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Abstract—In this paper, we present an approach for mod-
eling 3D environments based on octrees using a probabilistic
occupancy estimation. Our technique is able to represent full
3D models including free and unknown areas. It is available
as an open-source library to facilitate the development of 3D
mapping systems. We also provide a detailed review of existing
approaches to 3D modeling. Our approach was thoroughly
evaluated using different real-world and simulated datasets.
The results demonstrate that our approach is able to model
the data probabilistically while, at the same time, keeping the
memory requirement at a minimum.

I. INTRODUCTION

Several robotic applications require a 3D model of the
environment. Three-dimensional models are relevant inyman
airborne, underwater, or extra-terrestrial missions ary m
also be needed in domestic scenarios, for mobile manipula
tion tasks, or for navigation in multi-level environments.

In the past, various approaches for modeling environment:
in 3D have been proposed. Figure 1 depicts a tree observe
in 3D laser range scans and modeled in three commonly useu
representations, namely point clouds, elevation maps [7F}ig. 1. 3D representation of a tree as a point cloud (top, lefévation map
and multi-level surface maps [19]. It also shows the repiop right), multi-level surface map (bottom left), and usiogr approach
resentation of the tree using the structure proposed in tHiotom right).
paper which has been designed to meet the following four
requirements;

) Flexible. The extent of the map should not have to be known
Full 3D model. The map should be able to model arbitrary i, advance. Instead, the map should be dynamically

environments without prior assumptions about it. The  gynanded as needed. The map should be multi-resolution
representation should model occupied areas as well as gq that, for instance, a high-level planner for navigation

free space. If no information is available abqut. an area il pe able to use a coarse map, while a local planner,
(commonly denoted as “unknown” areas), this informa- ¢ g for manipulation tasks, may operate using a ne
tion should be encoded as well. While the distinction  aqo1ution. This will also allow for ef cient visualizatits
between free and occupied space is essential for safe \yhich scale from coarse overviews to detailed close-up
navigation, information about unknown areas is impor- \iaws.

tant for the autonomous exploration of an environment.

i i _ Compact.The map should be stored efciently, both in
Updatable. It should be possible to add new information memory and on disk. It should be possible to generate

or sensor readings at any time. Modeling and updating compressed les for later usage or convenient exchange
should be done in grobabilistic fashion. This will between robots even under bandwidth constraints.

account for sensor noise or measurements which resultAlth h 3D . int | t of
from dynamic changes in the environment. Furthermore, oug mapping 1S an integral component ot many

multiple robots should be able to contribute to the s,amFaObOtiC systems, there exist very few readily available im-

map and a previously recorded map should be extendakﬂae(rjnetﬂtat;oni' I?ecenltlygl the fItEuropean dCT)mn;lssmnb |;j_en-
when new areas are explored. e e lack of available software modules for robotic

applications as a limiting factor both in research and in
All authors are with the University of Freiburg, DepartmehComputer !ndustrla! appllcgtlons, leading to the BRICS (Best Pati
Science, D-79110 Freiburg, Germany. in Robotics) project.
This work has been supported by the German Res_ea_trch Foun@@afe) In this paper, we present an integrated mapping sys-
under contract number SFB/TR-8 and by the EC within the 7timénaork b d f h . f the th
programme under grant agreement no FP7-1ST-213888-EUROPARRd tem based on octrees for the representation of the three-

IST-248258-First-MM. dimensional structure of the environment. The goal is to



combine the advantages of previous approaches to 3idt able to model bridges, underpasses, tunnels, or multi-
environment modeling to meet the requirements speci etkbvel buildings. This strict assumption can be relaxed by
above. The advantage of our approach is that it allowallowing multiple surfaces per cell [19] or by using classes
for efcient and probabilistic updates while keeping theof cells which correspond to different types of structurg [5

memory consumption at a minimum. We implemented ouf general drawback of most 2.5D maps is the fact that
approach and thoroughly evaluated it on various simulatdtiey cannot store free or unknown areas in a volumetric
and real datasets of both indoor and large-scale outdoamy, which limits their use for localization or exploration

environments. As a major contribution, our implementatioi related approach was proposed by Ryde and Hu [16].
in form of a self-contained C++ library is freely availableThey store a list of occupied voxels for each cell in a 2D

at http://octomap.sf.net/ as open source with the aim of grid. Although this representation is volumetric it doeg no
facilitating future development of systems operating ireéh  differentiate between free and unknown volumes.
dimensional environments. Tree-based representations such as octrees have been used

This paper is organized as follows. After providing ain several previous approaches. They avoid one of the main
detailed discussion of related work in this area, we preseahortcomings of grid structures by delaying the initidiiaa
our multi-resolution map structure that is able to modebf map volumes until measurements need to be integrated.
arbitrary three-dimensional environments includingttiiieie In this way, the extent of the mapped environment does
and unknown areas in Sec. lll. In Sec. IV we then evaluateot need to be known beforehand. If inner nodes of a
our approach in different scenarios including large-scaleee are updated properly, the tree can also be used as a
outdoor maps, as well as small-scale indoor environmentsmulti-resolution representation since it can be cut at any
level to obtain a coarser subdivision. The use of octrees
Il. RELATED WORK for modeling was originally proposed by Meagher [9]. Early
works mainly focused on modeling one boolean property
A popular approach to modeling environments in 3D isych as occupancy [20]. Payeetr al. [14] used octrees to
to use a grid of cubic volumes of equal sizeoXely to  adapt occupancy grid mapping from 2D to 3D and thereby
discretize the mapped area. Roth-Tabak and Jain [15] gfiroduced a probabilistic way of modeling occupied and
well as Moravec [10] presented early works using such fee space. A similar approach was used in [4] and [13]. In
representation. A major drawback of rigid grids is theigear contrast to the approach presented in this paper, howéneer, t
memory requirement. The grid map needs to be initializegythors did not explicitly address the problems of memory
so that it is at least as big as the bounding box of the mapp%@nsumption or over-con dence in the map.
area, regardless of the actual distribution of map cell§&n t  ap octree-based 3D map representation was also proposed
volume. In large-scale outdoor scenarios or when thereeis thy Fajr eld et al. [3]. Their map structure calle®eferred
need for ne resolutions, the memory consumption becomegeference Counting Octrée designed to allow for ef cient
prohibitive. Furthermore, the extent of the mapped areds\eemap ypdates and for copying, especially in the context of
to be known beforehand. particle Iter SLAM. In contrast to our approach, lossless
A discretization of the environment can be avoided b¥ompression of trees is not described. Instead, a lossy
using point clouds. In such maps, the endpoints returned Byaximum-likelihood compression is performed periodigall
range sensors such as laser range nders or stereo camet@thermore, the problem of overcon dent maps and multi-
are used to model the occupied space in the environmepésolution queries are not addressed.
Point clouds have been used in several 3D SLAM systems yqye| et al. [22] presented a 3D map based on the Haar
such as [2], [12]. The drawbacks of this method are tha{avelet data structure. This representation is also multi-
neither free space nor unknown areas are modeled and th@do|ution and probabilistic. However, the authors did not
sensor noise and dynamic objects cannot directly be de@lfajuate applications to 3D modeling in-depth. In their
with. Thus, point clouds are only suitable for high preaisio eya|yation, unknown areas are not modeled and only a single
sensors. Furthermore, the memory consumption of this reégmmylated 3D dataset is used. Whether this map structure is
resentation increases with the number of measurements. THs memory-ef cient as octrees is hard to assess.
is problematic, as there is no upper bound. Finally, to the best of our knowledge, no implementation
If certain assumptions about the mapped area can be mage.a 3D mapping system which meets the requirements
2.5D maps are suf cient to model the environment. Typicallyspeci ed in the introduction is freely available.
a 2D grid is used to store the measured height for each
cell. In its most basic form, this results in an elevation map
where the map stores exactly one value per cell [7]. One
approach in which such maps have been demonstrated to b&he approach proposed in this paper uses a tree-based
suf cient is the outdoor terrain navigation method desedb representation to offer maximum exibility with regard to
in [6]. In fact, in most outdoor settings, only one level forthe mapped area and resolution. It performs a probabilistic
driving the vehicle exists. By ignoring all objects highbah occupancy estimation to ensure updatability and to cople wit
the vehicle, an elevation map can be used for navigatiosensor noise. Furthermore, a lossless compression method
Elevation maps, however, are limited to one surface and aemsures the compactness of the resulting models.

I11. OCTOMAP MAPPING FRAMEWORK
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m ] o 1] Fig. 4. A single 3D scan of the corridor dataset recorded \wittilting

01 00 00 00 10 00 00 00 scanner (left) is converted to a maximum-likelihood map (rightge cells
©) are shown in white, occupied cells in black.

Fig. 2. Example of an octree storing free (shaded white) amimed

(black) cells (a), the corresponding tree representatingnd the corre- . .
sponding bitstream for compact storage in a Ie (c). The comphctree ments. In such cases, a discrete occupancy label will not be

structure can be stored using only six bytes, 2 bits per afild node. suf cient to perform sensor fusion. Instead, occupancytbas
be modeled probabilistically. Occupancy grid mapping [11]
can be used to represent occupancy as a binary random
variable. However, such a probabilistic model lacks the
possibility of lossless compression by pruning.

The approach presented in this paper offers a means of
combining the compactness of octrees that use discretkslabe
with the updatability and exibility of probabilistic modiag
as we will discuss in Sec. IlI-C.

Fig. 3. By limiting the depth of a query, multiple resolutions e  B. Sensor Fusion
same map can be obtained at any time. The occupied cells araygidph . ] ) )
resolutions 0.08m, 0.64, and 1.28 m. Sensor readings are integrated using occupancy grid map-

ping as introduced by Moravec and Elfes [11]. The proba-
bility P(n j z3.t) of a leaf noden being occupied given the

A. Octrees sensor measuremernts; is estimated according to
An octree is a hierarchical data structure for spatial subdip (py j 7,.,) = (1)
vision in 3D [9], [20]. Each node in an octree represents the '

. . 1
space contained in a cubic volume, usually called a voxel. 1+ 1 P('_” z) 1 P(.n Jzie 1) _P(n) :
This volume is recursively subdivided into eight subvolsme P(njz)  P(jzic 1) 1 P(n)
until a given minimum voxel size is reached, as illustrated IThe inverse sensor modé(n j z) is specic to the

Flg 2. This minimum voxel size determines the resolution Oéensor used for mappmg Under the common assumption of

the octree. Since an octree is a hierarchical data stry¢hee gz uniform prior P (n) = 0:5) and by using théogOdds (L)
tree can be cut at any level to obtain a coarser subdivisiofetation, Eq. 1 can be simpli ed to

An example of an octree map queried for occupied voxels
at several depths is shown in Fig. 3. L(njzi) = L(Nnjzie 1)+L(njz): 2)
In its most basic form, octrees can be used to model
boolean property. In the context of robotic mapping, thi
is usually the occupancy of a volume. If a certain volum
is measured as occupied, the corresponding node in t
octree is initialized. Any uninitialized node could be free
unknown in this boolean setting. To resolve this ambiguityt,e

free cells can be epr|C|tI_y represente.d. as free_ noc_je_s Icrhanges in the environment. From Eq. (2) it is evident,
the tree. Subvolumes which are not initialized implicitly

. . I&owever, that any change in the state of a node requires
model unknown areas. An illustration of a laser scan an ' . .
.as many observation as were integrated to de ne its current

the corresponding octree map can be seen in Fig. 4, US'rs]gate. To overcome this overcon dence in the map, Yaiel
boolean occupancy states (tabelg allows for compact . ;
al. [21] propose aclamping update policy

representations of the octree: If all children of a node are
occupied (or all are free) they can be pruned. This leads to | (n j zy,) = ()
a substantial reduction in the number of nodes that need to ; ; ;
max(min(L(nj z;. +L(njz);l i
be maintained in the tree. (min(L(njzue )+ LN 2) 3 mwd ; min)
In robotic systems, one typically has to cope with sensawith the upper and lower boundg.x and Iin. Applying
noise and temporarily or permanently changing envirorthe clamping update policy in our approach ensures that the

Kote thatlogOdds values can be directly converted into
robabilities and vice versa [11]. THegOdds formulation
ically allows for faster updates in case of precomputed
sensor models.
As we stated in the introduction, we require the map to
main updatable in order to react to temporary or permanent



con dence in the map remains bounded. As a consequenceThe most compact les can be generated whenever a
the model of the environment remains updatable. maximum likelihood estimate of the map is sufcient for
Probabilistic updates are performed for the leaf noddake task at hand. In this case the per-node probabilities
only. To obtain a multi-resolution map, however, inner rodeare discarded. As motivated above, volumes in which no
have to be updated as well. To determine the occupanayformation has been recorded can be of special interest
probability of a noden given its eight subvolumes;, several in robotic systems, for example, during exploration. For
strategies could be pursued [8]. Depending on the appitati this reason, we explicitly differentiate between free and

at hand, either the mean occupancy unknown areas and encode nodes as either occupied, free,
& unknown, or as inner nodes in our map les. Using these

I(n) = 1 L(n;) (4) labels, octree maps can be encoded as a compact bit stream.
8 i1 Each node is represented by the eight labels of its children.

Beginning at the root node, each child that is not a leaf
is recursively added to the bit stream. Leaf nodes do not
f‘(n) =max L(n;) (5) have to be added since they can be reconstructed from their
! label during the decoding process. Fig. 2(c) illustrates th
could be used. Herel (n) returns the currentogOdds bitstream encoding. Each row represents one node with the
occupancy value of a node. Using f{(n) to update inner upper row corresponding to the root node. The lower row
nodes can be regarded as a conservative strategy whichoigy contains leafs so no further nodes are added.
well suited for robot navigation. By assuming a volume to In this maximum likelihood representation, each node
be occupied if parts of it have been measured occupiedgccupies 16 bits of memory, 2 bits per child. In our exper-
collision-free paths can be planned at coarser resolutiods iments, le sizes never exceeded 2 MB even for fairly large
thus computationally ef cient. For this reason itis use@ur  outdoor environments with a size 802m  167m  28m
system. Note that in an even more conservative settifiy) (see Sec. IV-C).
can be de ned to return a positive occupancy probability for There exist applications, in which all information in a map
unknown cells as well. needs to be stored and maintained. This often requires the
use of hard disk space as secondary memory, where maps
are temporarily saved to disk until they need to be accessed
Whenever thelogOdds value of a node reaches eitheragain. Another important demand may be the storage of
the thresholdimin Or Imax, We consider the nodstablein  additional node data such as terrain information which woul
our approach. Intuitively, stable nodes have been measurgd lost in a maximum likelihood encoding as introduced
free or occupied with high condence. We combine theabove. In these cases, we encode nodes by storing their data
advantages of probabilistic occupancy mapping and octre@sccupancy, terrain data, etc.) and eight bits per nodetwhic
that use discrete labels by pruning stable parts of the tiee.specify whether a child node exists. This, however, resalts
all children of a node are stable leafs with the same occigonsiderably larger les as we will show in the experiments.
pancy state, then the children can be pruned. Should future
measurements be integrated that contradict the nodets, stat
its children will be re-generated. Applying this compressi
does not lead to a loss of information in the probabilistic The approach presented in this paper was evaluated us-
model. It does, however, lead to a considerable reduction jAg several real world datasets as well as simulated ones.
the number of nodes as we will show in the experiments. The experiments are designed to verify that the proposed
representation is meeting the requirements formulated in
the introduction. More specically, we demonstrate that
In general, octree nodes need to maintain an ordered |[§@r approach is able to adequate|y model various types of
of its children. This can be naively achieved by using eighénvironments and that it is an updatable and exible map

pointers per node. If sparse data are modeled, the memafyucture which can be compactly stored.
requirement of those pointer8 (4 byte= 32 byte on a 32 bit

architecture) will lead to a signi cant memory overhead][20 A
With an implementation trick, however, one can overcome
this by using only one pointer per node that points to an array In general, the map representation introduced in the pre-
of eight pointers. This array is only allocated if childreged  vious section can be used in conjunction with any kind
to be initialized. of distance sensor. Since our real-world datasets have been
acquired using laser range nders (SICK LMS and Hokuyo
30LX), we employ a beam-based inverse sensor model. To
Whenever maps need to be stored for later usage or hagkciently determine the cells which need to be updated,
to be exchanged between robots, a compact representatiom isay-casting operation is performed using a 3D variant of
required in order to minimize the consumption of disk spacthe Bresenham algorithm [1]. Volumes along the beam are
and communication bandwidth. updated as described in Sec. IlI-B using the following iseer

or the maximum occupancy

C. Tree Compression

IV. EXPERIMENTS

D. Memory-Ef cient Implementation

. Sensor Model for Laser Range Data

E. Map File Generation



Fig. 5. A simulated noise-free 3D laser scan (left) is integpainto

our 3D map structure. Sensor sweeps at shallow angles leaddEsined ) ) ) .

discretization effects (center). By updating each volumenast once, the Fig- 7. A small-scale indoor environment with two oors contest by a
map correctly represents the environment (right). For glaoitly occupied ~Staircase in real world (left) and visualized as 3D map (jight

cells are shown.

Fig. 6. A tabletop in real world (left) and visualized as 3D m{aght).

sensor model:

. . s Fig. 8. 3D map of the corridor of building 079 on the Freibur S,
L(n J Zt) = loce ff rayis re ected within volume (6) asgseen from thg top. The structure of_ the 9ajtdjacent rooms I%spi%ly
ltee ; if ray traversed volume g%s;r)ved through the glass doors (size of the scd88m 18:2m

The occupancy probability of all volumes is initialized teet
uniform prior of P(n) = 0:5. Throughout our experiments,
we usedlogOdds values ofloec = 0:85 and ljee = 0:4, and two different levels. The data set consists of eleven
corresponding to probabilities 7 and 0:4 for occupied 3D measurements recorded at different poses. Considerable
and free volumes, respectively. The clamping thresholds ainterpolation noise of the laser scanner at sharp edgetsexis
set tolmin = 2 and Inax = 3:5, corresponding to the in the individual scans. The second dataset was recorded in
probabilities 0f0:12 and0:97. By lowering these thresholds, & corridor of building 079 at the Freiburg campus. The robot
a stronger compression can be achieved but this obvioudgversed the corridor three times and the resulting datase
trades off map con dence for compactness. consists of 66 scans.

Discretization effects of the ray-casting operation camlle A further indoor data set was recorded using a Hokuyo
to undesired results when mapping environments in 3D usimfLX laser range nder on a pan-tilt unit (see Fig. 6). Here,
a Sweeping Sensor. During a sensor sweep over at Surfac@? environment consists of a tabletop with several objects
at a shallow angle, volumes measured occupied in one 2@hich represents a typical environment for a manipulation
scan may be marked as traversed volumes in the ray-casti@gk-
of following scans. This effect usually creates holes, érg. A fairly large outdoor dataset was recorded at the com-
the oor and is illustrated using a simulated, noise-free 3DPUter science campus in Freiblirdt consists of 81 dense
scan in Fig. 5. To overcome this problem, we treat a comple#D scans covering an area 292m  167m.
3D scan as one measurement and update each map volume # addition, we use laser range data of tlew College
most once. By taking care that volumes measured occupié@ta set [18]. This data was recorded in a large-scale outdoo
are preserved within one 3D measurement, the describfvironment with two laser scanners sweeping to the left

effect can be prevented. and right side of the robot as it advances. For this dataset,
an optimized estimate of the robot's trajectory generatged b
B. Full 3D models visual odometry was used [17].

In this experiment, we demonstrate the ability of our A Visualization of the resulting models can be seen in
approach to model real-world environments. A variety ofig. 6, 7, 8 and 9. Note that the free space is modeled but
different datasets is used. not shown in the gures.

Two indoor datasets were recorded using a Pioneer2 AT Memory Consumption

platform equipped with a SICK LMS laser range nder on a , i i
pan-tilt unit. Odometry errors were corrected using 3D scan, I this experiment, we evaluate the memory consumption
matching. The rst dataset was recorded in a small-scal@f our approach. Several datasets are processed at various

indoor enwronment deSIQned. as a test-bed for hum.anOIdlcourtesy of B. Steder and R.iihmerle, available atittp:/ais.
robots (see Fig. 7). The environment features a staircags@rmatik.uni-freiburg.de/projects/datasets/fr360/



Fig. 9. Resulting octree maps of two outdoor environmentsamOresolution. For clarity, only occupied volumes are shovith Wweight visualized by a
color (gray scale) coding. Toreiburg campugsize of the scen292m 167m 28 m), bottom:New Colleggsize of the scen€250m 161m 33m).

tree resolutions. We analyze the memory usage of our reprgs compression techniques are used.
sentation with and without performing lossless compressio  For the 079 corridor dataset we also analyze the evolution
For comparison, we also give the amount of memory thasf memory consumption during mapping (Fig. 10, left). The
would be required by a minimal full 3D grid which is robot explored new areas up to scan number 22 and from
initialized linearly in memory. Each map is furthermorescan number 39 to 44. In the remaining time, previously
written to disk using the full probabilisitc model and themapped areas were revisited where memory usage remained
binary format described in Sec. IlI-E, and the resulting lenearly constant. A slight increase can still be noticed Wwisc
size is given. due to new information gathered by scanning from different
The memory usage for exemplary resolutions are digdewpoints.
played in Table I. It can be seen that high compression ratios As expected, memory usage increases exponentially with
can be achieved especially in large outdoor environmentie tree resolution. Figure 10 (right) illustrates thisngsi
Here, pruning will merge considerable amounts of free spadbe Freiburg outdoor dataset. Please note that a logaathmi
volumes. On the other hand, the map structure is also atgealing is used in the plot.
to model ne-graded indoor environments with moderate Map les generated using the bitstream encoding are
memory requirements. In very con ned spaces, an optimallgpomparably small. For example, the visualization of the
aligned 3D grid may take less memory than an uncompresseceiburg outdoor dataset given in Fig. 9 uses 816kB as
mapping octree. However, this effect is diminished as soam PNG le while the full 3D model including free and



TABLE |

MEMORY CONSUMPTION OF VARIOUS3D DATASETS

Map dataset Mapped Resolution Memory consumption [MB] File size [MB]
p area [m3] [m] | Full grid No compression Lossless compressiorill data  Binary
Small scale indoor 35 52 17 0.05 1.03 191 1.38 0.54 0.02
) . . . 0.05 80.54 73.64 41.70 15.80 0.67
FR-079 corridor 43:8 182 3:3 01 10.42 10.90 705 571 0.14
g
Freiburg outdoor 292 167 28 8;8 Gfggg 18‘?'33 13;10'133“ 42;2 ggg
0.20 637.48 91.43 50.70 18.71 0.99
New College (Epoch C)} 250 161 33 0.80 10.21 535 181 0.64 0.05
120 + full 3D grid - full 3D grid -
no compression no compression
= 100 - lossless compression—— = 100 " lossless compression— 1
Py P
g g 10
© [}
£ S
1
0 10 20 30 40 50 60 0.2 0.4 08 1 2
scan number resolution [m]
Fig. 10. Left: Evolution of the memory usage while mapping the (7R-corridor dataset (resolution 0.05m). Right: Effect cfolation on memory

usage of the Freiburg outdoor dataset. Note that a logatiscaling is used.

35 ——s average insert times for 100,000 beams on a standard CPU
o frelgur%_car%%%s (Intel E8600, 3.3 GHz) are given in Fig. 11.
GE) 3 Hiding In our experiments, single 3D scans usually consist of
s 257 1 about 90,000 non-maxrange measurements and the time to
5 2l ] acquire the data using a SICK LMS on a pan-tilt unit is
2 about 6s. Typically, such a scan can be integrated into the
s 157 | map in less than one second. Even with long measurement
g 1t . beams and high map resolutions, updating the map will not
3 05| | take longer than a few seconds.

0
0102030405060.70809 1 V. CONCLUSION
resolution [m]
In this paper, we presented an approach for the 3D
Fig. 11. Average time to insert 100,000 data points from theilfirg

modeling of environments that is relevant for several rimbot

tasks including robot mapping, navigation, and mobile ma-
nipulation. It builds upon a tree-based map structure which
unknown areas requires 2 MB. facilitates multi-resolution map queries and leads to a-com

Table | shows the le sizes of the binary maximum likeli- P2t memory representation. Using probabilistic occupanc
hood map (denoted with “Binary”) and the full probabilistic @Stimation, our approach is able to represent full 3D models
model (“All data”). Note that map les can be Compressedncludlng free and unknown areas. The proposed approach

even further by using standard le compression methods. USeS @ bounded per-volume con dence. This allows for an
lossless compression scheme which substantially reduces

D. Runtimes memory usage. We evaluated our approach using both real-
In this experiment, we analyze the time required to inworld and simulated data sets. The results demonstrate that
tegrate range data using the proposed method. This tir@er approach is able to model the environment in an accurate
depends on the map resolution and the length of the beai@y and at the same time minimizes memory requirements.
that are integrated. We process the FR-079 indoor datasetWe implemented the described system and made the
with a maximum range of 10m and the Freiburg campusnplementation available as an open source C++ library to
dataset. Maps are computed at several resolutions. Tfaeilitate future developments in the context of 3D mapping

campus dataset (red) and the FR-079 indoor dataset (green).
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