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Abstract— In this paper, we present an approach allowing a
robot to learn a generative model of its own physical body
from scratch using self-perception with a single monocular
camera. Our approach yields a compact Bayesian network
for the robot’s kinematic structure including the forward and
inverse models relating action commands and body pose. We
propose to simultaneously learn local action models for all pairs
of perceivable body parts from data generated through random
“motor babbling.” From this repertoire of local models, we
construct a Bayesian network for the full system using the pose
prediction accuracy on a separate cross validation data set as
the criterion for model selection. The resulting model can be
used to predict the body pose when no perception is available
and allows for gradient-based posture control. In experiments
with real and simulated manipulator arms, we show that our
system is able to quickly learn compact and accurate models
and to robustly deal with noisy observations.

I. I NTRODUCTION

Kinematic models are widely used in robotics, in particular
for prediction and control of robotic manipulators [1], [2].
Such models are typically derived analytically by an engi-
neer [3] and usually rely heavily on prior knowledge about
the robots’ geometry and kinematic parameters. As robotic
systems become more complex and versatile, however, or
are delivered in a completely reconfigurable way, there
is a growing demand for techniques allowing a robot to
automatically learn body schemes with no or minimal human
intervention. Such a capability would not only facilitate the
deployment and calibration of new robotic systems but also
allow for autonomous re-adaptation when the body scheme
changes, e.g., through regular wear-and-tear over time or
even intended reconfiguration in the case of tool use.

Neuro-physiological evidence indicates that humans as
well as higher primates learn and adapt their internal models
continuously and autonomously using self-perception [4].
Brain scan studies on monkeys that have been trained to use
tools revealed that the tool itself even gets integrated into
their body schemes over time [5]. Mirror neurons as found
in brain area F5 map proprioceptive sensations to tactile
and visual ones and thereby seem to serve as a neurological
representation of the body scheme [6]. Moreover, they seem
to translate external visual stimuli, for example from a
demonstrator, into proprioceptive ones, and thereby play an
important role in imitation and imitation learning.

In this paper, we investigate ways of realizing such
capabilities on artificial systems, in particular on robotic
manipulators in conjunction with visual self-perception.We
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Fig. 1. Experimental setup: the robot issues random commands (“motor
babbling”) to its joints and perceives the resulting movements of its body
parts using a monocular camera. From this self-perception, itlearns a
compact Bayesian network that it can then use both for prediction and
control. The right picture shows a visualization of the robot’s self-model
after learning.
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Fig. 2. Left: Initially, the Bayesian network representing the robot’s
body scheme is fully-connected.Middle: After training, only the local
models most consistent with the observed data are retained to form a sparse
kinematic model for the whole system.Right: Template of a local model
for a body partXj which depends on its predecessorXi in the kinematic
chain and all available action commandsa1, . . . , an.

propose to learn a Bayesian network for the robot’s kinematic
structure including the forward and inverse models relating
action commands and body pose. More precisely, we start
with a fully connected network containing all perceivable
body parts and available action signals, to perform random
“motor babbling,” and to iteratively reduce the network
complexity by analyzing the perceived body motion. At the
same time, we learn non-parametric regression models for
all dependencies in the network, which can later be used
to predict the body pose when no perception is available or
to allow for gradient-based posture control. In experiments
with real and simulated manipulator arms, we show that
our approach is able to quickly learn compact and accurate
models and to robustly deal with noisy observations.

II. RELATED WORK

Several approaches for learning and adapting body sche-
mes at different levels of complexity have been proposed in
the past. Self-calibration [7], for instance, can be understood
as a subproblem of body scheme learning. When the kinema-



tic model is known up to a number of parameters, they can
in certain cases be efficiently estimated by maximizing the
likelihood of the model given the data. Genetic algorithms
have been used in [8] for parameter optimization when no
closed form is available. To a certain extend, such methods
can also be used [9] to calibrate a robot that is temporarily
using a tool. However, such approaches require a paramete-
rized kinematic model of the robot.

There have also been approaches on learning sensor-
motor maps when no such model is available. [10] used
for example Hebbian networks to discover the body scheme
from self-occlusion or self-touching sensations and later[11]
learned classifiers for body/non-body discrimination from
visual data. Other approaches used for example nearest-
neighbor interpolation [12] or neural networks [13]. By
considering body scheme learning as a problem of function
approximation, such approaches are applicable in cases even
where little prior knowledge is available. Without assuming
any underlying structure, these approaches however genera-
lize badly over the training data and therefore scale badly
with an increasing number of free variables.

This problem can be tackled by reducing the dimensio-
nality of the learning problem. Principal component analysis
(PCA) for example has been used successful [14] for walking
gait learning on humanoid robots. Although such approaches
remove efficiently the redundancy in the body scheme for a
particular motion sequence, much information is lost in the
projection as the low-dimensional mapping only describes
a reduced body scheme. Another possibility for dimension
reduction is by unveiling the underlying structure of the body
scheme. In [15], this is formulated as a model selection
problem between different Bayesian networks. Here, the qua-
litative relation between actions and observations is learned
that describes the observed data well. By using this structural
information, the robot can infer motor commands by which
it imitates the movements of a human demonstrator. To our
knowledge, in this approach however only the structure was
learned without quantitative relationships such that so far no
precise actuation has been realized.

In contrast to all of these approaches, we propose an
algorithm that both learns the structure as well as an accurate
functional mapping. By first selecting a suitable decompositi-
on of the body scheme, local models with smaller complexity
can be learned.

III. A P ROBABILISTIC MODEL FORK INEMATIC CHAINS

The problem we are trying to tackle in this work is to
enable a robotic system to autonomously learn the relation-
ship between available action signalsa1, . . . , an and body
part configurationsX1, . . . ,Xm, which can be (partially)
observed asY1, . . . , Ym. In our concrete scenario, in which
we learn the kinematic model of a robotic manipulator arm,
the action signalsai are real-valued variables corresponding
to the individual states of the joints and theXi ∈ R

4×4

are homogeneous transformation matrices, each encoding the
6-dimensional pose of a body part relative to a reference

coordinate frame. On the real robotic platform used in our ex-
periments, the observationsYi are obtained by tracking visual
markers in 3D space including their 3D orientation [16]. Note
that these observations are inherently noisy, especially in the
z dimension, which is the distance of the marker from the
camera, and we also consider markers that are only partially
observable (e.g., justx andy) or cannot be detected at all.

We model the whole system as a Bayesian network, in
which the body parts are arranged in a chain such that each
Xj can be described by a local modelp(Xj |Xi, a1, . . . , an)
given its (unique) predecessorXi and the action commands
as depicted in Fig. 2, as well as an observation model
p(Yj |Xj). We denote the local transformation fromXi to
Xj by ∆ij = X−1

i Xj . Given no additional prior knowledge
about the relationships between actions and body parts,
learning in this model means

1) finding the correct network topology (which parts are
directly connected?) and

2) learning the local transformation models for this topo-
logy

by issuing action commandsa1, . . . , an and observing the
outcomesY1, . . . , Ym. In most applications, the local trans-
formations∆ij depend on few action signals only and not
on all n as in the general case. Thus, an important practical
aspect for learning will be to select appropriate subsets of
action commands for the individual local transformations.

A. Finding the Network Topology

We are looking for a compact Bayesian network for
p(X1, . . . ,Xm|a1, . . . , an) that is composed of local models
of the form p(∆ij |Aij) with Aij ⊂ {a1, . . . , an}. Please
note that a trivial solution would be to choose all local
models to have full rank, that is, to simply depend on
all action signals available. Such a model, however, would
generalize badly over the training data as it would not take
advantage of the intrinsic redundancy to the body structure.
Since the individual models would then be of high dimensio-
nality, consequently such a model would require considerably
more training examples than a sparse composition of low-
dimensional local models. The upper arm of a robot, for
example, only depends on the position of the trunk and the
shoulder joints, while the lower arm would only depend on
the position of the elbow and the remaining joints. This of
course needs not always to be the case: in the experimental
section, we will also evaluate our system for the case, in
which individual body parts are not observable and, thus,
higher order local models have to be learned to be able to
build a full model.

Considering all possible model dimensionalities and de-
pendencies, the decomposition results in a search problem
with an upper bound of

∑n

k=1

(

n
2

)(

m
k

)

local models that
would have to be learned, i.e., as the ordering of joints and
observed body parts is initially unknown to the robot. In
practice, this number can be reduced drastically by using
simple search heuristics, such as evaluating the local models
ordered by their complexity|Aij | and to interrupt the search
when a certain level of model accuracy is attained.
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Fig. 3. Left: Example of an accurate local model learned for two body parts and an action variable. Note the low predictive variance for the x- andy

components as well as the higher noise in thez dimension, which is due to higher measurement uncertainty in this direction.Right: Less accurate model
learned for the same body parts but a different action variable. Such a local model is less likely to be part of the Bayesian network describing the full
kinematic chain of the robot since, in general, its predictions are less accurate.

As the quality measure for hypothesized network to-
pologies in the model selection process, we use cross-
validation. More precisely, we determine for each local
model p(∆ij |Aij) the residual sum of squares (RSS) on a
validation set that has been sampled during training but has
not been included in the training set for the local models.

The Bayesian network can then be composed of a subset
of the evaluated local models that minimizes the overall sum
of RSS’. This subset can be found efficiently, e.g., by using a
minimal spanning tree algorithm. Note, that model selection
based on the RSS measure worked particularly well in our
experiments, but other selection criteria like the Bayesian
information criterion (BIC) can be used likewise.

As a result, the recovered Bayesian network factorizes the
body scheme into the more compact representation

p(X1, . . . ,Xm|a1, . . . , an) = P (Xt)
∏

<i,j>∈E

p(Xi|Xj ,Aij)

= P (Xt)
∏

<i,j>∈E

p(∆ij |Aij),

(1)

where Xt is the root node andE is the edge list of
the recovered minimal spanning tree corresponding to the
kinematic chain(s).

B. Learning Local Kinematic Models

In order to learn an arbitrary local modelp(∆ij |Aij),
we need to find the non-linear mapping from a vector of
action signalsAij to an expected relative transformation
∆ij . For simplicity, we assume all 12 free componentsδk

ij

of ∆ij being independent of each other and thus consider
the functional mapping for each component separately. In
theory, this approach cannot guarantee that the result is a
valid, homogeneous transformation matrix, e.g., the rotatio-
nal components are orthogonal and positive-definite. It is a
hard problem in general to find the best parameterization
for constrained matrices in regression settings [17]. Since

we did not observe any problem related to this issue in
our experiments, however, we kept this formulation and
will consider deriving a different parameterization in future
research.

As the true relative transformations∆ij = X−1

i Xj are
only observable through the noisy observations∆ij =
Y −1

i Yj , we assume additive white noise on each component

δ
k

ij ∼ N (δk
ij , σn). A flexible model for learning such non-

linear functions directly from noisy observations are the
popular Gaussian processes. Due to space constraints, we
only give the main characteristics of this framework here and
refer to [18] for details. The main feature of the Gaussian
process framework is, that the observed data points are
explicitly included in the model and, thus, no parametric
form of f needs to be specified. Moreover, the dependencies
between data points is specified in an interpretable way
using a parameterized covariance functionk and predictions
yield not only the most likely function value but also the
corresponding predictive uncertainty. We parameterize the
covariance functionk using the often used square exponential
formulation

k(δij , δrs) = σ2

f · exp

(

−
1

2ℓ2
|δij − δrs|

)

, (2)

which depends on the Euclidian distance between pointsxp

and xq as well as on the amplitude parameterσ2

f and the
lengthscaleℓ. This covariance function is particularly well
suited to model sinusoidal dependencies as they arise in our
setting, where we wish to infer components of harmonic
transformations.

The middle and right diagrams of Fig. 3 depict several
typical regression results, both generated using real data
of our manipulator. In the middle diagram, the regressions
of an accurate local model are shown. It can be seen that
the training data has low noise in the x-y-components and
somewhat higher noise in the z-component. In the right
diagram, the data is poorly correlated and, in comparison,
will yield a much higher prediction error (RSS) on the
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Fig. 4. Forward model evaluation on a simulated robot with low noise. The
prediction error of the learned forward model quickly converges towards
zero. It can also been seen that the compact Bayesian network –using
a decomposition into small local models – converges much faster than
the fully-connected Bayesian model which requires higher-dimensional
regression models.

validation set. Therefore, the latter model is less likely to
be part of the kinematic chain for the full system.

C. Using the kinematic chain for prediction

The learned Bayesian network can now be used as a pre-
dictive forward model. Given a motor commanda1, . . . , an,
the relative transformations∆ij can be inferred from the
local modelsp(∆ij |Aij) of the kinematic chain.

If one absolute body position, e.g.,X1 is known additio-
nally, the absolute coordinates of all other body positionscan
be computed by re-arranging equation 1.

In particular, the GPs underlying each local model yield
the mean and the variance for a given motor command. While
the mean corresponds to the maximum likelihood estimate,
the variance can be used as a measure of uncertainty. In order
to propagate Gaussians beliefs through the kinematic chain,
we approximate the result of Gaussian multiplication again
as Gaussians [19].

Note that this variance estimates can be used by the robot
for active exploration, or to generate action commands that
minimize the expected sensor and/or motor noise.

D. Using the kinematic chain for control

In order to grasp an object, or to imitate the posture of
a human demonstrator, the robot needs an inverse model
that maps from a given target positionXtarget to a action
commanda = [a1, . . . , an]

T that is supposed to generate
this position.

Depending on the complexity of the configuration space,
different search algorithms can be used. When gradients are
available, potential field approaches have been proven to be
flexible and powerful solutions for maneuvering and path
planning [2].

In our case, this translates to the distance functionf(a) =
‖Xm(a) − Xtarget‖ that has to be minimized.Xm refers
here to the predicted position of body partm given a
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Fig. 5. Forward model evaluation on a real robot with noisy perception.
Already after a few samples, the prediction accuracy of the forward model
becomes better than the direct but noisy perceptions of the camera.

motor commanda, which can be computed from equation 1
as described in the previous subsection. As this distance
function is continuous, also its Jacobian∇f(a) can be
evaluated, i.e.,

∇f(a) =

[

∂f(a)

∂a1

, . . . ,
∂f(a)

∂an

]T

(3)

A gradient descent algorithm can then be used to minimize
f(a) and thereby iteratively approach the target position.

IV. EVALUATION

We have tested our approach in a series of experiments,
both on a simulated manipulator robot and a real one. The
experiments described in this section have been designed to
demonstrate that

1) our approach yields a close to optimal and compact
model when no noise is present and all quantities can
be fully observed,

2) our approach is robust w.r.t. the noisy perception of a
monocular camera on a real robot,

3) our approach can deal with unobserved body parts (in
which case higher-order local models are needed),

4) our approach allows for free and real online control,
when no perception is available.

For each experiment, 400 random action commands were
generated (“motor babbling”) and sent to the motors. After
each action request was completed, the robot recorded the
measurements from the joint encodersa1, . . . , an and the
observed positionsY1, . . . , Ym of its body parts.

These datasets were then used for learning, testing and
validation. The training samples were added incrementallyto
the local models, in order to investigate the learning behavior.
After each training sample, a test set of 40 data samples
was used to measure the average accuracy of both prediction
(forward model) and control (inverse model).
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Fig. 6. Experiments with a simulated 7-DOF-manipulator consisting of 10 body parts. Body partX4 was hidden and therefore never observed.Left:
Screenshot from the simulated robot.Middle: Bayesian network after the first training sample: the correctkinematic chain can not yet be recovered.
Right: Bayesian network after 10 training samples, the kinematic structure has converged to the true solution. Note that as only model of complexity one,
i.e., of typep(Xi|Xj , ak), have been evaluated, the chain cannot be closed. Here, the robot would need to consider additionally models of complexity
two, i.e. p(Xi|Xj , ak, al) and finally find a good model usingp(X5|X3, a2, a3) (indicated by the dashed red arrows).

A. Fully observable

For our first experiment, we used a simulated manipulator
robot with 2 rotational joints, similar to our real robot
as shown in Figure 1. We added small amounts of white
noise to both the measurements from the joint encoders
(σjoints = 0.02◦) and the observations of the body positions
(σmarkers = 1mm). From the simulator, noise-free ground
truth information was available for evaluation.

Fig. 4 shows the prediction errors of the learned model as a
function of the number of training samples. Remember that a
single training sample here corresponds to a pair of proprio-
ceptive and visual observations〈a1, . . . , an,X1, . . . ,Xm〉.
It can be seen that the prediction error quickly converges
towards zero; after only 10 training samples, the error is in
the magnitude of millimeters. For comparison, a full model
p(∆13|a1, a2) was learned directly from the training data
using a 2-dimensional GP. The resulting prediction error
is also given in Fig. 4. It can be seen that the compact
Bayesian network composed of two local models converges
much faster than the fully-connected model.

B. Fully observable, with noise

The robot used to carry out the experiments is equipped
with a manipulator composed of Amtec (Schunk) PowerCube
modules. With nominal noise values of (σjoints = 0.02◦), the
reported joint positions of the encoders were considered tobe
sufficiently accurate to compute the ground truth positionsof
the body parts from the known geometrical properties of the
robot. Visual perception was obtained by using a Sony DFW-
SX900 FireWire-camera at a resolution of 1280x960 pixels.
On top of the robot’s joints, black-and-white markers were
attached (see Fig. 1), that were detectable by the ARToolkit
vision module [16]. Per image, the system perceives the
unfiltered 6-dimensional poses of all detected markers.

The standard deviation of the camera noise was measured
to σmarkers = 44mm in 3D space, which is acceptable
considering that the camera was located two meters apart
from robot. In the near future, we plan to develop a body part
tracker similar to [20] that uses more natural visual features,
such that the 6D trajectories can be recovered directly from
images without the need for artificial marker tags.

Experiments with marker detection alone showed good
accuracy in the xy-plane and rotations around the camera
direction. However, the z-distance (distance from the camera)
was more noisy, as well as the rotational estimates when the
marker was turned away from the camera direction. In order
to keep the observation noise low, it was decided to restrict
the robot’s movements physically to a plane perpendicular to
the camera by only using 2 of its 4 joints. No further post-
processing was applied, i.e., the robot did not know that it
was physically restricted to a plane.

The measured noise levels were considerably higher
(around 44mm). Still, the body scheme converged within
the first 10 observations. After about 15 training samples,
the accuracy of the predicted body part positions even
outperformed the accuracy of the direct observations. The
latter is a remarkable result as it means that, although all local
models are learned from noisy observations, the resulting
model is able to blindly predict positions that are more
accurate than its direct perception.

C. Partially observable body parts

We conducted an experiment with a simulated manipulator
with 7 joints and 10 visible body parts, with a total length
of 1300mm. The manipulator has been assembled as follows
(compare to Fig. 6):

• Body partsX1 and X2 were firmly connected to each
other.

• Two fingersX9 andX10 were mounted on the 1-DOF
grippera7 as the end-effector.

• The remaining body was constituted of a chain of visible
body partsX2, . . . ,X8 and 1D rotary jointsa1, . . . , a6.

The learned forward model converges after only 10 samp-
les, similar as in the earlier experiments. The average pre-
diction error is then lower than1mm.

We then analyzed the effects of partial observability on
our approach. This was realized by covering body partX4

completely, such that no observations of that body part could
be made. As a result, all models under consideration have a
RSS larger than a certain threshold and therefore no suitable
local model of complexity 1 can be found.
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Fig. 7. Inverse model evaluation on a real robot with noisy perception. A
gradient-descent algorithm is used to find the action command that mini-
mizes the predicted distance to the desired target position.The positioning
error reaches after a few samples the magnitude of the sensor noise.

In such a situation, the robot considers all local models of
the complexity 2, etc., until a satisfactory kinematic chain is
found, i.e., the predictive error over the test set (RSS) drops
below a certain threshold. The higher order model which
was automatically incorporated into the Bayesian network is
highlighted in Fig. 6 by dashed red lines.

D. Manipulator control without perception

Finally, we evaluated the kinematic chain in inverse di-
rection. Fig. 7 shows the results on the real robot with
noisy perception. The average positioning error converges
after 10 training samples approximately at the level of the
observation noise. This result is slightly worse than the
prediction accuracy of the forward model. A possible reason
for this is, that here the robot has to deal with the observation
noise twice: first, the model was learned from noisy data,
and second, for evaluation the desired target position was
supplied to the robot again from real and therefore noisy
perception.

V. CONCLUSIONS

In this paper, we presented an approach that allows an au-
tonomous robot to learn its own sensorimotor model through
self-perception. Our fundamental idea is to decompose the
problem of learning a large and complex kinematic model
into smaller pieces. As a result, the robot no longer needs to
rely on a model supplied by an engineer. As such a model
can continously be learned and adapted by the robot, it can
be easily kept up-to-date.

Despite our encouraging results, the work described in
this paper implies several interesting directions for future
research. During tool-use, for instance, the Bayesian network
could temporarily be extended by an additional node. The
robot would then only need to learn a new local model,
describing the transition from its end-effector to the tip of
the tool. Additionally, the kinematic structure in form of
a predictive Bayesian network can be used to identify the

geometrical structure of the robot. For example, it should
be possible with basic geometry to recover the position of
the rotary axes of the robot. A trajectory planner could then
implement obstacle avoidance on the whole body.
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