Nehmzow [7], for example, introduced a multi-

modal generalization of the Kalman filter based on mixtures

of Gaussians. Recently, Upcroft et al. [20] introduced a fast

re-parameterization of Gaussian mixture models to represent

the probability distribution. Takamasa et al. [9] use Gaussian

mixture models to fuse odometry and sonar and to reduce

the localization error in the case of noisy sensors.

Recently, Limketkai et al. [11] proposed an approach

for learning the motion and sensor model for MCL using

conditional random fields. This allows for considering the

dependencies between the individual beams of a laser range

scan. The approach is furthermore reported to provide better

results than generatively learned models but it requires

ground truth location information of a robot to carry out

discriminative learning.

The focus of this paper is to model possible multi-

modalities in likelihood functions for laser range measure-

ments using Gaussian mixture models. Our approach im-

proves the robustness of probabilistic localization approaches

like MCL especially in situations in which small changes

of the robot’s pose can have drastic effects on the range

measurements.

III. MONTE CARLO LOCALIZATION

USING RANGE SENSORS

A. Pose Estimation using a Particle Filter

Throughout this paper, we consider the problem of esti-

mating the pose x = (x, y, θ) of a robot relative to a given

map m using a particle filter. The key idea of this approach

is to maintain a probability density p(xt | z1:t,u0:t−1) of

the location xt of the robot at time t given all observations

z1:t up to time t and all control inputs u0:t−1 up to time

t− 1. This probability is calculated recursively as

p(xt | z1:t,u0:t−1) =

α · p(zt | xt)

∫

p(xt | ut−1,xt−1) · p(xt−1) dxt−1 .(1)

Here, α is a normalizing constant ensuring that p(xt |
z1:t,u0:t−1) sums up to one over all xt. The terms

to be described in Eqn. (1) are the prediction model

p(xt | ut−1,xt−1) and the sensor model p(zt | xt) respec-

tively.

For the implementation of the described filtering scheme,

we use a sample-based approach which is commonly known

as Monte Carlo localization (MCL) [4]. Monte Carlo local-

ization is a variant of particle filtering [6] where each particle

corresponds to a possible robot pose and has an assigned

weight wi. The belief update from Eqn. (1) is performed by

the following two alternating steps:

1) In the prediction step, we draw for each particle with

weight wi a new particle according to wi and to the

prediction model p(xt | ut−1,xt−1).
2) In the correction step, a new observation zt is inte-

grated. This is done by assigning a new weight wi to

each particle according to the sensor model p(zt | xt).

B. Likelihood Models for Range Sensors

The likelihood model p(z | x) plays a crucial role in the

correction step of the particle filter and its proper design

is essential for the robustness of the filter. Due to that, in

this paragraph we will describe typical likelihood models for

range sensors and we shortly will introduce the likelihood

models of our previous work [14], [15]. Afterwards, we will

present our new high dimensional Gaussian mixture model

that is able to represent multi-modalities in the likelihood

function as well as dependencies between the individual laser

beams.



A laser scan zt is a vector of beams zt = (z1
t , . . . , zN

t )T

which have fixed orientations relative to the sensor. Beam-

based sensor models (see Fox et al. [8] for a typical

example) consider each value zi
t of the measurement vector

z as a separate range measurement and represent its one-

dimensional distribution by a parametric function depending

on the expected distance in the respective beam direction.

Such models are closely linked to the geometry and the

physics involved in the measurement process. They are

sometimes also called ray cast models because they rely on

ray casting operations within the map of the environment,

e.g., an occupancy grid map, to calculate the expected

beam lengths. Another popular measurement model for range

finder sensors are the so-called likelihood fields (aka end

point model) [17], which are a correlation-based method

that measures the correlation between the measurement and

the map. Here, the likelihood of a range measurement is a

function of the distance of the respective endpoint of the

beam to the closest obstacle in the environment. This model

lacks physical explanation as it can basically “see through

walls”, but in the case of position tracking it is efficient and

works well in practice. The reader may notice that likelihood

fields are less effective in situations in which the robot

has to perform global localization. In all above-mentioned

approaches, the individual beams are treated independently

and the likelihood p(zt | xt,m) of the entire scan zt is

calculated as the product of the individual beam likelihoods

p(zi
t | xt,m).

Given the high resolution of typical laser range finders

(.25 to 1 degrees), the independence assumption leads to

highly peaked likelihoods. In practice, this problem is dealt

with by sub-sampling the measurements [18], by introducing

minimal likelihoods for beams, or by other means of regu-

larization of the resulting likelihoods (see Arulampalam et

al. [1]). One way to overcome the peakedness is to consider

that the likelihood models are location-dependent as well

as that the location of the robot is modeled by set finite

set of pose hypotheses (particles). Therefore, we estimate

p(z | x) based on the local environment U(x) around a

pose hypothesis x by

p(z | x) =

∫

x̃∈U(x)

p(z | x̃) p(x̃) dx̃ . (2)

Here, U(x) is a particle-dependent, circular area. The di-

ameter of that area is given by the distance to the closest

neighboring particle which can be efficiently determined

using a kd-tree. This model is able to represent the fact

that pose hypotheses given by the samples are typically less

accurate than the measurements obtained by a (SICK) laser

range finder.

Thus, if one learns p(z | x) directly for exact sensor

poses x, e.g., with a mobile robot that is not moved during

training, one gets an extremely peaked model with p(z |
x + δ) ≪ p(z | x) already for small pose perturbations

δ. This peakedness, in turn, leads to problems when only a

finite number of pose hypotheses can be evaluated, as it is

the case, for example, with particle filters where the number
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Fig. 2. Obtained dimensionality reduction over a full robot trajectory in a
real world experiment using Principal component analysis (PCA).

of particles is limited. The model described in Eqn. 2, how-

ever, is able to explicitly consider the sampling density by

adjusting the spatial extent of the local neighborhoods U(x)
accordingly. The hard task is indeed to estimate and represent

the distributions of range scans p(z | x) from a given number

of training scans from U(x), which are typically simulated

using the map of the environment m.

In our previous approaches, we modeled the observa-

tion likelihood as either unimodal distributions for single

beams [8], [13] or for entire scans [14], [16]. Alternatively,

our recently proposed method [15] is able to consider the

multi-modality of the observation model but is unable to

represent the dependency between the individual scans. In

contrast to this, the novel method presented in this pa-

per combines the advantages of these previous models: It

considers the dependency between the beams of a range

scan and it correctly handles the multi-modal nature of the

likelihood function and at the same time can be computed

efficiently. As we will demonstrate in the experiments, this

more sophisticated model significantly improves the ability

of a mobile robot to localize itself.

In the following section, we describe how to efficiently

learn a high-dimensional Gaussian mixture model for the

distribution obtained by Eqn. 2 to improve the robustness of

the localization process.

IV. LEARNING HIGH DIMENSIONAL GAUSSIAN

MIXTURE OBSERVATION MODELS

Figure 1 illustrates the drastic effects that small changes

of the robot’s pose can have on the measured range scans.

The distribution of measured distances that arises when the

robot pose is varied locally as described in the previous

section is only unimodal in a perfectly convex world. In

general, however, there can be large jumps in perceived range

measurements when the sensor pose is changed only slightly.

Typically, such multi-modalities arise in the proximity of

doorways, corners, and cluttered areas of the environment.

One way to model the different modes in the distribution

of the expected range observation for each laser beam is

to explicitly consider the multi-model nature [15]. Whereas

this technique yields appropriate, multi-model distributions

for individual beams, it is unable to model the dependency

between in individual beams.

The straightforward extension that considers also the

dependency between the individual beams is to learn a

Gaussian mixture model (GMM) based on full laser scans

and not individual beams. Most clustering techniques based

on the Gaussian mixture model, however, show a suboptimal

performance if the size of the training dataset is too small



compared to the number its dimensionality (the parameters

to estimate). Typically, this leads to serious over-fitting. It

is therefore necessary to find a good balance between the

number of parameters to estimate and the generality of the

model.

One way to overcome this problem is to apply k-means

clustering since it does not estimate the covariance matrix

and thus less parameters need to be estimated. However,

the dependencies between beams are then neglected when

estimating the clusters. Alternatively, the high dimensional

data clustering (HDDC) approach recently proposed by Bou-

veyron et al. [2] can be applied. This technique combines

dimensionality reduction with the expectation-maximization

(EM) algorithm [5] to learn a Gaussian mixture model. By

assuming certain dependencies in the covariance matrix, the

learned clusters can be easily re-projected onto the original

space yielding robust clusters with a significantly reduced

risk of over-fitting.

Our approach can be seen as a reduced version of the

method of Bouveyron et al. [2]. We perform an EM-based

Gaussian mixture clustering in a reduced space and then use

the obtained class coefficients to compute the mixture model

in the high dimensional space.

A. Dimensionality Reduction

In dimensionality reduction techniques, one is interested

in finding a mapping from the original, n-dimensional inputs

space to a new space with k < n-dimensions with a minimal

loss of information. Principal component analysis (PCA) is

an un-supervised technique that maximizes the variance in

the data in the new space.

Let Σ be the covariance matrix of the input data D. PCA

computes the eigenvalues λi and eigenvectors of Σ. Let Q be

the matrix of the eigenvectors sorted according to the eigen-

values. We can then compute a matrix ∆ = QT ΣQ so that

∆ is a diagonal matrix with the eigenvalues on the diagonal

in descending order. Let λi ≥ λj for all i < j. We consider

only the first k dimensions for clustering that cover 95% of

the variance which is given by
∑k

i=1 λi [
∑n

i=1 λi]
−1
≥ 0.95.

By considering only the first k dimensions, we obtain

an approximative but compact representation for laser range

scans. Figure 2 depicts the obtained dimensionality reduction

in real world settings.

Concretely, for each pose hypothesis xt, we simulate

L complete range scans D = {d1, . . . ,dL} at locations

drawn uniformly from U(xt) using the given map m of

the environment. The simulation of the laser range scans D
takes into account the geometry and the physics involved in

the measurement process. It relies on ray casting operations

within an occupancy grid map to calculate the expected beam

lengths. The elements of the set D of laser range scans are

used to compute the PCA and thus lead to a projection into

a reduced, k-dimensional space.

B. Clustering in the Reduced Space

Let ·̃ refer to quantities computed in the reduced, k-

dimensional space. Thus, D̃ = {d̃1, . . . , d̃L} are the ele-

ments of the set D projected to the low-dimensional space

given the transformation matrices described in the previous

section. In the reduced space, we are now able to efficiently

cluster the range scans while reducing the risk of over-fitting

(compare [2]).

To estimate the clusters in the low-dimensional space, we

apply the EM algorithm to efficiently learn the mixture dis-

tribution. The EM algorithm iteratively assigns the reduced

data scans in D̃ to the mixture components and optimizes

their parameters in the following manner. Consider that θ′

denotes the current estimate of parameters µ̃j , Σ̃j , and αj . In

the E-Step, we calculate the expected value of the complete

log-likelihood

Q(θ,θ′) =E
[

log{p(D̃, Y | θ)} | D̃,θ′

]

(3)

=

∫

y

log{p(D̃, y | θ)}p(y | D̃,θ′) dy, (4)

where Y denotes data associations of the projected simulated

data points D̃ to one of the Gaussian mixture components.

Visually speaking, we estimate the assignment likelihoods

of the individual samples to the clusters while keeping the

other model parameters fixed. Then, in the M-Step, we fix

the data associations and optimize the expected value of the

complete log-likelihood

θ′′ = argmax
θ
Q(θ,θ′) (5)

by updating the cluster parameters according to

αj =
1

L

L
∑

l=1

P (j | d̃l,θ
′), (6)

µ̃j =

∑L

l=1 P (j | d̃l,θ
′) d̃l

∑L

l=1 P (j | d̃l,θ′)
, (7)

Σ̃j =

∑L

l=1 P (j | d̃l,θ
′)(d̃l − µ̃j)(d̃l − µ̃j)

T

∑L

l=1 P (j | d̃l,θ′)
. (8)

We now set θ′ ← θ′′ and iterate this procedure until the

amount of improvement per iteration falls below a specified

threshold. To determine the actual number of clusters in the

resulting model, we apply the Bayesian information criterion

and choose the model with the best score.

C. Transferring the Mixture Components to the Measure-

ment Space

After identifying the individual clusters and the corre-

sponding probabilities P (j | d̃l,θ
′), we can compute our

mixture model in the high dimensional space. This can

be easily achieved if we assume that the corresponding

probabilities are identical in the reduced space as well as

in the measurements space. Thus, the mixture in the high-

dimensional space is given by

p(zt | xt,m) =
J

∑

j=1

αj N (xt, µj ,Σj), (9)
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Fig. 3. Evaluated likelihood for 61, and 181 laser beams (from left to
right) for different sensor models (upper diagrams) and the two sensor mod-
els(HDGM,GM) which take the multi-modalities in the laser measurements
into account (lower diagrams) at 847 robot poses in our office environment
depicted in Figure 5.
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Fig. 4. Standard deviations of the different sensor models for 31, 61, and
181 laser beams (left). Comparison of the standard deviation of the two
sensor models(HDGM,GM) which take the multi-modalities in the expected
laser measurements into account.

where J is the number of clusters and N (x,µ,Σ) refers to

the n-dimensional Gaussian evaluated at x with mean µ and

covariance Σ according to

µj =

∑L

l=1 P (j | d̃l,θ
′)dl

∑L

l=1 P (j | d̃l,θ′)
(10)

Σj =

∑L

l=1 P (j | d̃l,θ
′)(dl − µj)(dl − µj)

T

∑L

l=1 P (j | d̃l,θ′)
. (11)

In contrast to former approaches which modeled the

likelihood functions as unimodal distributions for single

beams [8], [13] or entire scans [14], [16], or as a multi-

modal distributions for single beams [15], we now consider

high-dimensional, multi-modal mixture models. This allows

us to take the dependency between the individual beams

as well as the multi-modal nature of the distribution into

account. As we will demonstrate in the experiments, this

more sophisticated model significantly improves the ability

of a mobile robot to localize itself.

V. EXPERIMENTS

The approach described above has been implemented and

tested on data obtained with a mobile robot. To evaluate

our approach, we performed several experiments. We first

show that the pose uncertainty of the robot can result in

serious problems during a localization process, especially

when the multi-modality of the beams is not considered.

Additionally, we show the improvements achieved by also

considering the dependencies between the individual laser

beams. Then in the second set of experiments, we analyze

our high-dimensional Gaussian mixture model in a global

localization task in which multi-modal situations frequently

occur. We therefore compare it to alternative models, which

do not simultaneously take into account the multi-modality

and the dependencies between the individual laser beams. In

particular, we compared the performance of the following

sensor models:

HDGM: Our high-dimensional Gaussian mixture model as

detailed in Section IV.

GM: The place-dependent beam-based Gaussian mixture

sensor model as detailed in our previous work [15].

IB: The standard beam-based sensor model that as-

sumes independent beams with an additive white

noise component.

EC: The scan-based, place-dependent model with

learned covariance matrix as detailed in our earlier

previous work [14].

A. Likelihood Evaluation

In the first set of experiments, we evaluated the likelihood

of the true position of the robot in a data set acquired using

a real robot. We therefore compared our high-dimensional

Gaussian mixture model (HDGM) to other likelihood models

which are also based on ray casting operations (GM, IB, and

EC). This set of experiments is designed to investigate the

case that the robot is not able to localize itself at different lo-

cations with the same robustness. In our previous work [15],

we demonstrated that whenever the robot traverses regions

close to obstacles, doorways, or clutter, the likelihood of the

true position decreases. In the case of global localization

using a particle filter this leads to serious problems because

the particles at these positions have a high risk of being

depleted. Then, we calculated for different sensor models

(GM, IB, EC, and DC) the likelihood of the simulated range

scan given the true position of the robot. The two upper

diagrams of Figure 3 show the evaluated likelihood for

61, and 181 laser beams (from left to right) for different

sensor models at 847 robot poses in our office environment

depicted in Figure 5. The lower diagrams show the same

for the two sensor models (HDGM, GM) which take the

multi-modalities in the expected laser measurements into

account. As can be seen from Figure 4, our high-dimensional

Gaussian mixture model (HDGM) yields a smaller variance

in the estimated likelihood of the true pose compared to

the other sensor models. Additionally, the right diagram of

this Figure illustrates that our novel high-dimensional model

(HDGM) yields even a smaller variance in the estimated

likelihood compared to the beam-based Gaussian mixture

model (GM) especially when the number of integrated laser

beams is increased. This higher variance in the estimated

likelihoods, which is caused by the independence assumption

of the beam-based sensor model might lead to a divergence

of the probabilistic localization even in the case of position

tracking.



B. Localization
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Fig. 5. The six positions with the highest probability that the global
localization in the office environment fails (upper left). The upper right
diagram shows the number of successful localizations after ten integrations
of 61 measurements at these locations. The lower diagrams show the same
experiment for the two multi-modal sensor models (left: HDGM, right: GM)
for different beam numbers.

The second set of experiments is designed to illustrate

that our new high-dimensional sensor model (HDGM), which

takes the multi-modality as well as the dependencies of

measurements into account, achieves a more robust and

accurate localization than the other sensor models. The upper

left image in Figure 5 shows the six positions in a real

environment where we obtained the highest probability that

the global localization fails. These probabilities have been

determined by random restarts of the localization procedure

during 50 complete runs on the data set. At these positions

typically the likelihoods of the true poses are extremely low

due to the multi-modality of the measurements. To evaluate

the properties of the different sensor models, we performed

20 global localization runs at each position and compared

the average success rates. In these experiments, we assumed

that the localization was achieved when the mean of the

particles differed by at most 50 cm from the true location

of the robot. The upper diagram of Figure 5 shows the

number of successful localizations after ten integrations of

61 measurements at these locations. The lower diagrams

show the same experiment for different beam numbers for

the two sensor models (HDGM, GM) which take the multi-

modalities in the expected laser measurements into account.

The experiments show that our high-dimensional Gaussian

mixture model (GM) allows us to more robustly localize the

robot in situations in which the other models frequently fail.

Additionally, it demonstrates that we are able to integrate

more measurements to achieve a higher accuracy of the

filtering process without losing robustness.

VI. CONCLUSIONS

In this paper, we presented a novel place-dependent sensor

model for range scans that considers entire scans instead of

individual beams and in this way overcomes the indepen-

dence assumption underlying popular alternative models. At

the same time, it utilizes Gaussian mixture models to rep-

resent potential multi-modalities of the likelihood function.

To reduce the dimensionality of the measurement space it

applies the principle component analysis.

Our approach has been implemented and extensively tested

on data obtained with mobile robots equipped with laser

range finders. In our experiments, our new model showed

superior performance over other popular models proposed in

the past.
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