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Abstract

We present a novel approach to estimating depth from simgledirectional cam-
era images by learning the relationship between visualfeatand range mea-
surements available during a training phase. Our model migtyoelds the most
likely distance to obstacles in all directions, but also phedictive uncertainties
for these estimates. This information can be utilized by &itegobot to build an
occupancy grid map of the environment or to avoid obstaaleésd exploration—
tasks that typically require dedicated proximity sensachsas laser range finders
or sonars. We show in this paper how an omnidirectional caroan be used as
an alternative to such range sensors. As the learning gngsmepply Gaussian
processes, a nonparametric approach to function regressiavell as a recently
developed extension for dealing with input-dependentenoiis practical experi-
ments carried out in different indoor environments with abiteorobot equipped
with an omnidirectional camera system, we demonstrateotivadystem is able to
estimate range with an accuracy comparable to that of deedicnsors based on
sonar or infrared light.
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Figure 1: Our system records intensity images (left) anideses the distances to nearby obstacles
(right) after having learned how visual appearance isedl&t depth.

1. Introduction

The major role of perception, in humans as well as in robotstesns, is to
discover geometric properties of the current scene in dadact in it reasonably
and safely. For artificial systems, omnidirectional visfimovides a rich source
of information about the local environment, since it capsuthe entire scene—or
at least the most relevant part of it—in a single image. Mwedearch has thus
concentrated on the question of how to extract geometricespeoperties, such
as distances to nearby objects, from such images.

This task is complicated by the fact that only a projectiortted scene is
recorded and, thus, it is not possible to sense depth inteymdirectly. From
a geometric point of view, one needs at least two images t&ken different
locations to recover the depth information analyticallyn &ternative approach
that requires just one monocular camera image and that Wwenfdlere, is to
learn from previous experience how visual appearance aseetito depth. Such
an ability is also highly developed in humans, who are ablatitze monocular
cues for depth perception [1]. As a motivating example, marghe right image
in Figure 1, which shows the image of an office environmeg®{ of the omnidi-
rectional image on the left warped to a panoramic view). @yed in white, we
visualize the most likely area of free space that is predibeour approach. We
explicitly do not try to estimate a depth map for the whole g®aas for exam-
ple done by Saxenet al.[2]. Rather, we aim at learning the function that, given
an image, maps measurement directions to their correspgmiistances to the
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Figure 2: Reflections, glass walls and inhomogeneous ssfatake the relationship between
visual appearance and depth hard to model. One of the tesbements at the University of
Freiburg (left) exhibits many of these factors. Our apphoa@s also tested using a standard
perspective camera in this challenging environment (yight

closest obstacles. Such a function can be utilized to s@vews tasks of mobile
robots including local obstacle avoidance, localizatimapping, exploration, or
place classification.

The contribution of this paper is a new approach to rangenasion based on
omnidirectional images. The task is formulated as a supedviegression prob-
lem in which the training set is acquired by combining imaggedvith proximity
information provided by a laser range finder. We explain howxtract appropri-
ate visual features from the images using algorithms foeetigection as well as
for supervised and unsupervised dimensionality reducthma learning frame-
work in our proposed system, we apply Gaussian processastsiis technique is
able to model non-linear functions, offers a direct way aineating uncertainties
for its predictions, and it has proven successful in previwork involving range
functions [3].

The paper is organized as follows. First, we discuss related in Section 2.
Section 3 introduces the used visual features and how thepeaxtracted from
images. We then formalize the problem of predicting rangenfthese features
and introduce the proposed learning framework in Sectiomn4Section 5, we
present the experimental evaluation of our algorithm as ageln application to
the mapping problem.



2. Related Work

Estimating the geometry of a scene based on visual inputasobithe fun-
damental problems in computer vision and is also frequestlgressed in the
robotics literature. Monocular cameras do not directlyvpte 3D information
and therefore stereo systems are widely used to estimateisiseng depth infor-
mation. Stereo systems either require a careful calibrati@nalytically calculate
depth using geometric constraints or, as Sihal.[4] demonstrated, can be used
in combination with non-linear, supervised learning apfees to recover depth
information. Often, sets of features such as SIFT [5] or SURFafe extracted
from two images and matched against each other. Then, thedgaairs are used
to constrain the poses of the two camera locations and/opdie in the scene
that corresponds to the image feature. In this spirit, théonmf a single cam-
era has been used by Davidseinal. [7] and Strasdagt al. [8] to estimate the
location of landmarks in the environment. In their work, Msikc and Padjla [9]
have proposed a similar approach for recovering 3D stradtom sequences of
omnidirectional images.

Sim and Little [10] present a stereo-vision based approatiet SLAM prob-
lem, which includes the recovery of depth information. Ttegiproach contains
both the matching of discrete landmarks and dense grid mgpsing vision.

An active way of sensing depth using a single monocular camseétnown as
depth from defocufl1] or depth from blur Such approaches typically adjust the
focal length of the camera and analyze the resulting locahghs in image sharp-
ness. Torralba and Oliva [12] present an approach for estigiéhe mean depth
of full scenes from single images using spectral signatuAdsle their approach
is likely to improve a large number of recognition algorithby providing a rough
scale estimate, the spatial resolution of their depth edémdoes not appear to be
sufficient for the problem studied in this paper. Dahlkaghpl.[13] learn a map-
ping from visual input to road traversability in a self-saygsed manner. They
use the information from laser range finders to estimatedtraih traversability
locally and then use visual data to extend the predictiong¢asaoutside the field
of view of the laser range scanners. In contrast to our metthedlaser range
data is used at all times since learning is not a separatesegsa@s in this pa-
per. Furthermore, different learning techniques and wifie features have been
applied.

The problem addressed by Saxestaal. [2] is closely related to our paper.
They utilize Markov random fields (MRFs) for reconstructirende depth maps
from single monocular images. Compared to these method§aussian process



formulation provides the predictive uncertainties for tiepth estimates directly,
which is not straightforward to achieve in an MRF model. Arealative ap-
proach that predicts 2D range scans using reinforcememtitgptechniques has
been presented by Micheds al.[14]. Menegattiet al. [15] proposed to simulate
range scans from detected color transitions in omnidiwealiimages and to ap-
ply scan-matching and Monte-Carlo methods for localizingadoibe robot. Such
color transitions are comparable to our set of edge-bassdrés described in
Section 3.3, which form the low-level input to the learnimpgpeoach described in
this paper.

Hoiem et al. [16] developed an approach to monocular scene reconstnucti
based on local features combined with global reasoning. ¥ésdidan and Zhu [17]
presented a Bayesian method for reconstructing the 3D gepofetire-like ob-
jects in simple scenes, Delageal.[18] introduced an MRF model on orthogonal
plane segments to recover the 3D structure of indoor scelfe®rt et al. [19]
extract depth cues from monocular image sequences in ardacititate image
retrieval from video sequences. Their major cue for feaéxteaction is the mo-
tion parallax. Thus, their approach assumes translaticex@era motion and a
rigid scene.

In own previous work [3], we applied Gaussian processes {wore sensor
models for laser range finders. In contrast to that, the gexa is to exchange the
highly accurate and reliable laser measurements by nogyaarbiguous vision
features.

As mentioned above, one potential application of the apgraescribed in
this paper is to learn occupancy grid maps. This type of madsaa algorithm
to update such maps based on ultrasound data has been g&dolly Moravec
and Elfes [20]. In the past, different approaches to leacupancy grid maps
from stereo vision have been proposed [21, 22]. If the pmsitiof the robot are
unknown during the mapping process, the entire task turostine so-called si-
multaneous localization and mapping (SLAM) problem. Mislmased techniques
have been proposed by Elinesal.[23] and Davisoret al.[7] to solve this prob-
lem. In contrast to the mapping approach presented in tipisrpthese techniques
mostly focus on landmark-based representations.

The contribution of this paper is a novel approach to estirgahe proximity
to nearby obstacles in indoor environments from a singleecanmage. It is an
extension of our recent conference paper [24] that firstgoriesl the idea of esti-
mating depth from camera images using GP regression. THepvesented here
additionally considers supervised dimensionality redumctnamely LDA, which
allows us to find a low dimensional space in which featureamsotorresponding
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Figure 3: Our experimental setup. The training set was dsmbusing a mobile robot equipped
with an omnidirectional camera (monocular camera with alpalic mirror) as well as a laser
range finder.

to different range measurements are better separatedislwdly, the Gaussian
process is able to provide better estimates about prediateges.

3. Omnidirectional Vision and Feature Extraction

The task of estimating range information from images rexguurs to learn the
relationship between visual input and the extent of frees@aound the robot.
Figure 3 depicts the configuration of our robot used for datpussition. An om-
nidirectional camera system (catadioptric with a parabwiirror) is mounted on
top of a SICK laser range finder. This setup allows the roboetogive the whole
surrounding area at every time step as the two example imagegure 2 illus-
trate. It furthermore enables the robot to collect proyynaata from the laser
range finders and relate them to the image data. As a resultpbat can eas-
ily acquire training data used in the regression task. Tfieneages in Figure 1
and Figure 2 show typical situations from the two benchmata dets used in
this paper. They have been recorded at the University ob&rgi(Figure 1) and
at the German Research Center for Atrtificial Intelligence (DRK Saarbiicken
(Figure 2). By considering these example images, it is clear the part of an
omnidirectional image which is most strongly correlatethvihe distance to the
nearest obstacle in a certain directioims the strip of pixels oriented in the same
direction covering the area from the center of the imagestoniargins. With the
type of camera used in our experiments, such strips have engionality of 420
(140 pixels, each having laue saturation and avalue component). To make
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these strips easily accessible to filter operators, we waminnidirectional im-
ages into panoramic views (e.g., the right image in Figuredjhat angles in
the polar representation now correspond to column indicéise panoramic one.
This transformation allows us to replace complicated imaggrations in the po-
lar domain by easier and more robust ones in a Cartesian cabedystem.

In the following, we denote witk; € R*2° the individual pixel columns of an
image and withy; € R the range values in the corresponding direction, thatés, th
distances to the closest obstacles, respectively. Bef@aibdeng how to learn the
relationship between the variablesandy, we discuss three alternative ways of
extracting meaningful low-dimensional featuregrom x which can be utilized
by the learning algorithm. The first approach applies unsaped dimensionality
reduction (PCA) to compute low-dimensional features. Asltarraative, we also
consider the linear discriminant analysis (LDA) as an suviged alternative to
obtain low-dimensional features. Finally, we discuss teaf manually designed
features extracted from the images that can be used for @egdetion.

3.1. Unsupervised Dimensionality Reduction

Principal component analysis (PCA) is arguably the most comapproach
to dimensionality reduction. We apply PCA for reducing thenptexity of the
data to the raw 420-dimensional pixel vectors that are @oedian the columns of
the panoramic images. In our approach, the PCA is implemersied eigenvalue
decomposition of the covariance matrix of the 420-dimemelidraining vectors.
PCA computes a linear transformation that maps the inpubveanto a new
basis so that their dimensions are ordered by the amountrigine of the data
set they carry. By selecting only the firstvectors of this basis representing the
dimensions with the highest variance in the data, one obtiow-dimensional
representation without losing a large amount of informmatid he left diagram
in Figure 4 shows the remaining fraction of variance aftant¢ating the trans-
formed data vectors after a certain number of components.right diagram in
the same figure shows the 420 components of the first eigemfecthe Freiburg
data set grouped by hue, saturation, and value. Our expetsmevealed that the
value channel of the visual input is more important than meesaturation for our
task.

For the experiments reported on in Section 5, we trained & Bn 600
input images and retained the first six principal componefitsis results in a
reduction from 420-dimensional input vectors to 6-dimenal ones. The GP
model, described in the Section 4, is then learned with te&séatures and is
namedPCA-GPin the experimental section.
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Figure 4: Left: The amount of variance explained by the firsigpal components (eigenvectors)
of the pixel columns in the two data sets. Right: The 420 camepts of the first eigenvector of
the Freiburg data set.

3.2. Supervised Dimensionality Reduction

A drawback of PCA in our regression task is the fact that it do#sconsider
the range valueg; when reducing the dimensionality of the input vectgys In
this way, it treats all components of the input vectors dggaho matter how
much information they actually carry about the range to leeligted. It can thus
be expected thagupervisedlimensionality reduction, where external, dependent
variables are considered explicitly, can lead to more atepredictions. See Al-
paydin [25] for an overview of approaches and comparisomg $dch technique
is the linear discriminant analysis (LDA). LDA is related RCA in that it also
assumes a linear transformation between the original spratt¢he reduced one.
But in contrast to PCA, it allows each data point to be given asclabel. LDA
seeks a low-dimensional space in which the classes of tlaselatire separated
best as illustrated in Figure 5 for a reduction fréthto R.

Let K be the number of class€s andx; the d-dimensional inputs. The ob-
jective is to find ad x k& matrix W so thatv; = W7x; with v; € R* and so that
the classes,; are separated best in terms of distances betweew;theet r; ; be
an indicator variable with; , = 1 if x, € C; and 0 otherwise. Lat; be the mean
of d-dimensional vectors;. Then, the so-calledcatter matrixof C; is

S, = Zﬁ‘,t(xt - mi)(Xt - mi)T )

t
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Figure 5: Reduction froniR? to R for PCA and LDA: PCA aims to keep the variance in the data
while LDA seeks to separate the two classes (illustratedégkiand blue) as well as possible.

thetotal within-scatter matrijbecomes

K K
Sw = Z S; = Z Z Ti,t(xt - mz’)(xt - mz’)Ta
i=1 =1 t

and thebetween-class scatter matiisc
K
1=1

Sgp = Z (Z Tijt) (m; — m)(m; — m)T,

with m = % Zfil m,;. Now let us consider the scatter matrices after projecting
usingW. The between-class scatter matrix after projectio/isSzWW, and the
within-scatter matrix accordingly, both akex k dimensional. To goal is to de-
termineV in a way that the means of the clas$&< m,; are as far apart from
each other as possible while the spread of their individuajepted class sam-
ples is small. Similarly to covariance matrices, the deteamt of a scatter matrix
characterizes the spread and it is computed as the prodilne efgenvalues spec-
ifying the variance along the eigenvectors. Thus, we aimmdirig the matrixil’/

that maximizes

WTSpW|

V) = T

The largest eigenvectors 6f;' S are the solution to this problem.



Applied to the range-regression task, we selected theealized laser range
measurements as class label for each input data point. L&Agdliojects to a low-
dimensional space so that data points corresponding tdgbeetized range mea-
surements can be separated best. The GP model learned avitintlllimensional
features is namedDA-GPin our experimental evaluation.

3.3. Edge-based Features

Principal component analysis is an unsupervised methdddites not take
into account any prior information and also the linear dmgrant analysis only
uses information about class labels to perform dimensitynaduction to keep
the data separated. However, there might be additionatnrgtion available
about the task to be solved—Ilike the fact that distancesdakbhsest obstacles
are to be predicted in our case. Driven by the observatidrthieae typically is a
strong correlation between the extent of free space andrésepce of horizontal
edge features in the panoramic image, we also assessedémigiof edge-type
features in our approach.

To compute such visual features from the warped images, \pby d@aws’
convolution masks [26]. They provide an easy way of consingdocal feature
extractors for discretized signals. The idea is to defineghrasic convolution
masks

o [3=(1,2,1)T (Weighted Sum: Averaging),
o [ =(—1,0,1)T (First difference: Edges), and
o S3=(-1,2,—1)T (Second difference: Spots),

each having a different effect on (1D) patterns, and to canstnore complex fil-
ters by a combination of the basic masks. In our applicatamaln, we obtained
good results with the (2D) directed edge filtBgL. , which is the outer product
of E5 and Ls. Here, E;5 is a convolution ofE; with L; and Ls; denotesLs con-
volved with itself. After filtering with this mask, we applyaptimized threshold
to yield a binary response. This feature type is denoteldaags5in the experi-
mental section. As another well-known feature type, weiadghe 5 L] filter,
i.e. the Sobel operator, in conjunction with Canny’s aldorit[27]. This filter
yields binary responses at the image locations with maxgra}-value gradients
in gradient direction. We denote this feature typd.asg/s3+Cannyin Section 5.
For both edge detectorsaws5andLaws3+Cannywe search along each image
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Figure 6: Left: Examplé.aws5+LMDfeature extracted from one of the Freiburg images. Right:
Histogram forLaws5+LMD edge features. Each cell in the histogram is indexed by thel pi
location of the edge feature (x-axis) and the length of theesponding laser beam (y-axis).
The optimized (parametric) mapping function that is used Aenchmark in our experiments is
overlaid in green.

column for the first detected edge. This pixel index then titutes the feature
value.

To increase the robustness of the edge detectors deschbed,ave applied
lightmap dampingas an optional preprocessing step to the raw images. This
means that, in a first step, a copy of the image is convertedayp scale and
strongly smoothed with a Gaussian filter, such that everglpi@presents the
brightness of its local environment. This is referred taedightmap The bright-
ness of the original image is then scaled with respect taghéhap, such that the
valuecomponent of the color is increased in dark areas and dext@abright ar-
eas. In the experimental section, this operation is marlextding+LMD to the
feature descriptions. Figure 6 showaws5+LMD edge features extracted from
an image of the Freiburg data set.

All parameters involved in the edge detection proceduresrdeed above
were optimized to yield features that lie as close as passitthe laser end points
projected onto the omnidirectional image using the acquir@ning set. For our
regression model, we can now construct 4D feature vestarsnsisting of the
Canny-based feature, thaws5based feature, and both features with additional
preprocessing using lightmap-damping. Since every onbeadet individual fea-
tures captures slightly different aspects of the visualiinfhe combination of all,
in what we call theFeature-GR, can be expected to yield more accurate predic-
tions than any single one.
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As a benchmark for predicting range information from edgeuees, we also
evaluated the individual features directly. For doing se, fitted a parametric
function to training samples of feature-range pairs. Thagoping function com-
putes for each pixel location of an edge feature the lengtiheicorresponding
laser beam. The right diagram in Figure 6 shows the featwtedram for the
Laws5+LMD features from one of our test runs that was used for the opdimi
tion. The color of a cellc,, ¢,) in this diagram encodes the relative amount of
feature detections that were extracted at the pixel looatigmeasured from the
center of the omnidirectional image) and that have a coomdipg laser beam
with a length ofc, in the training set. The optimized projection function ispv
layed in green.

4. Learning Depth from Images

This section presents the learning method used in our apipriwafind the
relationship between visual input and the free space artlumdobot. Given a
training set of images and corresponding range scans acdquira setting, we
can treat the problem of predicting rangenewsituations as a supervised learn-
ing problem. The omnidirectional images can be mapped ttiréa the laser
scans since both measurements can be represented in a copulaomroordinate
system. Note that our approach is not restricted to omraticeal cameras in
principle. However, the correspondence between rangeurerasnts and omni-
directional images is a more direct one and the field of viesoissiderably larger
compared to standard perspective optics.

4.1. Gaussian Processes for Range Predictions

In the spirit of the Gaussian beam processes (GBP) modebuinted in [3],
we propose to put a Gaussian process (GP) prior on the ramgédn, but in
contrast, here we use the visual featuvedescribed in the previous section as
indices for the range values rather than the bearing angles

We extract for every viewing direction a vector of visual featureg from
an imagec and phrase the problem as learning the range fungtien = y that
maps the visual input to distances;,. We learn this function in a supervised
manner using a training s& = {v,,y;}"" , of observed features, and corre-
sponding laser range measuremejtdf we place a GP prior (see, e.g., [28]) on
the non-linear functiorf, i.e., we assume that all range sampl@sdexed by their
corresponding feature vectovsare jointly Gaussian distributed, we obtain
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ve = fvi) ~ N(p.o?) (1)
for the noise-free range with

Hse = kT (va—i_o-?z]:)_ly (2)

ViV

Ji = k’(V*, V*) o kI*V(KVV + U?LI)_lkV*V (3)

for a new query feature*. Here, the matriX<,,, € R"*" denotes the covariance
matrix with [K.];; = k(v;,v;). Furthermorek, , € R™is given byk,. y]; =
k(ve,vi),y = (y1,...,yn) ", andl is the identity matrix.o,, denotes the global
noise parameter. As covariance function, we apply the sguexponential

1
v vi) = o3 e~ gtvy = vl ). @

wherel ando, as well as the global noise parametgr are the so-called hyper-
parameters. A standard way of learning these hyperparasrfeden data, which
we applied in this work, is to maximize the log data likelilloaf the training data
using scaled conjugate gradients (see, e.g., [28] forldgtai

A patrticularly useful property of Gaussian processes forapplication is the
availability of the predictive uncertainty at every quenird. This means that new
featuresv, which lie close to points of the training set, result in more confident
predictions than features which fall into a less denselymadregion of feature
space.

4.2. Modeling Angular Dependencies

So far, our model assuméesdependentange variableg; and it thus ignores
dependencies that arise, for instance, because “neigigioange variables and
visual features are likely to correspond to the same objethe environment.
Angular dependencies can be included, for example, by (ajoitky considering
the anglea as an additional index dimension inor by (b) applying Gaussian
beam processes (GBPs) as an independent post-procesgirtg gtepredicted
range scan. While the first variant would require a large armotiadditional
training data—since it effectively couples the visual agpaece and the angle of
observation, the second alternative is relatively easgatize and to implement.
Figure 3 gives a graphical representation of the secontappr The gray bars
group sets of variables that are fully connected and joufidyributed according to
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Figure 7. Graphical model for predicting rangeffom a camera image. The gray bars group
sets of variables that are fully connected and that arelyaitistributed according to a GP model.

a GP model. We denote withP, the Gaussian process that maps visual features
to ranges and wityP,. the so-called heteroscedastic GP that is applied as a post-
processing step to single, predicted range scans.GFyr the task is to learn
the mappingy — r using a training set opredictedrange values. Since we
do not want to constrain the model to learning from theanpredictions..(x;)
only, we need a way of incorporating the predictive uncati@so?(v;) for the
feature-based range predictians This can be achieved by not using a fixed noise
matrixo2I as inGP, (compare Eq. (2) and Eq. (3)), but instead its heterosciedast
extension

R =diag(c?(v1),...,00(vy)) , (5)

see [3]. This matrix does not depend oglabal noise parameter,,, but rather
on the individual confidence estimate¥v;), with whichGP, estimated the cor-
responding range value. Note that this “trick” of gating tnatining points by
artificially increasing their associated variance was afgalied in recent work on
modeling gas distributions [29] for deriving a GP mixtureadeb A more detailed
discussion of the approach can be found there and in [30].

4.3. Summary of Our Approach

The full approach that also considers the angular deperakeinca range scan
is denoted by the postfixGBP in the experimental evaluation. To obtain the
prediction of a full range scan given one omnidirectionaag®, we proceed as
follows:

1. Warp the omnidirectional image into a panoramic view.
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2. Extract for every pixel columha vector of visual features;.

3. UseGgP, to make independent range predictions ahput

4. Learn a heteroscedastic GBFP, for the set of predicted rang€g;}! ,
indexed by their bearing angles and make the final range predictiangor
the same bearing angles.

As the following experimental evaluation revealed, thidiaidnal GBP treatment
(post-processing witlyP,.) further increases the accuracy of range predictions.
The gain, however, is rather small compared to what the GinrentGP,, adds to

the accuracy achievable with the baseline feature mappirtgs might be due to
the fact that the extracted features—and the constellafieeveral feature types
even more so—carry information of neighboring pixel stripgch that angular
dependencies are incorporated at this early stage already.

5. Experimental Evaluation

The system for predicting range from single, omnidireciomages described
in the previous sections was implementeddnC++ andPyt hon and tested on
two benchmark data sets for image-based localization. HEta sets, named
Freiburg and Saarticken have been acquired in the context of the EU project
CoSy. They have been made publicly available at [31] unden#imes COLD-
Freiburg and COLD-Saarbruecken. The data was recorded asimgpile robot
equipped with a laser scanner, an omnidirectional camachQalometry sensors
at the AIS lab of the University of Freiburg and at the Germasdaech Center for
Artificial Intelligence (DFKI) in Saarliicken. The two environments have quite
different characteristics—especially in the visual aspe@/hile the environment
in Saarbiicken mainly consists of solid, regular structures and adgmneously
colored floor, the lab in Freiburg exhibits many glass paaestregular, wooden
floor and challenging lighting conditions.

The goal of the experimental evaluation was to verify thatphoposed sys-
tem is able to make sensible range predictions from singl@dinectional camera
images and to quantify the benefits of the GP approach in cosapeto conceptu-
ally simpler approaches. We document a series of differqrerements: First, we
evaluate the accuracy of the estimated range scans usitige(ajdividual edge
features directly, (b) theCA-GR (c) theLDA-GP, and (d) thd=eature-GR which
constitutes our regression model with the four edge-bastahvfeatures as input
dimensions. Then, we illustrate how these estimates carséeé to build grid
maps of the environment. We also evaluated whether appthi@gsBP model,
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Figure 8: Left: Estimated ranges projected back onto theecaimage using the feature detectors
directly (small dots) and using tHeeature-GPmodel (red points). Right: Prediction results and
the true laser scan at one of the test locations visualized & birds-eye view.

which was introduced in [3], as a post-processing step tprbdicted range scans
can further increase the prediction accuracy. The GBP mddeép a Gaussian
process prior on the range function (rather than on the immd¢hat maps fea-

tures to distances) and, thus, also models angular depeirdeliVe denote these
models byFeature-GP+GBRPCA-GP+GBR andLDA-GP+GBP.

5.1. Quantitative Results

Table 1 summarizes the average RMSE (root mean squared@botamed for
different system configurations, which are detailed in tioWing. The error is
measured as the difference betweeeasuredaser ranges and rangpeedicted
using the visual input. The first four configurations, rederto as C01 to C04,
apply the optimized mapping functions for the different edgatures (see Fig-
ure 6). Depending on the data, the features provide estiwéath an RMSE of
between 1.7 m and 3 m. We then evaluated the configurationsi@DE@6 which
use the four edge-based features as inputs to a Gaussiagspnomdel as de-
scribed in Section 4 to learn the mapping from the featuréovecto the distances.
The learning algorithm was able to perform range estimatith an RMSE of
around 1 m. Note that we measure the prediction error relatithe recorded
laser beams rather than to the true geometry of the environréus, we report
a conservative error estimate that also includes mismatdhe to reflected laser
beams or due to imperfect calibration of the individual comgnts. To give a
visual impression of the prediction accuracy of Feature-GR we give a typical
laser scan and the mean predictions in the right diagrangar&i8.
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Table 1: Average errors obtained with the different method$e root mean squared errors
(RMSE) are calculated relative to the mean predictionsiercomplete test sets.

RMSE on test set
Configuration Saarbricken Freiburg
CO01: Lawsb 1.70m m—— 2.87M
C02: Laws5+LMD 2.01m e | 2.08mM EES—
CO03: Laws3+Canny 1.74m —— 2.87M I
C04: Laws3+Canny+LMD 2.06m memm @ 2.59m S
CO07: PCA-GP 1.24m ——— 1.40m me——
CO09: LDA-GP 1.20m 1.31m ———
CO05: Feature-GP 1.04m o 1.04m e
C08: PCA-GP+GBP 1.22m m— 1.41m me—
C10: LDA-GP+GBP 1.17m 1.29m e
C06: Feature-GP+GBP | 1.03m 0.94m =

ThePCA-GPapproach (denoted as C07) that does not require engineered fe
tures, but rather works on the low-dimensional represemtaif the raw visual
input computed using the PCA. The resulting six-dimensideature vector is
used as input to the Gaussian process model. With an RMSE of fio2l.4 m,
the PCA-GPoutperforms all four engineered features, but is not asratewas
the Feature-GP When using LDA for dimensionality reduction (C09) instead
of PCA, we observe a reduction of the prediction error by adods8 per cent.
Also the LDA is outperformed b¥reature-GPin terms of prediction accuracy. It
should be stressed, however, tR&A-GPas well ad.DA-GP do not require any
manually defined features as they operate on the observedid@hsional pixel
columns directly. For configurations C06, C08, and C10, we ptedithe ranges
per scan using the same methods as above, but additiongllyirag the GBP
model [3] to incorporate angular dependencies betweenrdtigted beams. This
post-processing step yields slight improvements comparéte original variants
CO05, C07, and CO09.

The left image in Figure 8 depicts the predictions based enirdividual
vision features and thEeature-GP It can be clearly seen from the image, that
the different edge-based features model different pattssofange scan well. The
Feature-GPFuses these unreliable estimates to achieve high accuratyavhole
scan. The result of theeature-GP+GBPvariant for the same situation is given
in Figure 1. The right diagram in Figure 8 visualizes a typpradiction result and
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Figure 9: The evolution of the root mean squared error (RSME)he individual images of the
Saarbiicken (left) and Freiburg (right) data sets.

the corresponding laser scan—which can be regarded hehe gsaund truth—
from a birds-eye view. The evolution of the RMSE for the diéier methods
over time is given in Figure 9. As can be seen from the diagyamesprediction
using theFeature-GPmodel outperforms the other techniques and achieves a near-
constant error rate.

In summary, our GP-based technique outperforms the ing@ljcengineered
features for range prediction. The smoothed approach (Gé&jsythe best pre-
dictions with an RMSE of around 1 m. One can obtain good reswylis combi-
nation of LDA for dimensionality reduction and GP learninghwan error that is
only slightly larger (C10 versus C06), even though this unstiped method does
not have access to background information.

5.2. Error Analysis

In this section, we analyze the prediction accuracy of ooppsed method
beyond the RMSE measure, that is, considering the entireldison of predic-
tion error in order to identify and document its differentisas. The left diagram
in Fig. 10 shows the histogram of prediction errors for adgpscan. It is clearly
visible, that the reported RMSE values are strongly infludrimethe heavy tails
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Figure 10: Error histograms for omnidirectional range preon from single images. Left: Inde-
pendent predictions for fixed beam orientations. Right: cdetting for uncertain beam orienta-
tions due to small angular miscalibration of the test aniechitng setup.

of the error distribution. The large majority of the predoais is accurate (less
than 30cm error), while very few predictions have a high reofap to 3m. Close
inspection of the results reveals, that such isolated higireare mostly caused
by a small angular misalignment between the camera andsbedaanner which
recorded the reference test set. This effect is visualingtie right diagram in
Fig. 11. The diagram shows the “true distances” as measyrt#teaser scanner,
the predicted distances and the respective absolute eltroes be seen that most
of the absolute prediction error accounts to beam 18520r(lihe entire test set)
which is located close to a depth discontinuity. Already g/\&mall angular mis-
alignment between laser scanner and camera can lead to saks i the error
function.

As a result, the reported RMSE values have to be seen as a tamrfgpar-
ing different approaches and settings rather than as a meeakprecision for an
actual application. From our experience, error histograntsconcrete prediction
examples deliver the best picture of the actual precisidretexpected.

To show the influence of angular misalignment as well as i@amge predic-
tions quantitatively, we give a comparison of differentoenmeasures in Tab. 2.
In the row labeled “fixed aligment”, we give the errors foredit comparisons

Table 2: Comparison of error measures.

Root Mean Squared Mean Absolute Mean relative
Error (RMSE) Error Error
Fixed alignment 0.88 m 0.55m 0.19
Uncertain alignment 0.67m 0.38m 0.14
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Figure 11: Left: Range predictions of method CO5 (Featui-fer a single perspective camera
image taken from a test sequence. Right: Visualization efpifediction errors for a typical scan
from a test sequence. Most of the absolute prediction esroaiuised by small angular misalign-
ments (here: beam 18520) and for long-range predictiorceéaling 10m).

between laser beams and prediction w.r.t. a fixed beam atient For “uncer-
tain aligment”, we allow for a small angular misalignmentloé laser beams and
their projections to the camera images. The relative efrotise last column are
computed by dividing the range predictions by the true dista.

As a reference for comparison, Saxeztal. [2] reports depth reconstruction
errors in indoor environments of 0.084 on a log scale (bagenttich corresponds
to 1.21m of mean absolute error. Including stereo inforamatising a second
camera, their error drops to 0.079 in log scale, that is,rh.@8 a regular scale.

5.3. Using Perspective Cameras

To show the flexibility of our method, we conducted additioegperiments
using a single perspective camera (as opposed to an onutidiral one). In this
setting, the correspondence between range observatiomstfre laser scanner
(available only during training) and the camera image isasafirect as for omni-
directional, axis-aligned cameras. Nevertheless, thepmggdunction is bijective
in the region observed by the camera and it can be computdytiaally using
projective geometry. The right image in Fig. 2 shows an exarimpage and the
laser beams transformed into image coordinates. The camasra50° field of
view and it covers approximately 2.2m to 30m in depth. Theeamvas tilted

downwards byl0°. We recorded two data sets containing 600 images each. One

set was used for training, the other one for testing.
In this experiment, we additionally evaluated a combimatbPCA and LDA,
for which we first reduced the dimensionality of the data tousthg PCA and
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then applied LDA to further reduce to 6 dimensions. This i®@mon approach
in face recognition, addressing the concern that LDA migdrtggm poorly due
to too little training data. PCA and LDA were learned from 106tages randomly
drawn from the training set and the GP models used 300 rand@geds. Test
statistics were computed over the whole test set (50 beanmispge).

Table 3 gives the quantitative results for this experimdie observed trend
is similar to the one described in Sec. 5.1: The featureeb& e performs best,
while the unsupervised methods (LDA and PCA) follow up withighler mean
prediction error. The combination of LDA and PCA did not yisidnificant ad-
vantages in this setting. The absolute prediction erraeshagher compared to
the omnidirectional setting, mainly because the respet#ist set contains signif-
icantly more long-range predictions due to the heading ®ttiimera towards the
long corridor.

Referring to the discussion in the previous section, it sthivel noted that the
distribution of errors is strongly biased towards erroraseal by small angular
misalignments (see the right diagram in Fig. 11). For maattcal applications,
for example obstacle avoidance, such small angular misakgmts do not have a
negative impact. The left image in Fig. 11 shows a typicalgem&om the test
sequence including the predictions made using C05 (Fe&Re-

Table 3: Average errors obtained with the different methmusingle perspective camera images.
The root mean squared errors (RMSE) are calculated reladithe mean predictions for the
complete test sets.

Prediction errors (on single images of a perspective camgra)
Configuration Mean absolute error RMSE
C09: LDA-GP 2.24m e | 3.52mM
CO07: PCA-GP 1.87m ——— 3.10m
C11: PCA-LDA-GP| 1.85m 3.02m ——
CO05: Feature-GP | 1.19m == 2.65mM I

5.4. Non-Linear Dimensionality Reduction

In addition to PCA and LDA, we also considered applying nomdir dimen-
sionality reduction as a preprocessing step. Non-lineaedsionality reduction
can be described as seeking a low-dimensional manifoldn@cgssarily a linear
subspace) in which the observed data points can be repeeseatl. Approaches
to this problem include local linear embedding (LLE) [32Hd®8OMAP [33].
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We implemented LLE, due to our positive experience with tachnique in
the past. In this domain, however, LLE performed signifizamntorse than all
other techniques evaluated in Table 1. An analysis of thstcocted manifolds
indicated that the low performance may be caused by thefgigni number of
outliers present in our real-world data sets. Similar olet@yns about LLE and
the presence of outliers have also been reported by otheandeer. Chang and
Yeung [34], for example, report that adding between 5% afd tQtliers to per-
fect data can prevent LLE from finding an appropriate embegidi

5.5. Learning Occupancy Maps from Predicted Scans

Our approach can be applied to a variety of robotics taskl ascobstacle
avoidance, localization, or mapping. To illustrate thig show how to learn a
grid map of the environment from the predictive range disiions. Compared
to occupancy grid mapping where one estimates for eachtrmelbtobability of
being occupied or free, we use the so-caligltection probability mapsA cell of
such a map models the probability that a laser beam passsgdthis reflected
or not. Reflection probability maps, which are learned usiregsio-callectount-
ing mode] have the advantage of requiring no hand-tuned sensor rsadblas
occupancy grid maps (see [35] for further details). The c&fi@ probabilitym;
of a celli is given by

o7

whereq; is the number of times an observation hits the cell, i.e.sendt, and
(; is the number of misses, i.e., the number of times a beam teasaépted a cell
without ending in it. Since our GP approach does not estimaiagle laser end
point, but rather a full (nhormal) distributig#(z) of possible end points, we have to
integrate over this distribution (see Figure 12). More @&y, for each grid cell
¢, we update the cell’'s reflectance values according to theiginee distribution
p(z) according to the following formulas:

a; — ozi—i-/ vp(z)dz (7)
B ﬁﬁ-/ 'p(z)dz. (8)

Note that for perfectly accurate predictions, the extengsthte rule is equivalent
to the standard formula stated above.
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Figure 12: The counting model for reflectance grid maps irjusartion with sensor models that
yield Gaussian predictive distributions over ranges.

We applied this extended reflection probability mappingrapph to the tra-
jectories and range predictions that resulted from theraxjats reported above.
Figure 13 presents the laser-based maps using a standactiogflprobability
mapping system (left column) and our extended variant usiegredicted ranges
(right column) for the two environments (Freiburg on top &acrbiicken below).
In both cases, itis possible to build an accurate map, wkicbmparable to maps
obtained with infrared proximity sensors [36] or sonarg|[21

6. Conclusion

This paper presents a new approach to estimating the free apaund a robot
based on single images recorded with an omnidirectionakcanThe task of es-
timating the range to the closest obstacle is achieved blyiagpa Gaussian pro-
cess model for regression, utilizing edge-based featuwitesoted from the image
or, alternatively, using PCA or LDA to find a low-dimensionapresentation of
the visual input in an unsupervised manner. All learned risodetperform the
optimized individual features.

We furthermore showed in experiments with a real robot thatrange pre-
dictions are accurate enough to feed them into a mappingitiilgoconsidering
predictive range distributions and that the resulting nepscomparable to maps
obtained with infrared or sonar sensors.
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laser data (left) and the predictions of tReature-GP(right).
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