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Particle Filters

= Represents a posterior by random samples
= Estimation of non-Gaussian, nonlinear processes

* Set of N weighted samples {< =™, w® >, ... <™ ("M >}
containing the state x and an importance
weight w is used to represent the posterior.

= Sampling: Create the next generation of particles

= Weighting: Assign an important weights to the
particles (according to an observation)

= Resampling: Draw N samples from the set
according to the individual importance weights

Monte-Carlo Localization

= For each motion D do:

= Sampling: Generate from each sample in
a new sample according to the motion

model MOPEINO NN,

= For each observation s do:

= Weigh the samples with the observation

likelihood . .
w® — Pz | z®)

= Resampling

MCL: Global Localization (Sonar)

[Fox et al.,, 99] 4




Occupancy Grids

" Grid maps are a discretization of the
environment into free and occupied cells

= Mapping with known robot poses is easy.

Mapping using Raw Odometry

" Why is SLAM hard? Chicken and egg problem:
" a map is needed to localize the robot and
® a pose estimate is needed to build a map

Grid-based SLAM

= Particle filters have successfully been applied
to localization, can we use them to solve the
SLAM problem?

= Posterior over poses X and maps m
p(ZE | m,z,u) —) p(x7m | Z?“)
(localization) (SLAM)
Observations:

®" The map depends on the poses of the robot
during data acquisition

= If the poses are known, mapping is easy

Factorization of the Posterior

poses map observations & odometry

p(\’:v,#@ | i,uﬂ/
= p(m |z, z2)p(z | z,u)

/

Mapping with known poses

Particle filter representing trajectory hypotheses

Factorization first introduced by Murphy in 1999




Rao-Blackwellized Mapping

* Each particle represents a possible
trajectory of the robot

= Each particle
* maintains its own map and
» updates it upon “mapping with known
poses”

= Each particle survives with a probability
proportional to the likelihood of the
observations relative to its own map

Particle Filter Example

Problem

* Huge space complexity: each map is big
and each particle maintains its own map

*= Therefore, one needs to keep the number
of particles small

* Our Solution:
Improved proposal distributions reduce
the number of particles needed to build
an accurate map!
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Improving the Proposal
Distribution

For lasers p(z|z, m™)is extrefely peaked

and dominatesg’the producy

We cén safely approximate
p(thxT(,Z_)l,ut) by a constant:

©) —
p(@elzy 2y, ue) |$t1p(zt\$t7m(i))>€_ ¢
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Resulting Proposal Distribution

p(zt|we, mD)

p(xt‘ajgi)la m(l)a 2¢,Ug) 2 =

zpe{e|p(zte,m@)>el p(atlet, m()da,

Approximate this equation by a Gaussian:

maximum reported —
by a scan matcher

Gaussian
approximation

Draw next
...Q. generation of
Sampled points around samples
the maximum 13

Resulting Proposal Distribution

p(zt|we, mD)

() () ~
p(xt‘xtflam ,Zt,Ut) — -
o€ {zlp(aela,mD)>e} p(zt|ay, m(D)dy
Approximate this equation by a Gaussian:

p($t|$§i)1, m(l), 2, UL) ™ J\/’(u(i), Z(Z))

. 1 K )
p = 23 aip(alry,mD)
=1
) 1 K ) ) ;
=0 = =3 (o 1y~ 1) o2y, m )
Uj:l ‘\\ /
h is a normalizer Sampled around the scan-match maxima,,

Computing the Importance
Weight

o = uypteley )
~ w D, [ pCailas, mODYp(a|alD), up)d o
o @ (0
- wt—lc/xte{x|p<zﬁ|x,m<f>>>e}p (e, m™ oy
o @)
~ wpyc le(zﬂa:j,ml)
‘7:

Sampled points around the
maximum of the observation
likelihood
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Incorporating the
Measurements

End of a corridor:

Corridor: ————wew——

Free space: *g._
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Selective Re-sampling

= Re-sampling is dangerous, since
important samples might get lost
(particle depletion problem)

= In case of suboptimal proposal
distributions re-sampling is
necessary to achieve convergence.

= Key question:
When should we re-sample?
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Number of Effective Particles

1
Teff = N2
S (wﬁg\ particle
weights

= Empirical measure of how well the goal distribution
is approximated by samples drawn from the
proposal

" Ny is maximal for equal weights. In this case, the
distribution is close to the proposal

® Ny is closely related to the variance of the particle
weights
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Resampling with Neff

= If our approximation is close to the
proposal, no resampling is needed

= We only re-sample when ng drops
below a given threshold (n/2)

= See [Doucet, '98; Arulampalam, '01]
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Typical Evolution of n.

closing the 1
first loop

visiting
known areas

second loop closure20




Intel Lab

s SRR . = 15 particles

= four times faster
than real-time
P4, 2.8GHz

= 5cm resolution
during scan
matching

= 1cm resolution in
final map
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Outdoor Campus Map

Lt = 30 particles
= 250x250m?2

= 1.75 km
(odometry)

= 20cm resolution
during scan
matching

= 30cm resolution
in final map
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MIT Killian Court

i

Conclusion (RBPF-SLAM)

A Rao-Blackwellized particle filter is a great tool to
solve the SLAM problem using grid maps

= Utilizing accurate sensor observation leads to
good proposals and highly efficient filters

= It is similar to scan-matching on a per-particle
base

= The number of necessary particles and
re-sampling steps can seriously be reduced

= Improved versions of grid-based RBPF-SLAM can
handle larger environments than naive
implementations in “real time” since they need
one order of magnitude fewer samples
24




Exploration

* The technique seen so far is
purely passive

* By reasoning about control, the
mapping process can be made
more effective

» Question: Where to move next?
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Where to Move Next?

L“_W, /.
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Decision-Theoretic Approach

= Apply an exploration approach that
minimizes the overall uncertainty in
the Rao-Blackwellized particle filter

*= The uncertainty of a RBPF has two
components:

* map uncertainty and

= pose uncertainty

= Utility = Uncertainty Reduction - Cost
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Computing the Map and Pose
Uncertainty

data (laser
H(p(az,m | d/ and odometry)
= H@p | D))+ [ p@ | Hp(m | ,d)) do

#particles . '
~ HOG IO+ WD Hpm® |20, )

7\

trajectory particle map

uncertainty weight uncertainty
28




Computing the Entropy of the
Map Posterior

Occupancy Grid map m:

H(p(m)) = - p(e)logp(c) + (1 —p(e)) log(l — p(e)

cem

map

uncertainty grid cells probability that the

cell is occupied
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Computing the Entropy of the
Trajectory Posterior

1. High-dimensional Gaussian
H(G(1, X)) = log((2me)"/D|x))
reduced rank for sparse particle sets

2. Grid-based approximation
H(p(x | d)) ~» const.

for sparse particle sets
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Approximation of the
Trajectory Posterior Entropy

Average pose entropy over time [Roy et al., 98]:

trajectory uncertainty

~ 1
0 10 20 30 40
time step

50
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Information Gain

A
< ¢
Observations obtained Jo e (
when executing a . ; \\‘ {
action .L,E || 7;/‘ :
e
I(Z,a) =
H before action
H(p(m’ € | d)) o is carried out

H(p(m,z,7 | d,a,z))
g

H after action is
new poses introduced carried out

by the action a
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Computing the Expected
Information Gain

= To compute the information gain one
needs to know the observations
obtained when carrying out an action

» This quantity is not known! Reason
about potential measurements

BI@)] = [p(z|a.d)-1(a)dz
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Reasoning about Measurements

* The filter represents a posterior about
possible maps

* Use these maps to reason about possible
observation

*= Simulate laser measurements in the maps
of the particles

ElI(a)] = [ p(Z|a,d)-1(Za)dz

z \
likelihood

measurement sequences _ _
simulated in the maps (particle weight)
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Reasoning about Measurements

= Ray-casting in the map of each particle
to generate observation sequences

planned
trajectory

l‘y/ (action)

pose of particle i
while carrying

simulated scan out the action
35

map of particle i

The Utility

* To take into account the cost of an action,
we compute a utility

U(a) = I(a)— a- cost(a)

= Select the action with the highest expected
utility

ot = argmax{E[U(a)]}
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Focusing on Specific Actions

To efficiently sample actions, we consider
= exploratory actions (1-3)
= loop closing actions (4) and
= place revisiting actions (5)
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Application Example

high pose uncertainty

expected utility

action

anl
L

timestep 35

timestep 35

expected utilly

decision at timestep 35 ===

LI

01 2 3 4 5 6 7
target location
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expected utiliy

Example: Move Robot to Target

decision at timestep 35 ===

lik;

01 2 3 4 5 6 7
target location
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Example: Evaluate Targets

( decision at times’ (| —

WUUQTD

target location

expected utiliy

timestep 70

6

+2

expected utiliy

Example: Move Robot

decision at timestep 70 ===

ﬂﬂﬂmmﬂﬁ

0 1 2 3 4 b5 6
target location

... continue .4

Example: Entropy Evolution

combined entropy
map entropy -
pose entropy -

entropy

80 80 100 120
time step
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Real Exploration - Video
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Exploration Comparison

Map uncertainty only:

After loop closing action:

i
4!
A~

5 | ! 2 | J_,._d
I |r"-j! __,._J—Jfaf;;?

;T
in

46

Conclusion (Exploration)
= We presented a decision-theoretic approach to
exploration in the context of RBPF-SLAM

= We reason about observation sequences
obtained along the path of the robot

= We presented a way to compute the uncertainty
for a RBPF (map and trajectory uncertainty)

= We consider a reduced action set consisting of
exploration, loop-closing, and place-revisiting
actions

= Experimental results demonstrate the usefulness
of the overall approach
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More Details on RBPF-SLAM

= K. Murphy. Bayesian map learning in dynamic environments, NIPS99.
(First work on using Rao-Blackwellized patrticle filters for map learning)

= M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: A factored
solution to simultaneous localization and mapping, AAAIO2
(The classic FastSLAM paper with landmarks)

= D. Haehnel, W. Burgard, D. Fox, and S. Thrun. An efficient FastSLAM
algorithm for generating maps of large-scale cyclic environments from raw
laser range measurements, IROS03
(FastSLAM on grid-maps using scan-matched input)

= A. Eliazar and R. Parr. DP-SLAM: Fast, robust simultaneous localization and
mapping without predetermined landmarks, IJCAIO3
(Improved representation to handle big particle sets)

= G. Grisetti, C. Stachniss, and W. Burgard. Improving grid-based slam with
rao-blackwellized patrticle filters by adaptive proposals and selective
resampling, ICRAO5
(Proposal using laser observations and adaptive resampling)
open-source-implementation at:
http://www.informatik.uni-freiburg.de/~stachnis/research/rbpfmapper/

= C. Stachniss, G. Grisetti, and W. Burgard. Information Gain-based
Exploration Using Rao-Blackwellized Particle Filters, RSS05
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http://www.informatik.uni-freiburg.de/~stachnis/research/rbpfmapper/

