
Functional Web Programming

Peter Thiemann

Universität Freiburg

ETAPS 2002; Tutorial T5; Sunday, April 14, 2002, morning

1

Web Programming

• Early Web pages:

static, contents of files transported over the network

• Today’s Web pages:

– highly dynamic

– composed from document templates, database accesses,

computed elements

– parameterized wrt. language, image quality, user profiles, . . .

⇒ must be programmed

– either on client-side (applets, JavaScript, VB, . . .)

– or on server-side (SSI, CGI, NSAPI, ISAPI, Servlets, JSP, . . .)

2

The WASH/CGI Approach

• Server-side Web scripting

• Embedded DSL hosted by Haskell

• Based on CGI (portability)

• Raw CGI functionality accessible

• Advanced high-level functionality

3

1 Preliminaries

1.1 Definitions

• program: defines a number of values (possibly functions)

• v = e

define the value of variable v as the value of expression e

• f v1 ...vn = e

define the function f which takes n arguments; expression e is the

body of the function

• let definitions in e

establishes definitions local to expression e

• e where definitions

establishes definitions local to expression e

4

1.2 Types

• v :: t

a type signature; asserts that the value of variable v has type t

• Built-in Types

– Int integers

– Char charaters

– [t] lists of value of type t

– String lists of characters

– t1 -> t2 -> ... -> tn -> t functions that expect n

arguments of type t1, . . . , tn and return a result of type t

– IO t an I/O action that returns a result of type t (later)

5

2 Generating Web Pages

• Webpages-as-text is not appropriate

– phase errors (headers, main message)

– structural errors (well-formedness, validity)

– requires too much low-level knowledge

• WASH/CGI’s approach

– Web pages represented by data structures

– constructed functionally

– automatic conversion to text on output

6

An example

import CGI -- indicate it’s using CGI

main = -- main program (fixed)

run $ -- starts a CGI script

ask $ -- delivers a Web page

standardPage "Hello" $ -- constructs a Web page

text "This is my first CGI program!"

-- contents of page

7

Explanation

• $ is function application;

write “ f $ a ” for “ f (a) ” or “ f a ”

“ f $ g $ a ” means “ f (g a) ”

• main is an I/O action of type “IO ()”

• run is a function that maps a CGI action to an I/O action

run :: CGI () -> IO ()

• ask maps a document to a CGI action

ask :: WithHTML CGI () -> CGI ()

• standardPage is a parameterized document of type

String -> WithHTML CGI a -> WithHTML CGI a

8

More on Documents

• WithHTML CGI a type of sequences of document nodes

(elements, attributes, or text nodes)

• corresponds to contents of a HTML element

• also computes a value of type a (later)

• text :: String -> WithHTML CGI ()

creates a singleton sequence with one text node

• for each HTML tag t, there is a constructor function

t :: WithHTML CGI a -> WithHTML CGI a

– it takes a sequence of child elements and attributes

– creates an element with tag t

– returns it in a singleton sequence

• Example: p (text "This is my first CGI program!")

9

Document Node Sequences

• the empty sequence

empty

• concatenation of sequences

seq1 ## seq2 or

seq1 >> seq2 or

do { seq1; seq2; ...; seqn } or

do seq1

seq2

...

seqn

10

Example

ask $

standardPage "Hello" $

do p (text "This is my second CGI program!")

p (do text "My hobbies are"

ul (do li (text "swimming")

li (text "music")

li (text "skiing")))

11

HTML With Style: Composable Style Attributes

• style operators are :=:, :^:, and using

• style attributes (cf. CSS2)

fgRed = "color" :=: "red"

bgGreen = "background" :=: "green"

• combining style attributes

styleImportant = fgRed :^: bgGreen

• using the style

using 〈style 〉 〈elem 〉 〈sequence 〉

using styleImportant p (text "This is important!")

12

A Complete Example

import CGI

fgRed = "color" :=: "red"

bgGreen = "background" :=: "green"

styleImportant = fgRed :^: bgGreen

important = using styleImportant

main =

run $

ask $

standardPage "Hello" $

important p (text "This is important!")

13

3 Simple Interaction

Let’s personalize our program:

• ask for the name

• send a personalized greeting

For programming this interaction, we need to specify

• a form

• an input field

• an action taken on input

14

Creating a Form

• “raw” constructor for form element not available

• the “cooked” constructor

makeForm :: WithHTML CGI a -> WithHTML CGI ()

creates form with standard attributes preset

• for convenience, we wrap this into a parameterized document:

standardQuery :: String -> WithHTML CGI a -> WithHTML CGI a

standardQuery ttl elems =

ask (standardPage ttl (makeForm elems))

15

Creating an Input Field

• “raw” constructor for input element not available

• the “cooked” constructor

textInputField :: HTMLField (InputField String INVALID)

using the type definition

type HTMLField a = WithHTML CGI () -> WithHTML CGI a

• textInputField is a function that maps

– a sequence of attributes for the input field to

– a singleton sequence containing the input field

16

Input Handles

• in addition to constructing the HTML element,

the constructor returns a handle to the input field

textInputField :: HTMLField (InputField String INVALID)

• the type of the handle is InputField String INVALID

– String the field contains a string

– INVALID the field does not contain valid information, yet

17

Attaching an Action to an Input Field

Simple method for activating one input field

activate actionFun inpField elems

• actionFun :: a -> CGI ()

maps contents of input field to a CGI action

activated when data is entered into the field

• inpField :: HTMLField (InputField a INVALID)

• elems :: WithHTML CGI ()

sequence of attributes for the input field

• in our example: a is String

18

Complete Example Code

import CGI

standardQuery ttl cont =

ask (standardPage ttl (makeForm cont))

main = run $ standardQuery "What’s your name?" $

p (do text "Hi there! What’s your name?"

activate greeting textInputField empty)

greeting :: String -> CGI ()

greeting name =

standardQuery "Hello" $

do text "Hello "

text name

text ". This is my first interactive CGI program!"

19

4 Typed Input and Tabular Output

Let’s extend the previous example to print a multiplication table.

After the greeting

• ask for a multiplier

• print its multiplication table

20

Replace greeting by mtable

mtable name =

standardQuery "Multiplication Table" $

do p (text ("Hello " ++ name ++ "!"))

p (text "Let’s see a multiplication table!")

p (text "Give me a multiplier " >>

activate ptable inputField empty)

• ++ is string and list concatenation

• given that ptable :: Int -> CGI ()

• the input field has type InputField Int INVALID

⇒ an input field of this type refuses all inputs that are not

integers!

21

Tabular Output

ptable :: Int -> CGI ()

ptable mpy =

standardQuery "Multiplication Table" $

table (mapM_ pLine [1..12])

where

align = attr "align" "right"

pLine i = tr (do td (text (show i) ## align)

td (text "*")

td (text (show mpy))

td (text "=")

td (text (show (i * mpy)) ## align))

• [1..12] is list of integers 1, 2, 3, . . . , 12

• mapM pLine [1..12] applies pLine to each element of [1..12]

• attr "align" "right" creates the attribute align="right"

22

5 Interaction with Multiple Inputs

Let’s modify the previous example to a teaching program for exercising

multiplication:

• Ask for a multiplier

• Ask for a number of exercises

• Present exercise questions one at a time

• Display summary evaluation at the end

23

Replace greeting by mdrill

mdrill name =

standardQuery "Multiplication" $

do p (text ("Hello " ++ name ++ "!"))

p (text "Let’s exercise some multiplication!")

mpyF <- p (text "Give me a multiplier " >>

inputField (attr "value" "2"))

rptF <- p (text "Number of exercises " >>

inputField (attr "value" "10"))

submit (F2 mpyF rptF) (firstExercise name) empty

24

Extended do Notation

Recall that construction of a sequence also computes a value.

The notation

do ...

var <- seq

...

extracts the value (e.g., an input handle) computed while constructing

seq into variable var.

Example:

do ...

mpyF <- p (text "Give me a multiplier " >>

inputField (attr "value" "2"))

25

Value Propagation

• inputField occurs nested within p

⇒ must specify how value of inputField becomes value of p (...)

• Propagation rules

– elem (seq) returns the value of seq

(elem an element constructor)

– seq1 >> seq2 returns the value of seq2

– seq1 ## seq2 returns the value of seq1

– do {seq1; ...; seqn} returns value of seqn

• Example:

p (text "Give me a multiplier " >>

inputField (attr "value" "2"))

returns the input handle created by the inputField.

26

Specifying Actions

• Creation of a separate submit button

submit handle action attrs

– handle invalid handle for input fields

– action function that maps valid handles to a CGI action

– attrs further attributes for the input field

• submit validates the input handles and passes them to action

⇒ handle :: h INVALID

⇒ action :: h VALID -> CGI ()

⇒ attrs :: WithHTML GCI ()

• where h is any input handle

27

Combining Input Handles

Differrent handle types must be used:

• h = F0 no input handles

submit F0 action

• h = InputField a a single input handle for values of type a

do inF <- inputField empty

submit inF action

• h = F2 h1 h2 a pair of two input handles, h1 and h2

do inF1 <- inputField empty

inF2 <- inputField empty

submit (F2 inF1 inF2) action

• and so on . . .

28

Accessing Input Handles

• value :: InputHandle a VALID -> a

if the handle is valid, then contents can be directly accessed

• In the example:

firstExercise name (F2 mpyF rptF) =

runExercises 1 [] []

where

mpy, rpt :: Int

mpy = value mpyF

rpt = value rptF

• mpy, rpt :: Int

fixes type of input to integer

29

Interaction Logic (in Haskell)

runExercises nr successes failures =

if nr > rpt then

finalReport

else

let msg = "Question " ++ show nr ++ " of " ++ show rpt

do factor <- io (randomRIO (0,12))

standardQuery msg $

do text (show factor ++ " * " ++ show mpy ++ " = ")

activate (checkAnswer factor) inputField empty

• io lifts an I/O action into a CGI action

• randomRIO (0,12) is I/O action that returns a random number

between 0 and 12 (from Haskell standard library Random)

• still nested inside where (to access rpt and mpy)

30

Further Interaction Logic

where

checkAnswer factor answer =

let result = factor * mpy

correct = answer == result

message = if correct then "correct! " else "wrong! "

continue F0 = if correct

then runExercises (nr+1) (factor:successes) failures

else runExercises (nr+1) successes (factor:failures)

in standardQuery ("Answer " ++ show nr ++ " of " ++ show rpt) $

do p (text (show factor ++ " * " ++ show mpy ++ " = " ++ show result))

text ("Your answer " ++ show answer ++ " was " ++ message)

submit F0 continue (attr "value" "CONTINUE")

• continue takes no input handles ⇒ F0

31

6 Specifying Input Fields

So far, we have seen

• textInputField

unconstrained text input

• inputField

input in Haskell read syntax

But often, more restrictions apply

• select from a fixed set of alternatives

• further consistency checks (non-empty fields, email addresses, . . .)

32

6.1 Selector Boxes

selectSingle :: Eq a => (a -> String) -> Maybe a -> [a]

-> HTMLField (InputField a INVALID)

selectSingle showFunction maybeDefault options

• a is type of selected values

• Eq a states that values must be comparable

• showFunction :: a -> String

maps a value to its menu entry (a string)

• maybeDefault is either Nothing or Just defaultValue

• options is the list of values from which to choose

33

Application in mdrill

do ...

mpyF <- p (text "Give me a multiplier " >>

selectSingle show Nothing [2..12] empty)

...

• show is Haskell-provided printing function

• Nothing: no default specified ⇒ form insists on an entry

• [2..12] list of options

• empty — no attributes for the selection box

34

6.2 Radio Buttons

• radioGroup attrs

– creates a radio group (an invisible widget)

– attrs are common attributes for all members

– the function value extracts the value from a radio group

– hence, all members have the same type

• radioButton radiogroup val

attaches a button returning val to radiogroup

• radioError radiogroup

specifies the location of the error indicator ? for radiogroup

35

Application in mdrill

do ...

rptF <- radioGroup empty

p (text "Number of exercises " >>

text " 5 " ## radioButton rptF 5 empty >>

text " 10 " ## radioButton rptF 10 empty >>

text " 20 " ## radioButton rptF 20 empty >>

radioError rptF)

...

36

6.3 Constrained Textual Input Fields

For application-specific input formats like

• non-empty string

• email address

• amount of money

we can define customized input fields by

• creating application-specific datatypes

• defining a read syntax

• giving an explanatory text

(requires skill in Haskell programming)

37

Example: EmailAddress

• the application-specific datatype

newtype EmailAddress =

EmailAddress unEmailAddress :: String

unEmailAddress extracts the string value from EmailAddress

• the explanatory text

instance Reason EmailAddress where

reason _ =

"email address \

\{must contain @ and no special characters except . - _}"

38

Example: EmailAddress — continued

• defining a read syntax (not quite RFC2822)

instance Read EmailAddress where

readsPrec i str =

let isAddressChar c = isAlpha c || isDigit c || c ‘elem‘ ".-_"

(name, atDomain) = span isAddressChar (dropWhile isSpace str)

in case atDomain of

’@’ : domainPart ->

let (domain, rest) = span isAddressChar domainPart in

if null name || null domain

then []

else [(EmailAddress (name ++ ’@’ : domain)

,dropWhile isSpace rest)]

_ -> []

39

Example: EmailAddress — in use

main = run $

standardQuery "Enter Your Email Address" $

p (do text "Hi there! What’s your email address?"

activate getEmail inputField empty)

getEmail email =

standardQuery "Process Email" $

do p (text ("Hello " ++ unEmailAddress email ++ "!"))

• created using inputField

• extract and fix type using

unEmailAddress :: EmailAddress -> String

40

7 Server-Side State

For the final report, we would like to have a “hall of fame” that

displays the best results for each student.

• Keep a mapping from names and multipliers to correct results on

the server

• Mapping is generally accessible from all clients

⇒ concurrency control required

(invisible for programmer)

41

Considerations for Server-Side State

• data is stored in textual format

⇒ conversion done using builtin Read and Show classes

• type safety across program boundaries

⇒ class Types

(using problem-specific types requires Haskell expertise)

• provide abstract datatype of persistent values

⇒ only indirectly accessible through handles

• each handle has notion of current value

⇒ accessible throughout lifetime of handle

42

Initializing Server-Side State

• import Persistent2

import API for persistent values

• init externalName initialValue

a CGI action

– allocates/accesses a persistent value named externalName

– initialized with initialValue

only if persistent value is freshly created

– returns Nothing if the value existed but had a different type

– returns Just handle where the persistent value of type a is

accessible through handle of type T a

43

Accessing Server-Side State

Suppose handle :: T a is a handle to a persistent value of type a

• get handle

retrieves the persistent value

• set handle newValue

updates the persistent value

if successful, return a Just newHandle for the current value

returns Nothing if the handle is not current (if it was modified by a

concurrent process)

• add handle additionalValue

handle refers to a value of list type

adds additionalValue to the persistent list of values

• current handle

returns a newHandle that refers to the current persistent value

44

0 -> v0-- h == 0

x <- get h
-- x == v0

mhb <- set hb v2
-- mhb == Just 1

hb <- init p v1
-- hb == 0
-- v1 discarded

0 -> v0
1 -> v2

mha <- set h v2
-- mha == Nothing
-- h not current
curh <- current h
-- curh == 1

x1 <- get h
-- x1 == v0
x2 <- get curh
-- x2 == v2
set curh v3
-- successful

0 -> v0
1 -> v2
2 -> v3

Process A Process B

h <- init p v0

Persistent

PV p

Value

45

Example: Final Report

import qualified Persistent2 as P

-- abbreviate Persistent2 to P

finalReport =

do Just initialHandle <- P.init ("multi-" ++ name) []

currentHandle <- P.add initialHandle (mpy, lenSucc, rpt)

hiScores <- P.get currentHandle

standardQuery "Final Report" $

do p (text "Here are your recent scores.")

ul (mapM_ pItem hiScores)

where lenSucc = length successes

pItem (m, l, r) = li (text ("Multiplier " ++ show m ++

" : " ++ show l ++ " correct out of " ++ show r))

46

API Summary: Persistent2

init :: (Read a, Show a, Types a) =>

String -> a -> CGI (Maybe (T a))

get :: (Read a) =>

T a -> CGI a

set :: (Read a, Show a) =>

T a -> a -> CGI (Maybe (T a))

add :: (Read a, Show a) =>

T [a] -> a -> CGI (T [a])

current :: (Read a) =>

T a -> CGI (T a)

47

8 Client-Side State

A user should only be required to enter his name once

• store user name on client side

⇒ store on client

• implemented using “cookies”

• . . . but type-safe!

(errh, type-indexed)

• interface similar to Persistent2

• but no history maintained

48

Example

import qualified Cookie as C

main = run $

do nameC <- C.init "name" Nothing

mname <- C.get nameC

case mname of

Just name ->

mdrill name

Nothing ->

standardQuery "What’s your name?" $

p (do text "Hi there! What’s your name?"

activate (mdrillCookie nameC) textInputField empty)

mdrillCookie nameC name =

do C.set nameC (Just name)

mdrill name

49

Tour of Cookie API

• (Read a, Show a, Types a) =>

required for all storable types (cf. Persistent2)

• init cookieName initialValue

a CGI action that

– creates a handle to client-side variable cookieName

– initializes to initialValue if the variable must be created

– always successful (names are type-indexed)

– returned handle is current

50

Tour of Cookie API, Part 2

• get handle

a CGI action that

– returns value associated to handle

– fails if handle is not current

usually due to improper behavior of user or programming error

• set handle newValue

– if handle is current, then overwrite with newValue and return

Just the new current handle

– if handle is not current, then return Nothing

51

API Summary: Cookie

init :: (Read a, Show a, Types a) =>

String -> a -> CGI (T a)

get :: (Read a, Show a, Types a) =>

T a -> CGI a

set :: (Read a, Show a, Types a) =>

T a -> a -> CGI (Maybe (T a))

delete :: (Types a) =>

T a -> CGI ()

52

9 Advanced Topics

9.1 Uploading Files

fileInputField :: HTMLField (InputField FileReference INVALID)

• value of type FileReference is a record

– fileReferenceName, a local file path (on server)

– fileReferenceContentType, content type of the file

– fileReferenceExternalName, provided by submitter

• FileReference is only temporary

• script responsible for renaming or copying to safe location

53

Example Uploader

main = run $

standardQuery "Upload File" $

do text "Enter file to upload "

fileH <- fileInputField empty

submit fileH display (fieldVALUE "UPLOAD")

display :: InputField FileReference VALID -> CGI ()

display fileH =

let fileRef = value fileH in

standardQuery "Upload Successful" $

do text "Check file contents "

submit F0 (const (tell fileRef)) (fieldVALUE "GO")

• Warning! Security problems may lurk!

54

9.2 Non-textual Responses

• tell :: CGIOutput data => data -> CGI ()

• transform data to CGI action that returns data to browser

• examples for data

– FileReference

– Element (HTML elements)

– String (generates text/plain document)

– Status messages

– Location (redirection)

– FreeForm contents:

FreeForm fileName contentType rawContents

55

Example: File Downloader

main = run $ standardQuery "SendFile" $ table $ do

pcNameF <- tr (td (text "File name") >>

td (textInputField (fieldSIZE 20)))

passwordF <- tr (td (text "Password") >>

td (passwordInputField (fieldSIZE 20)))

tr (td (submit (F2 pcNameF passwordF) sendFile (fieldVALUE "SEND")) >> td empty)

sendFile (F2 fileNameF passwordF) =

let fileName = value (unNonEmpty fileNameF)

password = value (unNonEmpty passwordF)

in if validPassword fileName password then tell

FileReference { fileReferenceName = storeDirectory ++ fileName

, fileReferenceContentType = guessContentType fileName

}
else htell $ standardPage "Login incorrect" $ backLink

56

9.3 Inlined Downloading

• standard link (no download button)

• still return arbitrary files

– accessible to script

– not necessarily accessible to Web server

⇒ install a translator

• translator :: [String] -> CGI ()

maps path name to CGI action

57

Using a Translator

• replace run with runWithHook translator

• create a reference to a named item with makRef name attrs

• example:
translator (name:_) =

let fileName = storeDirectory ++ name in

do ex <- unsafe_io (doesFileExist fileName)

if ex

then tell FileReference

{ fileReferenceName = fileName

, fileReferenceContentType = guessContentType name

}

else fallbackTranslator [name]

58

9.4 Sending Email

• Deja Vue: message-as-text not appropriate

⇒ create record data types for email contents and messages

• Email contents: data type DOC

mediatype :: String, -- type

subtype :: String, -- subtype

parameters :: [KV], -- parameters

filename :: String, -- suggested filename

-- depending on mediatype only one of the following is relevant:

messageData :: String, -- data

textLines :: [String], -- lines

parts :: [DOC] -- data

59

Actual Interface

• textDOC :: String -> [String] -> DOC

textDOC subty docLines

create a text document with content type text/subty

• binaryDOC :: String -> String -> String -> DOC

binaryDOC mediaty subty bindata

arbitrary document with content type mediaty /subty

• multipartDOC :: [DOC] -> DOC

multipartDOC subdocs

collect a list subdocs of documents into one

• further possibilities (alternative, external, . . .)

60

Datatype for Messages

• Mail is a record

to :: [String],

subject :: String,

cc :: [String],

bcc :: [String],

headers :: [Header],

contents :: DOC

• convenience function

simpleMail recipients subj doc

61

Example of Sending Mail

notifyAccept submission reports = do

instr <- io (readFile instructionsFile)

let opening = textDOC "plain"

["Dear " ++ itemAuthor submission ++ ","

,""

,"I am pleased to inform you that your paper"

," "++ itemTitle submission

,"has been accepted for presentation ..."]

instructions =

(textDOC "plain" (lines instr))

{ filename= "AuthorInstructions" }
notify [opening, instructions] submission reports

62

Example of Sending Mail (cont’d)

notify frontmatter submission reports = do

let doReport report nr =

(textDOC "plain" (lines (reportForAuthor report)))

{ filename= "Review#" ++ show nr }

doc = multipartDOC (frontmatter ++ zipWith doReport reports [1..])

message = (simpleMail [itemEmail submission] "Notification" doc)

{cc= [chairperson]

,headers= [Header ("From", chairperson)]

}

exitcode <- io (sendmail message)

htell (standardPage ("Message sent. Exitcode = " ++ show exitcode) empty)

63

10 Conclusion

• simple, declarative approach to Web-based user interfaces

• types and type safety essential

• GUI-style programming interface

• natural interface to HTML

• ideas not tied to CGI

• applications: submission software, generic time table, . . .

• available from

http://www.informatik.uni-freiburg.de/~thiemann/WASH

64

