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Abstract

We present a novel approach to estimating depth from single omnidirectional cam-
era images by learning the relationship between visual features and range mea-
surements available during a training phase. Our model not only yields the most
likely distance to obstacles in all directions, but also thepredictive uncertainties
for these estimates. This information can be utilized by a mobile robot to build an
occupancy grid map of the environment or to avoid obstacles during exploration—
tasks that typically require dedicated proximity sensors such as laser range finders
or sonars. We show in this paper how an omnidirectional camera can be used as
an alternative to such range sensors. As the learning engine, we apply Gaussian
processes, a nonparametric approach to function regression, as well as a recently
developed extension for dealing with input-dependent noise. In practical experi-
ments carried out in different indoor environments with a mobile robot equipped
with an omnidirectional camera system, we demonstrate thatour system is able to
estimate range with an accuracy comparable to that of dedicated sensors based on
sonar or infrared light.
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Figure 1: Our system records intensity images (left) and estimates the distances to nearby obstacles
(right) after having learned how visual appearance is related to depth.

1. Introduction

The major role of perception, in humans as well as in robotic systems, is to
discover geometric properties of the current scene in orderto act in it reasonably
and safely. For artificial systems, omnidirectional visionprovides a rich source
of information about the local environment, since it captures the entire scene—or
at least the most relevant part of it—in a single image. Much research has thus
concentrated on the question of how to extract geometric scene properties, such
as distances to nearby objects, from such images.

This task is complicated by the fact that only a projection ofthe scene is
recorded and, thus, it is not possible to sense depth information directly. From
a geometric point of view, one needs at least two images takenfrom different
locations to recover the depth information analytically. An alternative approach
that requires just one monocular camera image and that we follow here, is to
learn from previous experience how visual appearance is related to depth. Such
an ability is also highly developed in humans, who are able toutilize monocular
cues for depth perception [1]. As a motivating example, consider the right image
in Figure 1, which shows the image of an office environment (180◦ of the omnidi-
rectional image on the left warped to a panoramic view). Overlayed in white, we
visualize the most likely area of free space that is predicted by our approach. We
explicitly do not try to estimate a depth map for the whole image, as for exam-
ple done by Saxenaet al. [2]. Rather, we aim at learning the function that, given
an image, maps measurement directions to their corresponding distances to the
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Figure 2: Reflections, glass walls and inhomogeneous surfaces make the relationship between
visual appearance and depth hard to model. One of the test environments at the University of
Freiburg (left) exhibits many of these factors. Our approach was also tested using a standard
perspective camera in this challenging environment (right).

closest obstacles. Such a function can be utilized to solve various tasks of mobile
robots including local obstacle avoidance, localization,mapping, exploration, or
place classification.

The contribution of this paper is a new approach to range estimation based on
omnidirectional images. The task is formulated as a supervised regression prob-
lem in which the training set is acquired by combining image date with proximity
information provided by a laser range finder. We explain how to extract appropri-
ate visual features from the images using algorithms for edge detection as well as
for supervised and unsupervised dimensionality reduction. As a learning frame-
work in our proposed system, we apply Gaussian processes since this technique is
able to model non-linear functions, offers a direct way of estimating uncertainties
for its predictions, and it has proven successful in previous work involving range
functions [3].

The paper is organized as follows. First, we discuss relatedwork in Section 2.
Section 3 introduces the used visual features and how they can be extracted from
images. We then formalize the problem of predicting range from these features
and introduce the proposed learning framework in Section 4.In Section 5, we
present the experimental evaluation of our algorithm as well as an application to
the mapping problem.
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2. Related Work

Estimating the geometry of a scene based on visual input is one of the fun-
damental problems in computer vision and is also frequentlyaddressed in the
robotics literature. Monocular cameras do not directly provide 3D information
and therefore stereo systems are widely used to estimate themissing depth infor-
mation. Stereo systems either require a careful calibration to analytically calculate
depth using geometric constraints or, as Sinzet al. [4] demonstrated, can be used
in combination with non-linear, supervised learning approaches to recover depth
information. Often, sets of features such as SIFT [5] or SURF [6] are extracted
from two images and matched against each other. Then, the feature pairs are used
to constrain the poses of the two camera locations and/or thepoint in the scene
that corresponds to the image feature. In this spirit, the motion of a single cam-
era has been used by Davidsonet al. [7] and Strasdatet al. [8] to estimate the
location of landmarks in the environment. In their work, Mikusic and Padjla [9]
have proposed a similar approach for recovering 3D structure from sequences of
omnidirectional images.

Sim and Little [10] present a stereo-vision based approach to the SLAM prob-
lem, which includes the recovery of depth information. Their approach contains
both the matching of discrete landmarks and dense grid mapping using vision.

An active way of sensing depth using a single monocular camera is known as
depth from defocus[11] or depth from blur. Such approaches typically adjust the
focal length of the camera and analyze the resulting local changes in image sharp-
ness. Torralba and Oliva [12] present an approach for estimating the mean depth
of full scenes from single images using spectral signatures. While their approach
is likely to improve a large number of recognition algorithms by providing a rough
scale estimate, the spatial resolution of their depth estimates does not appear to be
sufficient for the problem studied in this paper. Dahlkampet al. [13] learn a map-
ping from visual input to road traversability in a self-supervised manner. They
use the information from laser range finders to estimate the terrain traversability
locally and then use visual data to extend the prediction to areas outside the field
of view of the laser range scanners. In contrast to our method, the laser range
data is used at all times since learning is not a separated process as in this pa-
per. Furthermore, different learning techniques and different features have been
applied.

The problem addressed by Saxenaet al. [2] is closely related to our paper.
They utilize Markov random fields (MRFs) for reconstructing dense depth maps
from single monocular images. Compared to these methods, ourGaussian process
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formulation provides the predictive uncertainties for thedepth estimates directly,
which is not straightforward to achieve in an MRF model. An alternative ap-
proach that predicts 2D range scans using reinforcement learning techniques has
been presented by Michelset al. [14]. Menegattiet al. [15] proposed to simulate
range scans from detected color transitions in omnidirectional images and to ap-
ply scan-matching and Monte-Carlo methods for localizing a mobile robot. Such
color transitions are comparable to our set of edge-based features described in
Section 3.3, which form the low-level input to the learning approach described in
this paper.

Hoiem et al. [16] developed an approach to monocular scene reconstruction
based on local features combined with global reasoning. Whereas Han and Zhu [17]
presented a Bayesian method for reconstructing the 3D geometry of wire-like ob-
jects in simple scenes, Delageet al. [18] introduced an MRF model on orthogonal
plane segments to recover the 3D structure of indoor scenes.Ewert et al. [19]
extract depth cues from monocular image sequences in order to facilitate image
retrieval from video sequences. Their major cue for featureextraction is the mo-
tion parallax. Thus, their approach assumes translationalcamera motion and a
rigid scene.

In own previous work [3], we applied Gaussian processes to improve sensor
models for laser range finders. In contrast to that, the goal here is to exchange the
highly accurate and reliable laser measurements by noisy and ambiguous vision
features.

As mentioned above, one potential application of the approach described in
this paper is to learn occupancy grid maps. This type of maps and an algorithm
to update such maps based on ultrasound data has been introduced by Moravec
and Elfes [20]. In the past, different approaches to learn occupancy grid maps
from stereo vision have been proposed [21, 22]. If the positions of the robot are
unknown during the mapping process, the entire task turns into the so-called si-
multaneous localization and mapping (SLAM) problem. Vision-based techniques
have been proposed by Elinaset al. [23] and Davisonet al. [7] to solve this prob-
lem. In contrast to the mapping approach presented in this paper, these techniques
mostly focus on landmark-based representations.

The contribution of this paper is a novel approach to estimating the proximity
to nearby obstacles in indoor environments from a single camera image. It is an
extension of our recent conference paper [24] that first presented the idea of esti-
mating depth from camera images using GP regression. The work presented here
additionally considers supervised dimensionality reduction, namely LDA, which
allows us to find a low dimensional space in which feature vectors corresponding
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Figure 3: Our experimental setup. The training set was recorded using a mobile robot equipped
with an omnidirectional camera (monocular camera with a parabolic mirror) as well as a laser
range finder.

to different range measurements are better separated. In this way, the Gaussian
process is able to provide better estimates about predictedranges.

3. Omnidirectional Vision and Feature Extraction

The task of estimating range information from images requires us to learn the
relationship between visual input and the extent of free space around the robot.
Figure 3 depicts the configuration of our robot used for data acquisition. An om-
nidirectional camera system (catadioptric with a parabolic mirror) is mounted on
top of a SICK laser range finder. This setup allows the robot to perceive the whole
surrounding area at every time step as the two example imagesin Figure 2 illus-
trate. It furthermore enables the robot to collect proximity data from the laser
range finders and relate them to the image data. As a result, our robot can eas-
ily acquire training data used in the regression task. The left images in Figure 1
and Figure 2 show typical situations from the two benchmark data sets used in
this paper. They have been recorded at the University of Freiburg (Figure 1) and
at the German Research Center for Artificial Intelligence (DFKI) in Saarbr̈ucken
(Figure 2). By considering these example images, it is clear that the part of an
omnidirectional image which is most strongly correlated with the distance to the
nearest obstacle in a certain directionα is the strip of pixels oriented in the same
direction covering the area from the center of the image to its margins. With the
type of camera used in our experiments, such strips have a dimensionality of 420
(140 pixels, each having ahue, saturation, and avalue component). To make
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these strips easily accessible to filter operators, we warp the omnidirectional im-
ages into panoramic views (e.g., the right image in Figure 2)so that angles in
the polar representation now correspond to column indices in the panoramic one.
This transformation allows us to replace complicated imageoperations in the po-
lar domain by easier and more robust ones in a Cartesian coordinate system.

In the following, we denote withxi ∈ R
420 the individual pixel columns of an

image and withyi ∈ R the range values in the corresponding direction, that is, the
distances to the closest obstacles, respectively. Before describing how to learn the
relationship between the variablesx andy, we discuss three alternative ways of
extracting meaningful low-dimensional featuresv from x which can be utilized
by the learning algorithm. The first approach applies unsupervised dimensionality
reduction (PCA) to compute low-dimensional features. As an alternative, we also
consider the linear discriminant analysis (LDA) as an supervised alternative to
obtain low-dimensional features. Finally, we discuss the use of manually designed
features extracted from the images that can be used for rangeprediction.

3.1. Unsupervised Dimensionality Reduction

Principal component analysis (PCA) is arguably the most common approach
to dimensionality reduction. We apply PCA for reducing the complexity of the
data to the raw 420-dimensional pixel vectors that are contained in the columns of
the panoramic images. In our approach, the PCA is implementedusing eigenvalue
decomposition of the covariance matrix of the 420-dimensional training vectors.
PCA computes a linear transformation that maps the input vectors onto a new
basis so that their dimensions are ordered by the amount of variance of the data
set they carry. By selecting only the firstk vectors of this basis representing the
dimensions with the highest variance in the data, one obtains a low-dimensional
representation without losing a large amount of information. The left diagram
in Figure 4 shows the remaining fraction of variance after truncating the trans-
formed data vectors after a certain number of components. The right diagram in
the same figure shows the 420 components of the first eigenvector for the Freiburg
data set grouped by hue, saturation, and value. Our experiments revealed that the
value channel of the visual input is more important than hue and saturation for our
task.

For the experiments reported on in Section 5, we trained the PCA on 600
input images and retained the first six principal components. This results in a
reduction from 420-dimensional input vectors to 6-dimensional ones. The GP
model, described in the Section 4, is then learned with these6D features and is
namedPCA-GPin the experimental section.
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Figure 4: Left: The amount of variance explained by the first principal components (eigenvectors)
of the pixel columns in the two data sets. Right: The 420 components of the first eigenvector of
the Freiburg data set.

3.2. Supervised Dimensionality Reduction

A drawback of PCA in our regression task is the fact that it doesnot consider
the range valuesyi when reducing the dimensionality of the input vectorsxi. In
this way, it treats all components of the input vectors equally—no matter how
much information they actually carry about the range to be predicted. It can thus
be expected thatsuperviseddimensionality reduction, where external, dependent
variables are considered explicitly, can lead to more accurate predictions. See Al-
paydin [25] for an overview of approaches and comparisons. One such technique
is the linear discriminant analysis (LDA). LDA is related toPCA in that it also
assumes a linear transformation between the original spaceand the reduced one.
But in contrast to PCA, it allows each data point to be given a class label. LDA
seeks a low-dimensional space in which the classes of the dataset are separated
best as illustrated in Figure 5 for a reduction fromR

2 to R.
Let K be the number of classesCi andxi thed-dimensional inputs. The ob-

jective is to find ad × k matrix W so thatvi = W Txi with vi ∈ R
k and so that

the classesCi are separated best in terms of distances between thevi. Let ri,t be
an indicator variable withri,t = 1 if xt ∈ Ci and 0 otherwise. Letmi be the mean
of d-dimensional vectorsxi. Then, the so-calledscatter matrixof Ci is

Si =
∑

t

ri,t(xt −mi)(xt −mi)
T ,
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Figure 5: Reduction fromR2 to R for PCA and LDA: PCA aims to keep the variance in the data
while LDA seeks to separate the two classes (illustrated by black and blue) as well as possible.

thetotal within-scatter matrixbecomes

SW =
K
∑

i=1

Si =
K
∑

i=1

∑

t

ri,t(xt −mi)(xt −mi)
T ,

and thebetween-class scatter matrixis

SB =
K
∑

i=1

(

∑

t

ri,t

)

(mi −m)(mi −m)T ,

with m = 1

K

∑K

i=1
mi. Now let us consider the scatter matrices after projecting

usingW . The between-class scatter matrix after projection isW T SBW , and the
within-scatter matrix accordingly, both arek × k dimensional. To goal is to de-
termineW in a way that the means of the classesW Tmi are as far apart from
each other as possible while the spread of their individual projected class sam-
ples is small. Similarly to covariance matrices, the determinant of a scatter matrix
characterizes the spread and it is computed as the product ofthe eigenvalues spec-
ifying the variance along the eigenvectors. Thus, we aim at finding the matrixW
that maximizes

J(W ) =
|W T SBW |

|W T SW W |
.

The largest eigenvectors ofS−1

W SB are the solution to this problem.
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Applied to the range-regression task, we selected the discretized laser range
measurements as class label for each input data point. LDA then projects to a low-
dimensional space so that data points corresponding to the discretized range mea-
surements can be separated best. The GP model learned with the low-dimensional
features is namedLDA-GP in our experimental evaluation.

3.3. Edge-based Features

Principal component analysis is an unsupervised method that does not take
into account any prior information and also the linear discriminant analysis only
uses information about class labels to perform dimensionality reduction to keep
the data separated. However, there might be additional information available
about the task to be solved—like the fact that distances to the closest obstacles
are to be predicted in our case. Driven by the observation that there typically is a
strong correlation between the extent of free space and the presence of horizontal
edge features in the panoramic image, we also assessed the potential of edge-type
features in our approach.

To compute such visual features from the warped images, we apply Laws’
convolution masks [26]. They provide an easy way of constructing local feature
extractors for discretized signals. The idea is to define three basic convolution
masks

• L3 = (1, 2, 1)T (Weighted Sum: Averaging),

• E3 = (−1, 0, 1)T (First difference: Edges), and

• S3 = (−1, 2,−1)T (Second difference: Spots),

each having a different effect on (1D) patterns, and to construct more complex fil-
ters by a combination of the basic masks. In our application domain, we obtained
good results with the (2D) directed edge filterE5L

⊤
5

, which is the outer product
of E5 andL5. Here,E5 is a convolution ofE3 with L3 andL5 denotesL3 con-
volved with itself. After filtering with this mask, we apply an optimized threshold
to yield a binary response. This feature type is denoted asLaws5in the experi-
mental section. As another well-known feature type, we applied theE3L

⊤
3

filter,
i.e. the Sobel operator, in conjunction with Canny’s algorithm [27]. This filter
yields binary responses at the image locations with maximalgray-value gradients
in gradient direction. We denote this feature type asLaws3+Cannyin Section 5.
For both edge detectors,Laws5andLaws3+Canny, we search along each image
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Figure 6: Left: ExampleLaws5+LMD feature extracted from one of the Freiburg images. Right:
Histogram forLaws5+LMD edge features. Each cell in the histogram is indexed by the pixel
location of the edge feature (x-axis) and the length of the corresponding laser beam (y-axis).
The optimized (parametric) mapping function that is used asa benchmark in our experiments is
overlaid in green.

column for the first detected edge. This pixel index then constitutes the feature
value.

To increase the robustness of the edge detectors described above, we applied
lightmap dampingas an optional preprocessing step to the raw images. This
means that, in a first step, a copy of the image is converted to gray scale and
strongly smoothed with a Gaussian filter, such that every pixel represents the
brightness of its local environment. This is referred to as thelightmap. The bright-
ness of the original image is then scaled with respect to the lightmap, such that the
valuecomponent of the color is increased in dark areas and decreased in bright ar-
eas. In the experimental section, this operation is marked by adding+LMD to the
feature descriptions. Figure 6 showsLaws5+LMDedge features extracted from
an image of the Freiburg data set.

All parameters involved in the edge detection procedures described above
were optimized to yield features that lie as close as possible to the laser end points
projected onto the omnidirectional image using the acquired training set. For our
regression model, we can now construct 4D feature vectorsv consisting of the
Canny-based feature, theLaws5-based feature, and both features with additional
preprocessing using lightmap-damping. Since every one of these individual fea-
tures captures slightly different aspects of the visual input, the combination of all,
in what we call theFeature-GP, can be expected to yield more accurate predic-
tions than any single one.
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As a benchmark for predicting range information from edge features, we also
evaluated the individual features directly. For doing so, we fitted a parametric
function to training samples of feature-range pairs. This mapping function com-
putes for each pixel location of an edge feature the length ofthe corresponding
laser beam. The right diagram in Figure 6 shows the feature histogram for the
Laws5+LMD features from one of our test runs that was used for the optimiza-
tion. The color of a cell(cx, cy) in this diagram encodes the relative amount of
feature detections that were extracted at the pixel location cx (measured from the
center of the omnidirectional image) and that have a corresponding laser beam
with a length ofcy in the training set. The optimized projection function is over-
layed in green.

4. Learning Depth from Images

This section presents the learning method used in our approach to find the
relationship between visual input and the free space aroundthe robot. Given a
training set of images and corresponding range scans acquired in a setting, we
can treat the problem of predicting range innewsituations as a supervised learn-
ing problem. The omnidirectional images can be mapped directly to the laser
scans since both measurements can be represented in a common, polar coordinate
system. Note that our approach is not restricted to omnidirectional cameras in
principle. However, the correspondence between range measurements and omni-
directional images is a more direct one and the field of view isconsiderably larger
compared to standard perspective optics.

4.1. Gaussian Processes for Range Predictions

In the spirit of the Gaussian beam processes (GBP) model introduced in [3],
we propose to put a Gaussian process (GP) prior on the range function, but in
contrast, here we use the visual featuresv described in the previous section as
indices for the range values rather than the bearing anglesα.

We extract for every viewing directionα a vector of visual featuresv from
an imagec and phrase the problem as learning the range functionf(v) = y that
maps the visual inputv to distancesy. We learn this function in a supervised
manner using a training setD = {vi, yi}

n
i=1

of observed featuresvi and corre-
sponding laser range measurementsyi. If we place a GP prior (see, e.g., [28]) on
the non-linear functionf , i.e., we assume that all range samplesy indexed by their
corresponding feature vectorsv are jointly Gaussian distributed, we obtain
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y∗ = f(v∗) ∼ N (µ∗, σ
2

∗) (1)

for the noise-free range with

µ∗ = k⊤

v∗v
(K

vv
+ σ2

nI)
−1y (2)

σ2

∗ = k(v∗,v∗)− k⊤

v∗v
(K

vv
+ σ2

nI)
−1k

v∗v
(3)

for a new query featurev∗. Here, the matrixK
vv
∈ R

n×n denotes the covariance
matrix with [K

vv
]ij = k(vi,vj). Furthermore,k

v∗v
∈ R

n is given by[k
v∗v

]i =
k(v∗,vi), y = (y1, . . . , yn)⊤, andI is the identity matrix.σn denotes the global
noise parameter. As covariance function, we apply the squared exponential

k(vp,vq) = σ2

f · exp

(

−
1

2ℓ2
|vp − vq|

)

, (4)

wherel andσf , as well as the global noise parameterσn, are the so-called hyper-
parameters. A standard way of learning these hyperparameters from data, which
we applied in this work, is to maximize the log data likelihood of the training data
using scaled conjugate gradients (see, e.g., [28] for details).

A particularly useful property of Gaussian processes for our application is the
availability of the predictive uncertainty at every query point. This means that new
featuresv∗ which lie close to pointsv of the training set, result in more confident
predictions than features which fall into a less densely sampled region of feature
space.

4.2. Modeling Angular Dependencies

So far, our model assumesindependentrange variablesyi and it thus ignores
dependencies that arise, for instance, because “neighboring” range variables and
visual features are likely to correspond to the same object in the environment.
Angular dependencies can be included, for example, by (a) explicitly considering
the angleα as an additional index dimension inv or by (b) applying Gaussian
beam processes (GBPs) as an independent post-processing step to thepredicted
range scan. While the first variant would require a large amount of additional
training data—since it effectively couples the visual appearance and the angle of
observation, the second alternative is relatively easy to realize and to implement.
Figure 3 gives a graphical representation of the second approach. The gray bars
group sets of variables that are fully connected and jointlydistributed according to
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Figure 7: Graphical model for predicting rangesr from a camera imagec. The gray bars group
sets of variables that are fully connected and that are jointly distributed according to a GP model.

a GP model. We denote withGPy the Gaussian process that maps visual features
to ranges and withGPr the so-called heteroscedastic GP that is applied as a post-
processing step to single, predicted range scans. ForGPr, the task is to learn
the mappingα 7→ r using a training set ofpredictedrange valuesr. Since we
do not want to constrain the model to learning from themeanpredictionsµ∗(xi)
only, we need a way of incorporating the predictive uncertaintiesσ2

∗(vi) for the
feature-based range predictionsy∗. This can be achieved by not using a fixed noise
matrixσ2

nI as inGPy (compare Eq. (2) and Eq. (3)), but instead its heteroscedastic
extension

R = diag
(

σ2

∗(v1), . . . , σ
2

∗(vn)
)

, (5)

see [3]. This matrix does not depend on aglobal noise parameterσn, but rather
on the individual confidence estimatesσ2

∗(vi), with whichGPy estimated the cor-
responding range value. Note that this “trick” of gating outtraining points by
artificially increasing their associated variance was alsoapplied in recent work on
modeling gas distributions [29] for deriving a GP mixture model. A more detailed
discussion of the approach can be found there and in [30].

4.3. Summary of Our Approach

The full approach that also considers the angular dependencies in a range scan
is denoted by the postfix+GBP in the experimental evaluation. To obtain the
prediction of a full range scan given one omnidirectional image, we proceed as
follows:

1. Warp the omnidirectional image into a panoramic view.
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2. Extract for every pixel columni a vector of visual featuresvi.
3. UseGPy to make independent range predictions aboutyi.
4. Learn a heteroscedastic GBPGPr for the set of predicted ranges{yi}

n
i=1

indexed by their bearing anglesαi and make the final range predictionsri for
the same bearing angles.

As the following experimental evaluation revealed, this additional GBP treatment
(post-processing withGPr) further increases the accuracy of range predictions.
The gain, however, is rather small compared to what the GP treatmentGPy adds to
the accuracy achievable with the baseline feature mappings. This might be due to
the fact that the extracted features—and the constellationof several feature types
even more so—carry information of neighboring pixel strips, such that angular
dependencies are incorporated at this early stage already.

5. Experimental Evaluation

The system for predicting range from single, omnidirectional images described
in the previous sections was implemented inC/C++ andPython and tested on
two benchmark data sets for image-based localization. The data sets, named
Freiburg and Saarbrücken have been acquired in the context of the EU project
CoSy. They have been made publicly available at [31] under thenames COLD-
Freiburg and COLD-Saarbruecken. The data was recorded usinga mobile robot
equipped with a laser scanner, an omnidirectional camera, and Odometry sensors
at the AIS lab of the University of Freiburg and at the German Research Center for
Artificial Intelligence (DFKI) in Saarbr̈ucken. The two environments have quite
different characteristics—especially in the visual aspects. While the environment
in Saarbr̈ucken mainly consists of solid, regular structures and a homogeneously
colored floor, the lab in Freiburg exhibits many glass panes,an irregular, wooden
floor and challenging lighting conditions.

The goal of the experimental evaluation was to verify that the proposed sys-
tem is able to make sensible range predictions from single omnidirectional camera
images and to quantify the benefits of the GP approach in comparison to conceptu-
ally simpler approaches. We document a series of different experiments: First, we
evaluate the accuracy of the estimated range scans using (a)the individual edge
features directly, (b) thePCA-GP, (c) theLDA-GP, and (d) theFeature-GP, which
constitutes our regression model with the four edge-based vision features as input
dimensions. Then, we illustrate how these estimates can be used to build grid
maps of the environment. We also evaluated whether applyingthe GBP model,

15



 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 3  2  1  0  1  2  3  4  5

Ground Truth Distances (Laser)
Predicted means (FeatureGP)

Figure 8: Left: Estimated ranges projected back onto the camera image using the feature detectors
directly (small dots) and using theFeature-GPmodel (red points). Right: Prediction results and
the true laser scan at one of the test locations visualized from a birds-eye view.

which was introduced in [3], as a post-processing step to thepredicted range scans
can further increase the prediction accuracy. The GBP model places a Gaussian
process prior on the range function (rather than on the function that maps fea-
tures to distances) and, thus, also models angular dependencies. We denote these
models byFeature-GP+GBP, PCA-GP+GBP, andLDA-GP+GBP.

5.1. Quantitative Results
Table 1 summarizes the average RMSE (root mean squared error)obtained for

different system configurations, which are detailed in the following. The error is
measured as the difference betweenmeasuredlaser ranges and rangespredicted
using the visual input. The first four configurations, referred to as C01 to C04,
apply the optimized mapping functions for the different edge features (see Fig-
ure 6). Depending on the data, the features provide estimates with an RMSE of
between 1.7 m and 3 m. We then evaluated the configurations C05 and C06 which
use the four edge-based features as inputs to a Gaussian process model as de-
scribed in Section 4 to learn the mapping from the feature vectors to the distances.
The learning algorithm was able to perform range estimationwith an RMSE of
around 1 m. Note that we measure the prediction error relative to the recorded
laser beams rather than to the true geometry of the environment. Thus, we report
a conservative error estimate that also includes mismatches due to reflected laser
beams or due to imperfect calibration of the individual components. To give a
visual impression of the prediction accuracy of theFeature-GP, we give a typical
laser scan and the mean predictions in the right diagram in Figure 8.
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Table 1: Average errors obtained with the different methods. The root mean squared errors
(RMSE) are calculated relative to the mean predictions for the complete test sets.

RMSE on test set
Configuration Saarbrücken Freiburg

C01: Laws5 1.70m 2.87m
C02: Laws5+LMD 2.01m 2.08m
C03: Laws3+Canny 1.74m 2.87m
C04: Laws3+Canny+LMD 2.06m 2.59m
C07: PCA-GP 1.24m 1.40m
C09: LDA-GP 1.20m 1.31m
C05: Feature-GP 1.04m 1.04m
C08: PCA-GP+GBP 1.22m 1.41m
C10: LDA-GP+GBP 1.17m 1.29m
C06: Feature-GP+GBP 1.03m 0.94m

ThePCA-GPapproach (denoted as C07) that does not require engineered fea-
tures, but rather works on the low-dimensional representation of the raw visual
input computed using the PCA. The resulting six-dimensionalfeature vector is
used as input to the Gaussian process model. With an RMSE of 1.2m to 1.4 m,
the PCA-GPoutperforms all four engineered features, but is not as accurate as
the Feature-GP. When using LDA for dimensionality reduction (C09) instead
of PCA, we observe a reduction of the prediction error by around 4-8 per cent.
Also the LDA is outperformed byFeature-GPin terms of prediction accuracy. It
should be stressed, however, thatPCA-GPas well asLDA-GPdo not require any
manually defined features as they operate on the observed 420-dimensional pixel
columns directly. For configurations C06, C08, and C10, we predicted the ranges
per scan using the same methods as above, but additionally applying the GBP
model [3] to incorporate angular dependencies between the predicted beams. This
post-processing step yields slight improvements comparedto the original variants
C05, C07, and C09.

The left image in Figure 8 depicts the predictions based on the individual
vision features and theFeature-GP. It can be clearly seen from the image, that
the different edge-based features model different parts ofthe range scan well. The
Feature-GPfuses these unreliable estimates to achieve high accuracy on the whole
scan. The result of theFeature-GP+GBPvariant for the same situation is given
in Figure 1. The right diagram in Figure 8 visualizes a typical prediction result and
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Figure 9: The evolution of the root mean squared error (RSME)for the individual images of the
Saarbr̈ucken (left) and Freiburg (right) data sets.

the corresponding laser scan—which can be regarded here as the ground truth—
from a birds-eye view. The evolution of the RMSE for the different methods
over time is given in Figure 9. As can be seen from the diagrams, the prediction
using theFeature-GPmodel outperforms the other techniques and achieves a near-
constant error rate.

In summary, our GP-based technique outperforms the individual, engineered
features for range prediction. The smoothed approach (C06) yields the best pre-
dictions with an RMSE of around 1 m. One can obtain good resultsby a combi-
nation of LDA for dimensionality reduction and GP learning with an error that is
only slightly larger (C10 versus C06), even though this unsupervised method does
not have access to background information.

5.2. Error Analysis

In this section, we analyze the prediction accuracy of our proposed method
beyond the RMSE measure, that is, considering the entire distribution of predic-
tion error in order to identify and document its different causes. The left diagram
in Fig. 10 shows the histogram of prediction errors for a typical scan. It is clearly
visible, that the reported RMSE values are strongly influenced by the heavy tails
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Figure 10: Error histograms for omnidirectional range prediction from single images. Left: Inde-
pendent predictions for fixed beam orientations. Right: Accounting for uncertain beam orienta-
tions due to small angular miscalibration of the test and training setup.

of the error distribution. The large majority of the predictions is accurate (less
than 30cm error), while very few predictions have a high error of up to 3m. Close
inspection of the results reveals, that such isolated high errors are mostly caused
by a small angular misalignment between the camera and the laser scanner which
recorded the reference test set. This effect is visualized in the right diagram in
Fig. 11. The diagram shows the “true distances” as measured by the laser scanner,
the predicted distances and the respective absolute errors. It can be seen that most
of the absolute prediction error accounts to beam 18520 (ID in the entire test set)
which is located close to a depth discontinuity. Already a very small angular mis-
alignment between laser scanner and camera can lead to such peaks in the error
function.

As a result, the reported RMSE values have to be seen as a tool for compar-
ing different approaches and settings rather than as a measure of precision for an
actual application. From our experience, error histogramsand concrete prediction
examples deliver the best picture of the actual precision tobe expected.

To show the influence of angular misalignment as well as long-range predic-
tions quantitatively, we give a comparison of different error measures in Tab. 2.
In the row labeled “fixed aligment”, we give the errors for direct comparisons

Table 2: Comparison of error measures.

Root Mean SquaredMean Absolute Mean relative
Error (RMSE) Error Error

Fixed alignment 0.88 m 0.55 m 0.19
Uncertain alignment 0.67 m 0.38 m 0.14
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Figure 11: Left: Range predictions of method C05 (Feature-GP) for a single perspective camera
image taken from a test sequence. Right: Visualization of the prediction errors for a typical scan
from a test sequence. Most of the absolute prediction error is caused by small angular misalign-
ments (here: beam 18520) and for long-range predictions (exceeding 10m).

between laser beams and prediction w.r.t. a fixed beam orientation. For “uncer-
tain aligment”, we allow for a small angular misalignment ofthe laser beams and
their projections to the camera images. The relative errorsin the last column are
computed by dividing the range predictions by the true distances.

As a reference for comparison, Saxenaet al. [2] reports depth reconstruction
errors in indoor environments of 0.084 on a log scale (base 10), which corresponds
to 1.21m of mean absolute error. Including stereo information using a second
camera, their error drops to 0.079 in log scale, that is, 1.19m on a regular scale.

5.3. Using Perspective Cameras

To show the flexibility of our method, we conducted additional experiments
using a single perspective camera (as opposed to an omnidirectional one). In this
setting, the correspondence between range observations from the laser scanner
(available only during training) and the camera image is notas direct as for omni-
directional, axis-aligned cameras. Nevertheless, the mapping function is bijective
in the region observed by the camera and it can be computed analytically using
projective geometry. The right image in Fig. 2 shows an example image and the
laser beams transformed into image coordinates. The camerahas a50◦ field of
view and it covers approximately 2.2m to 30m in depth. The camera was tilted
downwards by10◦. We recorded two data sets containing 600 images each. One
set was used for training, the other one for testing.

In this experiment, we additionally evaluated a combination of PCA and LDA,
for which we first reduced the dimensionality of the data to 50using PCA and
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then applied LDA to further reduce to 6 dimensions. This is a common approach
in face recognition, addressing the concern that LDA might perform poorly due
to too little training data. PCA and LDA were learned from 100 images randomly
drawn from the training set and the GP models used 300 random images. Test
statistics were computed over the whole test set (50 beams per image).

Table 3 gives the quantitative results for this experiment.The observed trend
is similar to the one described in Sec. 5.1: The feature-based GP performs best,
while the unsupervised methods (LDA and PCA) follow up with a higher mean
prediction error. The combination of LDA and PCA did not yieldsignificant ad-
vantages in this setting. The absolute prediction errors are higher compared to
the omnidirectional setting, mainly because the respective test set contains signif-
icantly more long-range predictions due to the heading of the camera towards the
long corridor.

Referring to the discussion in the previous section, it should be noted that the
distribution of errors is strongly biased towards errors caused by small angular
misalignments (see the right diagram in Fig. 11). For most practical applications,
for example obstacle avoidance, such small angular misalignments do not have a
negative impact. The left image in Fig. 11 shows a typical image from the test
sequence including the predictions made using C05 (Feature-GP).

Table 3: Average errors obtained with the different methodson single perspective camera images.
The root mean squared errors (RMSE) are calculated relativeto the mean predictions for the
complete test sets.

Prediction errors (on single images of a perspective camera)
Configuration Mean absolute error RMSE
C09: LDA-GP 2.24m 3.52m
C07: PCA-GP 1.87m 3.10m
C11: PCA-LDA-GP 1.85m 3.02m
C05: Feature-GP 1.19m 2.65m

5.4. Non-Linear Dimensionality Reduction
In addition to PCA and LDA, we also considered applying non-linear dimen-

sionality reduction as a preprocessing step. Non-linear dimensionality reduction
can be described as seeking a low-dimensional manifold (notnecessarily a linear
subspace) in which the observed data points can be represented well. Approaches
to this problem include local linear embedding (LLE) [32] and ISOMAP [33].
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We implemented LLE, due to our positive experience with thistechnique in
the past. In this domain, however, LLE performed significantly worse than all
other techniques evaluated in Table 1. An analysis of the constructed manifolds
indicated that the low performance may be caused by the significant number of
outliers present in our real-world data sets. Similar observations about LLE and
the presence of outliers have also been reported by other researcher. Chang and
Yeung [34], for example, report that adding between 5% and 10% outliers to per-
fect data can prevent LLE from finding an appropriate embedding.

5.5. Learning Occupancy Maps from Predicted Scans

Our approach can be applied to a variety of robotics tasks such as obstacle
avoidance, localization, or mapping. To illustrate this, we show how to learn a
grid map of the environment from the predictive range distributions. Compared
to occupancy grid mapping where one estimates for each cell the probability of
being occupied or free, we use the so-calledreflection probability maps. A cell of
such a map models the probability that a laser beam passing this cell is reflected
or not. Reflection probability maps, which are learned using the so-calledcount-
ing model, have the advantage of requiring no hand-tuned sensor modelsuch as
occupancy grid maps (see [35] for further details). The reflection probabilitymi

of a celli is given by

mi =
αi

αi + βi

, (6)

whereαi is the number of times an observation hits the cell, i.e., ends in it, and
βi is the number of misses, i.e., the number of times a beam has intercepted a cell
without ending in it. Since our GP approach does not estimatea single laser end
point, but rather a full (normal) distributionp(z) of possible end points, we have to
integrate over this distribution (see Figure 12). More precisely, for each grid cell
ci, we update the cell’s reflectance values according to the predictive distribution
p(z) according to the following formulas:

αi ← αi +

∫

z∈ci

p(z) dz (7)

βj ← βi +

∫

z>ci

p(z) dz . (8)

Note that for perfectly accurate predictions, the extendedupdate rule is equivalent
to the standard formula stated above.
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Figure 12: The counting model for reflectance grid maps in conjunction with sensor models that
yield Gaussian predictive distributions over ranges.

We applied this extended reflection probability mapping approach to the tra-
jectories and range predictions that resulted from the experiments reported above.
Figure 13 presents the laser-based maps using a standard reflection probability
mapping system (left column) and our extended variant usingthe predicted ranges
(right column) for the two environments (Freiburg on top andSaarbr̈ucken below).
In both cases, it is possible to build an accurate map, which is comparable to maps
obtained with infrared proximity sensors [36] or sonars [21].

6. Conclusion

This paper presents a new approach to estimating the free space around a robot
based on single images recorded with an omnidirectional camera. The task of es-
timating the range to the closest obstacle is achieved by applying a Gaussian pro-
cess model for regression, utilizing edge-based features extracted from the image
or, alternatively, using PCA or LDA to find a low-dimensional representation of
the visual input in an unsupervised manner. All learned models outperform the
optimized individual features.

We furthermore showed in experiments with a real robot that the range pre-
dictions are accurate enough to feed them into a mapping algorithm considering
predictive range distributions and that the resulting mapsare comparable to maps
obtained with infrared or sonar sensors.
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Figure 13: Maps of the Freiburg AIS lab (top row) and DFKI Saarbrücken (bottom row) using real
laser data (left) and the predictions of theFeature-GP(right).
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