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§ Represents a posterior by random samples

§ Estimation of non-Gaussian, nonlinear processes

§ Set of N weighted samples 
containing the state x and an importance 
weight w is used to represent the posterior.

§ Sampling: Create the next generation of particles

§ Weighting: Assign an important weights to the 
particles (according to an observation)

§ Resampling: Draw N samples from the set 
according to the individual importance weights

Particle Filters
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§ For each motion ∆ do:
§ Sampling: Generate from each sample in 

a new sample according to the motion 
model

§ For each observation s do:

§Weigh the samples with the observation 
likelihood

§ Resampling

Monte-Carlo Localization

4[Fox et al., 99]

MCL: Global Localization (Sonar)
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Occupancy Grids

§ Grid maps are a discretization of  the 

environment into free and occupied cells

§ Mapping with known robot poses is easy.
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Mapping using Raw Odometry

§ Why is SLAM hard? Chicken and egg problem:

§ a map is needed to localize the robot and 

§ a pose estimate is needed to build a map
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§ Particle filters have successfully been applied 

to localization, can we use them to solve the 

SLAM problem?

§ Posterior over poses x and maps m

Observations:

§ The map depends on the poses of the robot 

during data acquisition

§ If the poses are known, mapping is easy

Grid-based SLAM

(localization) (SLAM) 
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Factorization of the Posterior 

Particle filter representing trajectory hypotheses

Mapping with known poses

poses map observations & odometry

Factorization first introduced by Murphy in 1999
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Rao-Blackwellized Mapping

§ Each particle represents a possible 
trajectory of the robot

§ Each particle 
§ maintains its own map and 
§ updates it upon “mapping with known 

poses”

§ Each particle survives with a probability 
proportional to the likelihood of the 
observations relative to its own map
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Particle Filter Example

map of particle 1 map of particle 3

map of particle 2

3 particles
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Problem

§ Huge space complexity: each map is big 
and each particle maintains its own map
§ Therefore, one needs to keep the number 

of particles small

§ Our Solution:
Improved proposal distributions reduce 
the number of particles needed to build 
an accurate map!

12

Improving the Proposal 
Distribution

For lasers is extremely peaked 
and dominates the product.

[Arulampalam et al., 01]

We can safely approximate
by a constant:
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Resulting Proposal Distribution

Approximate this equation by a Gaussian:

Sampled points around 
the maximum

maximum reported 
by a scan matcher

Gaussian 
approximation

Draw next 
generation of 
samples
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Resulting Proposal Distribution

η is a normalizer Sampled around the scan-match maxima

Approximate this equation by a Gaussian:
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Computing the Importance 
Weight

Sampled points around the 
maximum of the observation 
likelihood
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Incorporating the 
Measurements

End of a corridor:

Corridor:

Free space:
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Selective Re-sampling

§ Re-sampling is dangerous, since 
important samples might get lost
(particle depletion problem)

§ In case of suboptimal proposal 
distributions re-sampling is 
necessary to achieve convergence.

§ Key question: 
When should we re-sample?
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Number of Effective Particles

§ Empirical measure of how well the goal distribution 
is approximated by samples drawn from the 
proposal

§ neff is maximal for equal weights. In this case, the 
distribution is close to the proposal

§ neff is closely related to the variance of the particle 
weights

particle 
weights
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Resampling with Neff

§ If our approximation is close to the 
proposal, no resampling is needed

§ We only re-sample when neff drops 
below a given threshold (n/2)

§ See [Doucet, ’98; Arulampalam, ’01]
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Typical Evolution of neff

visiting new 
areas closing the 

first loop

second loop closure

visiting 
known areas
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Intel Lab

§ 15 particles

§ four times faster 
than real-time
P4, 2.8GHz

§ 5cm resolution 
during scan 
matching

§ 1cm resolution in 
final map
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Outdoor Campus Map

§ 30 particles

§ 250x250m2

§ 1.75 km 
(odometry)

§ 20cm resolution 
during scan 
matching

§ 30cm resolution 
in final map
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MIT Killian Court
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Conclusion (RBPF-SLAM)

§ A Rao-Blackwellized particle filter is a great tool to 
solve the SLAM problem using grid maps

§ Utilizing accurate sensor observation leads to 
good proposals and highly efficient filters

§ It is similar to scan-matching on a per-particle 
base

§ The number of necessary particles and
re-sampling steps can seriously be reduced

§ Improved versions of grid-based RBPF-SLAM can 
handle larger environments than naïve 
implementations in “real time” since they need 
one order of magnitude fewer samples
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§ The technique seen so far is 
purely passive

§ By reasoning about control, the 
mapping process can be made 
more effective

§ Question: Where to move next?

Exploration
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Where to Move Next?
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§ Apply an exploration approach that 
minimizes the overall uncertainty in 
the Rao-Blackwellized particle filter

§ The uncertainty of a RBPF has two 
components: 

§ map uncertainty and

§ pose uncertainty

§ Utility = Uncertainty Reduction - Cost

Decision-Theoretic Approach
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Computing the Map and Pose 
Uncertainty

trajectory 
uncertainty

map 
uncertainty

particle
weight

data (laser 
and odometry)
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Computing the Entropy of the 
Map Posterior 

Occupancy Grid map m:

grid cells
map 
uncertainty probability that the

cell is occupied
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Computing the Entropy of the 
Trajectory Posterior 

1. High-dimensional Gaussian

reduced rank for sparse particle sets

2. Grid-based approximation

for sparse particle sets
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Approximation of the 
Trajectory Posterior Entropy 

Average pose entropy over time [Roy et al., 98]:
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Information Gain
Observations obtained
when executing a

action 

new poses introduced 
by the action a

H before action 
is carried out

H after action is 
carried out

e.g.
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Computing the Expected 
Information Gain

§ To compute the information gain one 
needs to know the observations 
obtained when carrying out an action

§ This quantity is not known! Reason 
about potential measurements
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Reasoning about Measurements

§ The filter represents a posterior about 
possible maps
§ Use these maps to reason about possible 

observation
§ Simulate laser measurements in the maps 

of the particles

measurement sequences
simulated in the maps

likelihood 
(particle weight)
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Reasoning about Measurements

§ Ray-casting in the map of each particle 
to generate observation sequences

simulated scan

pose of particle i 
while carrying 
out the action

map of particle i planned 
trajectory 
(action)
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The Utility

§ To take into account the cost of an action, 
we compute a utility

§ Select the action with the highest expected 
utility
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Focusing on Specific Actions

To efficiently sample actions, we consider

§ exploratory actions (1-3)

§ loop closing actions (4) and

§ place revisiting actions (5)
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Application Example

high pose uncertainty
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Example: Possible Targets
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Example: Evaluate Targets
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Example: Move Robot to Target
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Example: Evaluate Targets
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Example: Move Robot

… continue … 44

Example: Entropy Evolution
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Real Exploration - Video
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Exploration Comparison

After loop closing action:

Map uncertainty only:
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Conclusion (Exploration)

§ We presented a decision-theoretic approach to 
exploration in the context of RBPF-SLAM

§ We reason about observation sequences 
obtained along the path of the robot

§ We presented a way to compute the uncertainty 
for a RBPF (map and trajectory uncertainty)

§ We consider a reduced action set consisting of 
exploration, loop-closing, and place-revisiting 
actions

§ Experimental results demonstrate the usefulness 
of the overall approach 
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More Details on RBPF-SLAM
§ K. Murphy. Bayesian map learning in dynamic environments, NIPS99.

(First work on using Rao-Blackwellized particle filters for map learning)
§ M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: A factored 

solution to simultaneous localization and mapping, AAAI02
(The classic FastSLAM paper with landmarks)

§ D. Haehnel, W. Burgard, D. Fox, and S. Thrun. An efficient FastSLAM 
algorithm for generating maps of large-scale cyclic environments from raw 
laser range measurements, IROS03
(FastSLAM on grid-maps using scan-matched input)

§ A. Eliazar and R. Parr. DP-SLAM: Fast, robust simultaneous localization and 
mapping without predetermined landmarks, IJCAI03 
(Improved representation to handle big particle sets)

§ G. Grisetti, C. Stachniss, and W. Burgard. Improving grid-based slam with 
rao-blackwellized particle filters by adaptive proposals and selective 
resampling, ICRA05
(Proposal using laser observations and adaptive resampling)
open-source-implementation at:
http://www.informatik.uni-freiburg.de/~stachnis/research/rbpfmapper/

§ C. Stachniss, G. Grisetti, and W. Burgard. Information Gain-based 
Exploration Using Rao-Blackwellized Particle Filters, RSS05

http://www.informatik.uni-freiburg.de/~stachnis/research/rbpfmapper/

