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ronment with a team of robots received considerable attention
in the past. However, there are relatively few approaches to
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other robots. Efficiently coordinating the exploration with such . Oz :
marsupial robots requires advanced planning mechanisms that exp 019{;’ explore
are able to consider symbolic deployment and retrieval actions. U
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In this paper, we propose a novel approach for coordinating
the exploration with marsupial robot teams. Our method
integrates a temporal symbolic planner that explicitly considers t

deployment and retrieval actions with a traditional cost-based Fig. 1. An exploring robot (white circle) has to choose betwehree
assignment procedure. Our approach has been implemented possible actions: explore target, explore targets, or deploy a smaller
and evaluated in several simulated environments and with robot atm; to let it exploret; in the red (dark) area.

varying team sizes. The results demonstrate that our proposed
method is able to coordinate marsupial teams of robots to

- , In this scenario, a team of robots carries and deploys a
efficiently explore unknown environments.

number of smaller robots. These smaller robots are able to
I. INTRODUCTION explore parts of the environment that the bigger robots aann
The problem of autonomously exploring an environmengNter- From a conceptual point of view, the ability to deploy
%nd retrieve robots using other autonomous robots integluc

is one of the fundamental problems for autonomous mobi i bol X Lthe full 3
robots. There are several applications in which robots ha®@"responding symbolic actions. To reveal the full ponti
such a heterogeneous system, these actions need to be

been designed to explore their environment such as planet . ” o2 . >
g P nan considered during coordination (see Fig. 1 for an illugirat

exploration or in disaster missions. Using a coordinatadte s ! .
of robots instead of a single robot offers advantages such Hg]fortunatel'y., it is not straightforward to map such acsion
fault tolerance or performance gains. The problem of multto cost or ytlllty measures such as those used by the popular
robot exploration with homogeneous robots is relativelyl we [2/9€t assignment approaches [2, 16, 19, 24].

understood. Popular approaches to coordinate such teamd "€ Problem of planning and executing actions such as

estimate the cost and the expected information gain SfEPloyment and retrieval in an exploration scenario has
exploring a target location to find optimal assignments c,l?rewously been approached using manually designed strate
robots to targets [2, 20, 24]. gies [3, 17, 18]. Such hand-crafted strategies, however, ar

In several exploration scenarios, however, one needs gpecific to a certain type o_f_environmem and it is unclear
consider heterogeneous teams of robots with different c§/hether they are able to efficiently coordinate large teams o
pabilities. For a task such as the autonomous explorati¢fPOtS- The contribution of this paper is a novel coordomati
of lunar craters [6], one can imagine robots that approa&PproaC_h for multi-robot expl_oratlon that a55|gns_r0bot_s t
the crater and then deploy a specialized robot which g&xPloration targets and additionally plans symbolic awtio
scents into the crater. Robots that are able to deploy aﬁHCh as deployment and retr.|eval actions. To achlgye ties, w
retrieve other robots have also been referred tmassupial Ntegrate a temporal symbolic planner and a traditionah pat
robots [17]. Such heterogeneous robots typically requiré"anner for coolrdmated expliorayon. In this \éva%/, we obtlaln
to carefully plan deployment and retrieval actions and t§ MOre general robot coordination approach that is able to
properly take into account the different properties of th&Ticiently solve the exploration task.
robots such as their sensor setup, their size and payload, Il. RELATED WORK

their maximum traveling speed, or the type of terrain they i i
are able to traverse. Several previous approaches consider the task of coor-

This paper addresses the problem of coordinating a tea®'ating the actions of a team of equally equipped (ho-

of marsupial robots that explore an unknown environmenf’09€n€ous) robots exploring an unknown environment. In
this setting, the coordination task is often formulated as
All authors are with the University of Freiburg, DepartmefiComputer ~ an assignment problem where the robots are assigned to
Science, D-79110 Freiburg, Germany. exploration targets according to a cost measure. Different
This work has been supported by the German Research Foun@af&) ph ds h gb gd d . h .
under contract number SFB/TR-8 and by the EU as part of theriated methods have been presented to determine such an assign-

Project CogX (FP7-ICT-2x015181-CogX). ment. Burgardet al. [2] present an iterative assignment



method based on the estimated cost of reaching a target and
visibility constraints of robots in the team. K al.[16] and
Stachniss [19] present approaches that uses the Hungarian

method to compute the assignments of frontier cells [23] data | mep
to robots. Zlot and colleagues [24] propose an architecture location
in which the exploration is guided by a market economy. extraction
. i . robots map
They consider sequences of potential target locationsafcin e Targets,
robot and trade tasks between the robots using single-item . meeting pnts
first-price sealed-bid auctions. Such auction-based tquba %; PDDL A
have also been applied by Berhagital. [1] to assign robots generation planner

mapping

sensor

to bundles of targets so that synergy effects between target
are taken into account. In a previous work, we present an
approach that uses a segmentation of the environment [22].
By assigning robots to unexplored segments instead of fron-
tier targets, a more balanced distribution of the robots ove
the environment is achieved and the overall exploratior tim
is reduced.

An approach towards cooperation in heterogeneous robgiyiems is forward search guided by a heuristic usirig A
systems is presented by Singh and Fujimura [18]. If a robgj; simjlar algorithms. Most approaches to temporal plagnin
s too big to pass through a narrow passage, it informgoy the usage of numerical state variables. In contrast
other robots about this task. Howaed al. [14] present an 1 pinary and multi-valued state variables, numeric state
incremental deployment approach that explicitly dealshwityarjaples have an infinite continuous value domain. While
obstructions, i.e., situations in which the path of one tobg,meric state variables lead to undecidability even whed us
is blocked by another. A further heterogeneous system s 4 very limited form [11], they are considered to be of high
presented by Grabowslq apd Navarro—Serment [10]. In thi?nportance when modeling real world domains.
system, however, coord|nat|_on is performed manually. . The work described in this paper uses the planner
~ Whenever small robots with low traveling speeds or lim-rep)\ 4], a variant of the temporal fast downward planning
ited power resources are used in a heterogeneous robot te%%tem [7]. TFD/M supports the use of external modules
it is favorable to have larger robots, timearsupial robots  {hat calculate the values of state variables during the-plan
transport the smaller ones to avoid a serious penalty {jing process using sub-processes. By means of these sub-
exploration time or power consumption [17]. Denner anghrgcesses, we combine temporal planning with path planners
Papanikolopoulos present a deployment method for SUChu%ditionaIIy used for multi-robot coordination.
marsupial team that explicitly takes power constraint® int
account [5]. Murphyet al. [17] present a physical imple- I1l. COORDINATED EXPLORATION
mentation of a marsupial system and describe heuristics to WITH MARSUPIAL TEAMS

deploy the micro-rover. Kadioglu and Papanikolopoulog [15 Throughout this paper, we assume global and unlimited
present a further physical implementation. In [3], a team adommunication between the robots and employ a centralized
legged robots is deployed by a carrier robot in a rescue scgpproach. Furthermore, all robots are assumed to have known
nario. In all of the previously described exploration syste relative positions. To achieve this in our experiments, the
deployment and retrieval in marsupial teams is determina@dbots actually start from the same place in the environment
by heuristics. In contrast to that, the approach presemted i A marsupial team consists of two types of robots that
this paper explicitly takes these actions into account whegkplore the environment. We consider carrier robots.
coordinating the exploration. Each carrier initially carriesn smaller robots calledovers

Domain independent planning is a thoroughly investigateghich can be deployed and retrieved by the carriers. The
sub-field in artificial intelligence. A classical planningop-  key challenge is to generate exploration targets, to plan
lem consists of a set of state-variables with finite domainsgsajectories for the carriers and rovers, and to schedule
an initial state, a set of actions and a set of goal states. Afeployment and retrieval actions at meeting points in the
action is defined by a precondition and its effects, whiclenvironment. Especially for efficient retrieval, one neéals
is a set of variable assignments. A solution for a classicgbnsider the time the individual robots need to carry ouir the
planning problem is then a finite sequence of actions fromctions. This together with the fact that the robots opeirate
the initial state to a goal state. There exist several efficie parallel makes the problemtamporalplanning problem.
planning systems for classical planning problems [12, 13]. ] .

When temporal constraints are specified by admitting- Overview of the Exploration Framework
actions to have variable durations and to be executed con-The architecture of our exploration system is displayed
currently, one refers to that aemporal planning Several in Fig. 2. The robots provide the sensor data and states
efficient approaches for temporal planning have been pref the platforms (such as their positions, whether they are
sented [7, 9]. The predominant approach of solving planningocked, etc.) to the centralized coordination system. We
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andt € {T U M} a target. We define the cost for reaching
t as:

Crype(,t) 1)
est. path cost, ¢) , if robots of typetype
= can reacht from x
o0 , otherwise.

Finally, the exploration task is assumed to be completed
as soon as the set of exploration targ€tss empty.

Fig. 3. Example of the costs that have to be considered. Ddited ~C. Formulating the Exploration Problem as a Temporal
illustrate the estimated path costs between the robot pasel the different Planning Problem
target positiong;, the costs between meeting points and robot pose or

targets positions, and costs between target positionsthosake of better A wide range of problem types can be modeled as a
visibility we did not display all costs in this figure. . . .
general planning problem, ranging from transportatiorbpro

s and single-player games to combinatorial problems.
ecent years, th@lanning Problem Definition Language
DDL) [8] has been established as the prevalent planning
nguage. In this paper we use PDDL/M [4], an extension to
DDL allowing for the definition of external modules.

The problem of multi-robot exploration with marsupial
robots is a temporal planning problem. The reasons for this
are mainly the facts that the actions of the individual rgbot
ave an individual duration and that the problem is inhdyent

use the sensor measurements of the robots to build a glﬁ?:
map distinguishing free, occupied, and unexplored are
Based on this map, we extract relevant locations in trag,
environment, for example frontier cells [23] or Iocationsp
for deployment. We then use this information to generate
a problem description in th@lanning Domain Definition
LanguaggPDDL) [8], which serves as input for the temporal
planner. In conjunction with a regular path planner such
A*, the planner computes action sequences for the robqts . - .
that are send to the individual vehicles. The loop depicte, [hly parallel. Especially for the efficient retrieval afvers,

in Fia. 2 is constantly executed. Whenever new informatiod e time the individual robots need to carry out their action
9. y : needs to be considered.

about_ the environment arrives, e.g., new sensor data IS+, generate a PDDL task description, we need to define
perceived or the robots moved, we replan. . : . : . .

(i) the objects involved in the planning process, (ii) the
predicates that define the state of the planner, (iii) astion
that change the predicates, and (iv) start and goal states.

In this work, we model the fact that different robots may First, we define what type of objects are involved. In
have different navigation capabilities and that certai@aar the exploration scenario, possible objects are robots that
of the environment can only be explored by the roversan be either rovers or carriers and locations that can be
and others only by carriers. We furthermore assume thedeeting points or exploration targets. Fig. 4 (left) ilhases
the robots are able to determine based on their sensbe corresponding PDDL statements. Second, we specify the
observations which areas are traversable by which robgiredicates that define the internal states. The major presdic
for example based on techniques developed in our previoug use to describe the exploration problem are
work [21]. (at ?r - robot ?x - location)

To identify potential target locations, a set of exploratio \yhich describes if the robot is at positionz.
targetsT' is generated from the partially explored grid map.( on ?e - rover 2c - carrier)

In addition to this, a set of meeting pointg is determined. . L . .

These meeting points are situated between those parts of l3e! sed to determine if a rovers dpgked to a carriet. For

environment that can only be traversed by the rovers anecflCh target € T', we also define if it has been explored

the parts that can only be traversed by the carriers. They %Pl ored ?t - target).

used for deployment and retrieval of the rovers (see Figr 3 fé\dditionally, we use a numeric state variable

an illustration). To determine the meeting points a frantie( numdocked ?c - carrier)

extraction algorithm is used. that contains the number of rovers that are docked to a
There are two basic types of actions a carrier can performarrier c.

exploring a target or visiting a meeting point to deploy or Third, the actions that change the predicates have to be

retrieve a rover (see Fig. 1). While deployment and retrievadrovided. We need four actions in our setting, nancgk

are assumed to have constant agg},, the cost of traveling undock move and explore The actionsdock and undock

between two locations in the environment is defined as threquire that the carrier and the rover are at the same meeting

estimated path cost (i.e., travel time). This cost depemds @oint (seeat predicate). For docking, the number of docked

the path length as well as on the traversability constraints rovers has to be lower than the carrier's capacity and the

travel speed of the corresponding robot. ligte be a robot action changes a rover’s state from being at a meeting point

type (here: carrier or rover); a location in the environment to being on a carrier (seen predicate).

B. Target Locations and Travel Cost



The other two actionsioveandexploremodel the possible  TFD/M features semantic attachments that are a means
motions of the robots. Thenoveaction moves a robot to a of evaluating components of the planning task externally.
meeting point for deployment or retrieval while tlegplore TFD/M implements this as a module interface for predicates,
action moves the robot to a target and explores it. For theumerical effects, and durations. In our case, durations of
moveandexploreactions, we utilize the module interface [4] actions are specified as a module call in the planning task
of our planning approach to define the duration. Instead afescription. When expanding actions in the search phase the
specifying a constant duration or a fixed formula, we call aplanner detects these module calls and executes the dynamic
external module that determines the duration and the actuddrary associated with the module call which in turn will
cost for taking the action. In our setting, the external mledu retrieve the real costs computed by the A* path planner. For
is realized by a traditional A path planner that plans the further details on TFD/M, we refer the reader to our previous
optimal trajectory of the robot to the given target locatiorwork [4, 7].
based on the current occupancy grid map constructed by the
robots so far. Fig. 4 (middle) depicts the PDDL statements IV. EVALUATION
that describe the actioexplore The term[ pat hCost ?r The approach described above has been implemented and
?s ?g] represents the call of the external module. evaluated thoroughly using a multi-robot simulation sgste

Finally, the initial state of the current planning proceslur The experiments have been designed to show that explicitly
and the goal state need to be specified. For the situatipfanning symbolic action sequences leads to a significantly
depicted in Fig. 1, this is exemplified in Fig. 4 (right). more efficient coordination approach than using a heuristic

extension of previous coordination approaches.

D. The TFD/M planning system A. Simulation System

The PDDL description forms the input to the TFD/M  Tq guantitatively evaluate our coordination approach, we
planner. Based on this description, the temporal plannggyeloped a simulation system that is able to simulate large
computes concurrent action sequences for the robots. TFDAMgms of marsupial robots. In our current system, we also
is a domain-independent progression search planner built gimuylate laser range sensors. Sensor and odometry noise are
top of the planning systerfast Downward[12]. It extends ot considered since we focus on the coordination aspects
the original system to support durative actions, numerit anyf the problems. The environment is modeled by a grid map
object fluents, and external modules. with additional traversability information. The maximum

TFD/M solves a planning problem in three phases: Firstensor range and traveling speed of carriers and rovers can
the PDDL planning task is translated from its binary encodbe specified.

ing into a more concise representation using finite-domain
variables. This enables the use of heuristics employing hieB. Baseline Approach
archical dependencies between state variables which leadsThe baseline approach that we compare our algorithm
to an increased search performance. In the second stggainst is a heuristic extension of a method that assigns
efficient internal data structures for the heuristic and thgobots to target locations based on cost estimates [19]. The
search component are generated. The most important orggriers are assigned to exploration targets independent o
are domain transition graphs for each variable that encogghether they are accessible to them or not. The selection
how state variables can change their values and the caugakolely based on the estimated travel cost. The rovers are
graph that represents the hierarchical dependencies &etwehen deployed heuristically: Whenever a carrier is assigned
different state variables. Finally, a best-first progressi to a target that it cannot explore itself it will move to the
search is performed, guided by a numeric temporal variafkarest connecting meeting point and deploy a rover there.
of the context-enhanced additive heuristic. This rover will then explore the targets reachable from the
In contrast to many other temporal planning systemsneeting point. As soon as it has finished exploring them, it
TFD/M does not split the search in an action selectiowill return to the meeting point. As mentioned above, we
and a scheduling phase but searches directly in the spagssume a limited number of rovers per carrier. As soon as a
of time-stamped states. This typically leads to plans afarrier needs to deploy a rover but has none available, our
significantly higher quality [7]. Note, however, that due toheuristic requires the carrier to first retrieve a rover.
the inadmissibility of the heuristic evaluation functiahge
first plan that is generated is not necessarily optimal. ~ C. Comparison of Baseline Solution With Our Approach
TFD/M does not terminate after a solution was generated, We evaluated robot teams of varying sizes and different
but is implemented as an anytime algorithm. By producing eanvironments have been used in the simulation. In the
potentially non-optimal solution quickly, the search spaan simulation, carrier robots are twice as fast as rovers aeid th
be pruned to those time-stamped states which can potgntiathaximum sensor range is also twice as far.
be extended to solutions with a lower overall duration than Two of the environments we used to evaluate our approach
the best solution found so far. If all states in the resultingan be seen in Fig. 5. The office environment resembles
state space are expanded, the produced solution is guedanta typical office building with two corridors and a number
to be optimal. of rooms. Some of the rooms can only be explored by



(:durative-action explore

:paraneters (?r - robot

?s - location ?g - target)

cduration (= ?duration
[ pathCost ?r ?s ?g])

:condition (and (at start (at ?r ?s))
(at start (not (explored ?g)))
(at start (can_explore ?r ?g)) ...

(:types
robot
carrier rover - robot
| ocation
target neeting - |ocation)

(:predicates
(at ?r - robot ?x - location) ceffect
(on ?e - rover ?c - carrier) (and
(explored ?t - target) (at
(can_explore ?r - robot ?t - target) ) (at

(at

Fig. 4. Examples for PDDL definitions. Left: definition of thequi
that shows how to specify the current state of the world fer T®D/M planner (see scene shown in Fig. 1).

start (not (at ?r ?s)))

end (at ?r ?g))

start (explored ?g))

))

(:init
(at robot0 p)
(on robot1 robot0)
(can_expl ore robot0 t1)
(can_expl ore robotl t2)
(can_expl ore robot0 t3)

(:goal (and
(explored t1)
(explored t2)
(explored t3)

))

red types and predicates. Middle: definition of the esglaction. Right: Example
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quality according to [24] as

1 n
Q:Z ;dz‘, (2

where A is the total area of the environment adddenotes

the distance traveled by robotThis measure can intuitively

Fig. 5. Our simulated experiments: office (left) and maze (Jigithite
areas can only be traversed by carriers while red (dark)sazaa only be

explored by rovers.
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error bars indicate the 95% confidence intervals. Note timailes results
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were obtained for the maze environment.

for deployment.

initial robot positions. Exploration targets were deteved

be understood as the area each robot explores per movement.
The results in Fig. 6 show that our approach reaches

a significantly higher exploration quality. Especiallydar
teams of robots are coordinated more efficiently, so that
unnecessary movement is avoided.

V. DISCUSSION

The experimental results demonstrate that our approach
can effectively coordinate large teams of robots and signif
icantly outperforms a handcrafted strategy. In addition to
that, our planning framework adds a substantial degree of
flexibility to our system. For example, additional consttai
such as power constraints for individual robots can be spec-
ified by adding adequate predicates to the problem descrip-
tion. Furthermore, other temporal actions such as reahgrgi

batteries or deploying sensor nodes can be integrated in a
straightforward way.

A. Limitations of the Approach

rovers. The maze environment features a central area thafThe planning system described in this paper generates
can only be explored by rovers but in contrast to the officeequences of actions for the robots to explore the environ-
environment has multiple meeting points that can be useadent given the current knowledge about the world. While the
robots move, their state changes and new information about

In both environments, we simulated 30 exploration rund'€ environment may be perceived. Therefore, we execute
using our approach and the baseline method with randotf€ planning cycle (see Fig. 2) in a continuous loop and use

the solution the anytime planner reports. If more than one

using the frontiers approach and neighboring exploratiopelution is found we set the timeout to 30s.

targets were clustered using visibility constraints samiio

the approach proposed by Burgatal. [2].

An overview of the results obtained in these environmem%
is given in Fig. 7. It can be seen that our approach explore%’

We analyzed our approach with up to 24 robots (6 carriers

plus 18 rovers). However, for significantly larger teams th

the environment significantly faster than the baseline ntkth

in all configurations. It can also be seen that using more |n this paper, we presented a novel approach to coordinate
than three carriers improves the overall exploration timg 0 3utonomous exploration with marsupial robots. Our apgroac

marginally. The number of rovers for which this effect o&ur combines traditional approaches for homogeneous teams
clearly depends on the structure of the environment and thi§at coordinate rovers by solving an assignment problem

number of areas that can be explored by rovers only.

lanning problem becomes large so that the solution reghorte
the anytime planner after 30 s may be sub-optimal.

VI. CONCLUSION

that maximizes a given evaluation function with a tempo-

As a further benchmark, we computed the explorational planner that explicitly deals with the deployment and
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retrieval of small rovers. Our approach has been implgi1] M. Helmert. Decidability and undecidability resultsrfolanning with
mented and thoroughly tested in extensive simulation runs. humerical state variables. IRroc. of the Int. Conf. on Artificial

. Intelligence Planning and Schedulingages 44-53, 2002.
The EXpe”mental results demonstrate that our approach c[E.llﬁ'] M. Helmert. The fast downward planning systedournal of Artificial

effectively coordinate large teams of robots and signitigan Intelligence Researct26:191-246, 2006.
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