
Macros for Context-Free Grammars

Peter Thiemann Matthias Neubauer

Institut für Informatik, Universität Freiburg, Germany
{thiemann,neubauer}@informatik.uni-freiburg.de

ABSTRACT
Current parser generators are based on context-free gram-
mars. Because such grammars lack abstraction facilities, the
resulting speci�cations are often not easy to read. Fischer's
macro grammars provide the equivalent of procedural ab-
straction by extending context-free grammars with macro-
like productions. Unfortunately, macro grammars generate
context-sensitive languages, in general, so they do not have
e�cient parsers.

To enable the speci�cation of a language using a macro
grammar, we de�ne specialization for macro grammars. This
specialization always yields context-free rules, but it does
not always terminate. We present a sound and complete
static analysis that decides whether specialization termi-
nates for a given macro grammar and thus yields a (�nite)
context-free grammar. The analysis is based on an intu-
itive notion of self-embedding nonterminals, which is easy
to check by hand and which gives the expected answer for
all examples that we tried.

1. INTRODUCTION
Current parser generators are based on context-free gram-
mars because their word problem is solvable in cubic time in
the worst case or in linear time for deterministic grammars
like LL- or LR-grammars [1]. While context-free grammars
are a suitable and successful �assembly language� for spec-
ifying context-free languages, they are not really good for
de�ning languages in a high-level way. In particular, they
lack abstraction facilities so that grammars are neither mod-
ular nor easy to reuse.

While parser generators and related tools have evolved with
respect to the modularization of parsing actions and integra-
tion of the speci�cations of parsing and scanning, the actual
raw matter, the grammar, remains in its original form in the
parser speci�cation. As large grammars may well run into
several hundred productions, grammar maintenance can be-
come a tedious task. Hence, it is surprising that none of the

• lists with separator (seven times)

DelimTSchemes : /* empty */
| NEDelimTSchemes ;

NEDelimTSchemes : TScheme
| NEDelimTSchemes ',' TScheme ;

• plain lists (�ve times plus two non-empty lists)

TypeVars : /* empty */
| NETypeVars ;

NETypeVars : TypeVar
| NETypeVars TypeVar ;

• optional items (two times)

OptRenaming : /* empty */
| Renaming ;

Figure 1: Patterns in existing grammars.

parser generators has a facility for introducing abstractions
over grammar rules.

The main attempt to introduce some abbreviation mecha-
nism into grammars is the consideration of regular right-
hand sides for rules [5, 18]. Even though this facility falls
short from providing �exible abstractions, only a few LR
parser generators (e.g., Eli [11]) and several LL parser gen-
erators (e.g., ANTLR [18] and the formalization in Wilhelm
and Maurer's textbook [27]) support regular right hand sides
or extended BNF directly. Consequently, typical grammars
for parser generators are full of rule groups that implement
common grammatical patterns. Figure 1 contains some ex-
amples with the number of uses of the respective pattern
in a randomly picked grammar. Often, even the semantic
actions coincide or can be made to coincide easily.

Our proposal derives directly from these observations. In-
stead of relying on a �xed set of (regular) operators for use
in the right-hand side of a grammar rule, we make available
an arbitrary, user-de�nable set of operators in the form of
parameterizable nonterminal symbols. These nonterminals
behave like macros. They can be invoked on the right-hand
side of a production with any string of terminals, nonter-
minals, and macro applications as actual parameters. This
notion coincides exactly with Fischer's macro grammars [8].
The generative power of macro grammars is properly con-
tained between the context-free languages and the context-
sensitive languages. That is, the word problem is decid-

(SepList sep item) : /* empty */
| (NESepList sep item) ;

(NESepList sep item) : item
| (NESepList sep item) sep item ;

(List item) : /* empty */
| (NEList item) ;

(NEList item) : item
| (NEList item) item ;

(Option item) : /* empty */
| item ;

Figure 2: Examples for parameterized rules.

DelimTypeSchemes : (SepList ',' TypeScheme) ;
TypeVars : (List TypeVar) ;
OptRenaming : (Option Renaming) ;

Figure 3: Uses of the parameterized rules.

able for general macro grammars, but not as e�cient as for
context-free grammars.

Hence, we impose an intuitive (and e�ectively checkable)
restriction on macro grammars to ensure that they are spe-
cializable to context-free grammars. The specialization pro-
cess creates a specialized nonterminal for each invocation of
a macro-nonterminal with a particular arguments. The spe-
cialization is a straightforward adaption of standard tech-
niques for program-point specialization [15, 12], the main
challenge is to guarantee the termination of this special-
ization. If the specialization terminates, then it yields a
context-free grammar equivalent to the original macro gram-
mar.

With our approach, the author of a grammar can write pa-
rameterized productions corresponding to the patterns ex-
hibited above once and for all. Sets of parameterized non-
terminals may be collected in modules and reused between
grammars. At the same time, the specialization process
yields plain context-free grammars that have e�cient parsers
implemented using standard techniques.

The parameterized rules in Figure 2 capture the grammati-
cal patterns identi�ed in Figure 1. By convention, nontermi-
nals have capitalized names whereas their parameters start
with a lowercase letter. Terminal symbols are enclosed in
single quotes. Figure 3 suggests uses of the parameterized
rules that match the uses of the respective patterns in the
original grammar (Figure 1). For the examples in Figure 2
it also makes sense to de�ne generic semantic actions. The
only requirement is that these actions are polymorphic with
respect to the semantic values of the parameters. Hence,
the (SepList sep item) and the (List item) might both
return a value of type List item and the (Option item)
might return a value of type Maybe item.

In earlier work [23], we have investigated the related no-
tion of parameterized LR parsing. That work relies on a re-
stricted formalism, the simple macro grammars, where each
argument of a macro must be a single symbol, either a non-
terminal or a parameter, and achieves specialization through
an extended de�nition of the LR parsing framework. The
single-symbol restriction trivially ensures terminating spe-
cialization by disallowing essentially nested macro invoca-

AdditiveExp : MultiplicativeExp
| AdditiveExp '+' MultiplicativeExp

ShiftExp : AdditiveExp
| ShiftExp '<<' AdditiveExp

RelationalExpNoIn : ShiftExp
| RelationalExpNoIn '<' ShiftExp

Figure 4: Excerpt from JavaScript in�x expressions.

tions. The examples in Figures 2 and 3 only involve simple
macro grammars. Section 2 contains examples which go be-
yong simple macro grammars. In direct comparison, the
present work is neither restricted to LR parsing nor does it
impose an a-priori syntactical restriction on the use of the
macro facility. Thus, it can be combined and integrated with
arbitrary parser generators and it does not impose arti�cial
limits on the expressivity of speci�cations.

Overview
We start with further examples of the advanced use of macro
grammars to specify commonly used grammatical pattern in
Section 2. Then, in Section 3, we de�ne macro grammars
and macro languages formally. Section 4 de�nes the special-
ization process that creates context-free productions from
macro productions. To determine that specialization termi-
nates, Section 5 de�nes a transition graph which collects all
necessary information about macro calls and its �nite ab-
straction. Section 6 presents the main technical result of
the work, a necessary and su�cient criterion for the �nite-
ness of the transition graph. The paper closes with a few
remarks on an implementation (Section 7), a discussion of
related work (Section 8), and a conclusion in Section 10.

2. ADVANCED USES OF MACROS IN
GRAMMAR SPECIFICATIONS

Our prior work [23] is restricted to simple macro gram-
mars, as already mentioned. This notion can already express
many patterns that occur in grammars describing real-world
programming language, as demonstrated in the introduc-
tion. However, the restriction of arguments to single sym-
bols turns out to be too limiting. Many natural abstractions
do not obey this restriction and either require a cumbersome
workaround (the introduction of an additional nonterminal)
or are not expressible at all.

The following examples show how lifting the restriction fur-
ther helps to shorten the syntactical description of real-world
programming languages.

Encoding Operator Precedence. In JavaScript, as in many
other programming languages, binary operators are equipped
with di�erent levels of precedences. A typical way to cap-
ture this fact on the syntactic level is to formulate several
rules for expressions using several intermediate stages. Fig-
ure 4 contains a shortened version of three such stages from
the JavaScript language description (the full grammar con-
tains 14 stages). A parameterized rule BinOp conveniently
factors the pattern of one stage. With this rule, we can
express the RelationalExpNoIn by nested application of
BinOp as shown in Figure 5. The resulting speci�cation
of precedence is much more readable than tracking levels

(BinOp op base) : base
| (BinOp op base) op base

RelationalExpNoIn : (BinOp '<'
(BinOp '<<'
(BinOp '+' MultiplicativeExp)))

Figure 5: Example use of BinOp

RelationalExp : ShiftExp
| RelationalExp '<' ShiftExp
| RelationalExp 'in' ShiftExp

RelationalExpNoIn : ShiftExp
| RelationalExpNoIn '<' ShiftExp

EqualityExp : RelationalExp
| EqualityExp '==' RelationalExp

EqualityExpNoIn : RelationalExpNoIn
| EqualityExpNoIn '==' RelationalExpNoIn

BitANDExp : EqualityExp
| BitANDExp '&' EqualityExp

BitANDExpNoIn : EqualityExpNoIn
| BitANDExpNoIn '&' EqualityExpNoIn

Figure 6: Expressions with in and without in.

of precedence through 14 di�erent nonterminals. Moreover,
it avoids the useless naming of these nonterminals. This
use of BinOp does not �t the restriction of simple macro
grammars because it contains nested macro invocations. Al-
though the de�nition of RelationalExpNoIn is specializable
to a context-free grammar.

Similar Exps in Different Contexts. Again in JavaScript,
relational expressions occur in two slight variations depend-
ing on the context in which they appear. Most of the time,
the in token is also a valid relational operator. However, in
the header of a for statement the in is not allowed because
it has a di�erent use. The o�cial JavaScript grammar lit-
erally duplicates the rules for relational expressions and for
the ten subordinate stages to capture both variations. The
rules in Figure 6 show three stages in both variations.

There are at least two ways to circumvent the duplication
by making use of parameterized grammar rules. The �rst
approach abstracts over the operators allowed in a relational
expression, speci�es two di�erent nonterminals expressing
the operation symbols allowed in either contexts, and use
those to instantiate the parametric expression rule. Figure 7
shows this alternative.

Another alternative is to employ a more �exible rule for
binary operators: a parametric rule for binary operators that
abstracts not only over the operator symbols but also over
an additional way to derive the operator expression.

(BinOpAlt op base alt) : base
| (BinOpAlt op base alt) op base
| alt

We use the new rule to specify the common part of expres-
sions, add two nonterminals that specify the two additional
ways to derive relational expressions in both contexts, and
use those to instantiate the expression pattern.

(BitANDExp ops) : (BinOp '&'
(BinOp '=='
(BinOp ops ShiftExp)))

REOpsIn : '<'
| 'in'

REOpsNoIn : '<'

BitANDExpIn : (BitANDExp REOpsIn)
BitANDExpNoIn : (BitANDExp REOpsNoIn)

Figure 7: Abstracting over a set of operators.

(BitANDExp x) : (BinOp '&'
(BinOp '=='
(BinOpAlt '<' ShiftExp x)))

REArgIn : (BinOpAlt '<' ShiftExp REArgIn)
'in' ShiftExp

REArgNoIn : REArgNoIn

BitANDExpIn : (BitANDExp REArgIn)
BitANDExpNoIn : (BitANDExp REArgNoIn)

Here, the nonterminal REArgNoIn is useless (no strings are
derivable from it) that should be eliminated before generat-
ing a parser from the specialized grammar.

Permutation Phrases. The Java Language Speci�cation
[10] contains permutation phrases, another pattern commonly
found in the syntax of real-world programming languages.
A permutation phrase consists of a �nite set of alternatives,
which may occur in any order, but each of which may occur
at most once. As a typical example, consider a fragment of
the speci�cation of �eld modi�ers for �eld declarations:

FieldModifiers : FieldModifier
| FieldModifiers FieldModifier

FieldModifier : 'static'
| 'final'
| 'public'

The additional condition stating that �A compile-time error
occurs if the same modi�er appears more than once in a �eld
declaration� is only speci�ed by an informal annotation to
the grammar. Checking this side condition of a permutation
phrase is usually left to the compiler's semantic analysis be-
cause it is cumbersome to express in a context-free grammar
(it requires exponentially many productions).

We can encode the additional condition concisely in the
grammar by using macro productions as shown in Figure 8.
The nonterminal Perm3 implements permutation phrases by
taking three parameters that correspond to the three alter-
natives. The �rst production indicates the end of the phrase.
The remaining three productions correspond to taking the
�rst (second, third) alternative and they continue by dis-
abling the taken alternative in the recursive call to Perm3.
Disabling takes place by substituting the nonterminal NUL
(which has no productions) for the chosen alternative.

Specialization generates exponentially many context-free pro-
ductions from these productions. It is also expected that
useless rules and unreachable nonterminals are removed from
the specialized grammar.

(PermP3 m1 m2 m3) : /* empty */
| m1 (PermP3 NUL m2 m3)
| m2 (PermP3 m1 NUL m3)
| m3 (PermP3 m1 m2 NUL)

/* no production for NUL */

FieldModifiers : (PermP3 'static' 'final' 'public')

Figure 8: A �xed-length permutation phrase.

3. MACRO GRAMMARS
To de�ne macro grammars properly, we need some stan-
dard de�nitions inspired by universal algebra. As we will
frequently be speaking about indexed lists of syntactic enti-
ties, we write xn as a shorthand for x0, . . . , xn−1 and omit
the index n if it is not important.

Definition 3.1. A signature is a pair Γ = (N, a) of a
�nite set N and an arity function a : N → A, where the set
A is de�ned inductively by: If n ∈ N and, for all 0 ≤ i < n,
αi ∈ A, then 〈αn〉 ∈ A.

The set A generalizes numeric arities as follows. A constant
has arity 〈〉. An n-argument macro has as arity the n-place
vector 〈αn〉 where αi−1 is the arity of the ith argument.
If we are only interested in the number of arguments, we
consider a as a function from N → N.

Arities serve to categorize di�erent kinds of nonterminals.
They are best compared with function types where the re-
turn type is �xed and left implicit. This choice is suitable
for nonterminals because they will always turn into strings
in the end.

In this work, the signature Γ always contains a binary opera-
tor · (concatenation) and a constant ε (empty string) where
a(·) = 〈〈〉, 〈〉〉 and a(ε) = 〈〉.

Definition 3.2. Let Γ = (N, a) be a signature. The set
T α

Γ (X) of Γ-terms of arity α with variables X = (Xα) (a set
disjoint from N indexed by arities α) is de�ned inductively
by

• Xα ⊆ T α
Γ (X),

• ∀A ∈ N, A ∈ T
a(A)
Γ (X),

• ∀n ∈ N, (∀0 ≤ i < n, ti ∈ T αi
Γ (X)), ∀t ∈ T

〈αn〉
Γ (X)

t(t0, . . . , tn−1) ∈ T
〈〉
Γ (X).

That is, each variable is a term, each nonterminal is a term
with its respective arity, and terms can be built from a �func-
tion/macro term� and an argument list, provided their ari-
ties match the argument arities of the function term. How-
ever, the facilities for actually constructing a function term
are limited to symbols taken from the signature.

Example 3.3. A signature providing for the lists and op-
tional items from the introduction allows only constants as

arguments. It is de�ned by a table of its arity function.

a(SepList) = 〈〈〉, 〈〉〉
a(NESepList) = 〈〈〉, 〈〉〉
a(List) = 〈〈〉〉
a(NEList) = 〈〈〉〉
a(Option) = 〈〈〉〉

Definition 3.4. A macro grammar is a tuple (Γ, Σ, P, S)
where Γ = (N, a) is a signature with N the nonterminal
symbols, Σ is a �nite set of terminal symbols of arity 〈〉,
P ⊆ {(A, w) | A ∈ N, w ∈ T

〈〉
Γ(A)(Σ)} is a �nite set of macro

productions, and S ∈ N with a(S) = 〈〉 is the start symbol.

The productions are subject to the following restriction which
is already indicated in the type above. If A → w ∈ P with

a(A) = 〈αn〉, then w ∈ T
〈〉
Γ(A)(Σ) where Γ(A) = Γ ∪ {a(0) =

α0, . . . , a(n− 1) = αn−1}.

To increase readability of the examples, we take the lib-
erty of naming the parameters of the nonterminals as in the
introduction instead of using the numbering scheme. In ad-
dition, we drop the parentheses after nullary nonterminals
and parameters. In formal statements, we will stick to the
positional notation and the parameters.

A macro grammar generates words over the set of terminal

symbols using the following derivation relation⇒ on T
〈〉
Γ (Σ).

The de�nition uses the notation w[i 7→ t] to denote the term
w with all occurrences of parameter i replaced by term t.

• If A → w ∈ P , a(A) = 〈αn〉, (∀0 ≤ i < n) ti ∈ T αi
Γ (Σ),

then A(t0, . . . , tn−1) ⇒ w[0 7→ t0, . . . , n − 1 7→ tn−1],
and

• if f ∈ Γ, a(f) = 〈αn〉, (∀0 ≤ i < n) ti ∈ T αi
Γ (Σ),

tj ⇒ t′j ,
then f(t0, . . . , tj , . . . , tn−1) ⇒ f(t0, . . . , t

′
j , . . . , tn−1).

That is, the relation comprises all pairs of terms which are
instances of a production and it is closed under compatibility

with operators from Γ. As usual,
∗⇒ denotes the re�exive

transitive closure of the derivation relation.

A term w is in the language generated by the grammar if

S
∗⇒ w and w ∈ T

〈〉
·,ε(Σ), which can be considered as an

element of Σ∗ in the obvious way.

Often the derivation relation is restricted to either substitute
nonterminals inside-out (IO) or outside-in (OI).

IO reduction A(t0, . . . , tn−1) ⇒IO w[0 7→ t0, . . . , n− 1 7→
tn−1] only if t0, . . . , tn−1 ∈ T

〈〉
·,ε(Σ) do not contain non-

terminals and the relation is closed under compatibil-
ity as before.

OI reduction the reduction rule for⇒OI is the same as for
⇒, but compatibility is restricted to f ∈ {·, ε} so that
reduction does not proceed into argument positions.

Gabc : S → F (ε, ε, ε)
F → 012
F → F (a0, b1, c2)

Glist : S → L(a)
S → L(b)
L → ε
L → N(0)
N → 0L(0)

Figure 9: Example macro grammars. Gabc generates

a context-sensitive language. Glist is a variation of

the parameterized list-generating grammar from the

introduction. It generates the language {an | n ∈
N} ∪ {bn | n ∈ N}.

The respective languages are called IO- and OI-macro lan-
guages. They have been investigated in detail [8] and we
recall some of their properties below.1

1. In general, the language generated from a grammar
under IO reduction is di�erent from the language gen-
erated under OI reduction. (IO corresponds roughly
to call-by-value and OI to call-by-name.)

2. The classes of IO- and OI-macro languages are incom-
parable.

3. The IO- and OI-macro languages form a strict hierar-
chy of languages between context-free languages and
context-sensitive languages [6].

As an example for a macro grammar de�ning a language that
is not context-free consider the grammar Gabc in Figure 9.
This grammar generates the language {anbncn | n ∈ N}
which is context-sensitive but not context-free. The extra
generative power comes from the possibility to pass arbi-
trary terms as parameters, in particular nontrivial terms
that contain parameters themselves. The language of this
grammar is indepedent of the reduction order because each
sentential form contains at most one invocation of a macro.

4. CONTEXT-FREE GRAMMARS FROM
MACRO GRAMMARS

The macro grammar for generating the context-sensitive lan-
guage {anbncn | n ∈ N} is not typical for the grammars
that we are interested in in this paper. We are interested in
macro grammars like Glist in Figure 9 that merely abbre-
viate a context-free grammar and where this context-free
grammar can be obtained by specialization. Some notation

1The de�nition we are giving above is not the one that has
been used to obtain the cited results. The original de�-
nition considers strings as trees build from monadic oper-
ators (the characters) so that standard nonterminals in a
context-free grammar are also monadic operators serving as
placeholders for trees. In a macro grammar, nonterminals
receive additional parameters that range over monadic op-
erators. Adding further parameter sets leads to higher levels
in the mentioned hierarchy. Our de�nition achieves higher-
orderness through the arity system.

is needed to de�ne this specialization and to prove that a
specialized grammar is equivalent to its underlying original
macro grammar.

Definition 4.1. A parameter instance for arity 〈αm〉 is
a tuple of terms rm without free parameter variables, that is
rj ∈ T

αj

Γ (Σ). We write rm : 〈αm〉 to indicate this case.

A parameter instantiation from arity 〈αm〉 to arity 〈βl〉 is
an l-tuple of terms sl where sj ∈ T

βj

Γ∪{a(i) 7→αi|0≤i<l}(Σ). Let

PI be the set of all parameter instantiations.

The application of a parameter instantiation s (from arity
〈αm〉 to arity 〈βl〉) to parameter instance r (of arity 〈αm〉)
is de�ned by r′l := rm · sl where

r′j = sj [i 7→ ri | 0 ≤ i < m].

The composition of parameter instantiations sl : 〈αm〉 →
〈βl〉 and s′k : 〈βl〉 → 〈γk〉 is de�ned by s′′k := sl; s

′
k : 〈αm〉 →

〈γk〉 where

s′′j = s′j [i 7→ si | 0 ≤ j < k].

Lemma 4.2. 1. Composition of parameter instantiations
is associative and there is a unit element for each arity,
namely (0, . . . , k − 1) : 〈α〉k → 〈α〉k.

2. Composition of parameter instantiations is compatible
with application in the sense that (r · s) · s′ = r · (s; s′)
(assuming that the arities �t).

In the following we make use of a slightly nonstandard de�-
nition of a (labeled) directed graph. In our de�nition, there
may be more than one directed edge between a given pair
of nodes. This setting is mostly useful for labeled graphs,
where these edges may have di�erent labels.

Definition 4.3. A directed graph is a tuple (V, E, src, trg)
where V is the set of vertices and E is the set of edges. The
two components src and trg are both mappings E → V that
determine the source vertex and the target vertex of an edge.
Often the mappings and E are given implicitly. Stating that
v1 −→ v2 is an edge means that there is an element e ∈ E
such that src(e) = v1 and trg(e) = v2.

A Λ-labeled directed graph has a �fth component lab : E → Λ

that maps each edge to a label. Here the notation v1
l−→

v2 means that there is some e ∈ E such that src(e) = v1,
trg(e) = v2, and lab(e) = l.

Often we just state the sets of vertices and edges as in (V, E)
and add the labeling informally.

The instantiation graph is the registry of all calls (with pa-
rameters) to a nonterminal during the transformation of a
macro grammar to a context-free grammar. It also encom-
passes all calls that may ever occur in a derivation of the
macro grammar. A node of this graph is a pair of a nonter-
minal and a suitable parameter instance. The edges of the

graph indicate the caller-callee relationship and their labels
indicate the parameter instantiation taking place.

Definition 4.4. The instantiation graph IG(M) of a
macro grammar M = ((N, a), Σ, P, S) is the smallest PI-
labeled graph G = (V, E) such that the following holds.

• V ⊆ {(A, rm) | A ∈ N, rm : a(A)}.

• (S, ()) ∈ V is a node of G if S is the start symbol of
M.

• If X = (A, r) ∈ V is a node, A → w a production of
M, and B(s) is a subterm of w, then Y = (B, r·s) ∈ V

is also a node and X
s−→ Y ∈ E is a labeled edge.

Example 4.5. As an example, consider the instantiation
graphs for the grammars from Figure 9.

IG(Gabc):

(S, ()) → (F, (ε, ε, ε)) → (F, (a, b, c)) → (F, (aa, bb, cc)) → . . .

This graph has in�nitely many vertices, so that the special-
ization would not terminate.

IG(Glist):

(S,())

(L,(a)) (N,(a))

(N,(b))(L,(b))

This graph has �nitely many vertices and its grammar's spe-
cialization terminates.

The instantiation graph contains all the information needed
to extract a context-free grammar equivalent to the underly-
ing macro grammar M. To state this equivalence, we need
to make the extraction of the macro invocations (B(s) in
De�nition 4.4) more formal using the following de�nition.

Definition 4.6. The following function is de�ned induc-
tively on terms (for x ∈ Σ, C ∈ N , n ∈ N, 0 ≤ j < n).

|x|r = x
|C|r = C
|j|r = rj

|s(s0, . . . , sl−1)|r = (|s|r, |s0|∗r . . . |sl−1|∗r)

We write |w|∗r for the obvious homomorphic extension to
words and we write |a| if r does not matter.

Lemma 4.7. Let M = (Γ, Σ, P, S) be a macro grammar.

If IG(M) is �nite, then there exists a context-free grammar

G = (N ′, Σ, P ′, S′) such that S()
∗⇒M,OI w i� S′

∗⇒G w.

Proof. Let IG(M) = (V, E) and de�ne G by N ′ = V ,
S′ = (S, ε), and

P ′ = {(A, r) → |w|∗r | (A, r) ∈ V, A → w ∈ P}.

G is a well-de�ned context-free grammar because V is �nite.
It remains to show that the two grammars are equivalent.

To this end, we need to generalize the claim as follows: for

all v and w, v
∗⇒M,OI w i� |v|∗ ∗⇒G |w|∗. In this case, r

does not matter because neither v nor w contain any j.

The proof is by induction on n, the number of derivation
steps. For n = 0 the result is trivial. If n > 0 then the
derivation for M splits as follows:

v = u1A(r)u2⇒M,OIu1t[j 7→ rj]u2
(n−1)⇒ M,OI w

if A → t is a production. Now it holds that

|v|∗ = |u1A(r)u2|∗ = |u1|∗|A(r)||u2|∗ ⇒G |u1|∗|t|∗r |u2|∗

by de�nition of G. Because |t|∗r = |t[j 7→ rj]|∗ and the in-
ductive hypothesis is applicable to the n−1 step derivation,

it follows that |u1t[j 7→ rj]u2|∗
(n−1)⇒ G |w|∗ as desired.

The above development yields a necessary and su�cient cri-
terion when a macro grammar generates a context-free lan-
guage. All we need to do is to test the instantiation graph
for �niteness. To perform this test e�ectively, we de�ne
another graph�the transition graph�and consider a �nite
abstraction of this graph. This abstraction will help us de-
cide �niteness of the instantiation graph.

5. THE TRANSITION GRAPH AND ITS AB-
STRACTION

The transition graph contains the same information as the
instantiation graph, but presents it in a di�erent packaging.
While it is guaranteed to have �nitely many nodes, it may
have in�nitely many edges.

Definition 5.1. Let M = ((N, a), Σ, P, S) be a macro
grammar. The transition graph T G(M) is a labeled directed
graph with N as the set of nodes and edges labeled with pa-
rameter instantiations. The set of edges characterizes the
primitive transitions with correspond directly to macro calls
from one production to another:

E = {A s−→ B | A → w ∈ P, B(s) ∈ w} ⊆ N × PI ×N.

The closed transition graph CT G(M) is the closure of T G(M)
under transitivity. That is, its set of nodes is also N but its
set of edges is the smallest set E∗ such that E ⊆ E∗ and if

A
s−→ B ∈ E∗ and B

s′
−→ C ∈ E∗ then A

s;s′
−→ C ∈ E∗.

By construction, each path in the transition graph corre-
sponds to an edge in the closed transition graph. The tran-
sition graph of a macro grammar is always �nite whereas
the closed transition graph is �nite if and only if the instan-
tiation graph is �nite.

Lemma 5.2. There is a path in IG(M) that visits in-
�nitely many di�erent nodes of IG(M) i� there is an in�nite
number of edges in CT G(M).

Example 5.3. Let's have a look at the (closed) transition
graphs of the two examples from Figure 9. The solid arrows
correspond to T G() whereas the dashed arrows are the addi-
tional edges in CT G().

Gabc: This graph has in�nitely many edges and is cut o� on
the right.

S F
(e,e,e)

(a0,b1,c2) (aa0,bb1,cc2) (aaa0,bbb1,ccc2)

Glist: This graph has �nitely many edges.

S L N

(a)

(b)

(0)

(0)

(b)

(a)

(0) (0)

Coming back to �niteness of IG(M), we wish to check for
the criterion speci�ed in the following de�nition.

Definition 5.4. An edge A
s−→ A in CT G(M) is self-

embedding if there is some j such that sj contains j but
sj 6= j.

While it is straightforward to prove that the existence of a
self-embedding transition is su�cient to construct an in�-
nite IG(M), it is surprisingly hard to prove that the non-
existence of a self-embedding guarantees �niteness of the
instantiation graph. In addition, there is the issue of �nd-
ing a suitable, �nite abstraction of the transitions s without
loosing the ability to detect self-embeddings.

To de�ne this abstraction, we need to recall some basic
de�nitions about multisets. A multiset M is a function
A → N, for some underlying set A, which contains each
element a ∈ A with some multiplicity M(a) ∈ N. The
union M1 ∪ M2 of multisets is de�ned by taking the max-
imum of the elements' multiplicities. In contrast, the join
operation M1]M2 takes the sum of the the multiplicities.
The cardinality |M | of a multiset is the sum of its elements'
multiplicities.

To proceed, we �rst construct a suitable abstraction for tran-
sitions. To create this abstraction in a compositional way
requires to work with an instrumented instantiation graph.
The instrumentation keeps track of the parameter positions
of primitive transitions through which a value has been prop-
agated already and if it has been augmented on that path.
It does so by augmenting each component with a multiset of
pairs (p, i) of a primitive transition and an argument num-
ber.

Hence, the instrumentation of a primitive transition A
p−→ B

is a vector of multisets M where, for 0 ≤ j < a(B),

Mj =

{ } if pj = ε ∨ pj ∈ {0, . . . , a(A)− 1}
{(p, j)} otherwise.

The composition of instrumented parameter instantiations
is de�ned in the obvious way. The composition of sl; s

′
k is

s′′k where the components of the instantiation are de�ned as

before in De�nition 4.1. If M l and M
′
k are the multisets

associated with sl and s′k, then the components of M
′′
k are

de�ned by

M ′′
i = M ′

i]
[

j∈var(s′
i)

Mi

where ∪ is the union of multisets and] is the join operation.
While the union collects contributions to the result from
di�erent sources, the join operation models the sequential
composition.

To build an abstraction of an instrumented parameter in-
stantiation requires to abstract the term part as well as
the multiset. We abstract multisets to 2-bounded multisets.
They limit the multiplicity function by abstracting the mul-
tiplicities 2, . . . to∞. This cuto� yields a �nite abstraction,
provided the underlying set of elements is �nite.

More formally, a 2-bounded multiset with elements from set
A is a mapping M from A to B = {0, 1,∞}. The operations
+ and max on B are the obvious abstractions of addition
and maximum of positive integers. If M(a) = 0 then a
is absent from the multiset, M(a) = 1 denotes a's presence
with multipicity 1, and M(a) = ∞ indicates that a is present
more than once.

For a 2-bounded multiset over a �nite set, the cardinality is
∞ if there is at least one element with multiplicity ∞.

While a concrete transition consists of a vector of terms
(the parameter instantiation) and a vector of multisets, an
abstract transition is a vector of abstract terms and a vector
of 2-bounded multisets. (Where convenient we view either
kind of transition as a vector of pairs, too.)

An abstract term abstracts from a term by capturing the
variables contained in the term and by identifying whether
a transition constructs a nontrivial term. Here, a term is
nontrivial if it is neither ε nor i (just a parameter). Hence,
an abstract term, v, is one of

E, the abstraction of the empty word ε,
J(i), which denotes a value copied from argu-

ment position i ∈ N,
C(K), which denotes a nontrivial term built from

values from the argument positions men-
tioned in K ⊆ N.

Abstract terms support a commutative operation ⊕. This
operation abstracts the concatenation operation · on con-
crete terms. E is the unit of ⊕.

J(i)⊕ J(k) = C({i, k})
J(i)⊕ C(K) = C(K ∪ {i})
C(K)⊕ C(L) = C(K ∪ L)

The intuition behind this operation is as follows. The ab-
straction function is a monoid homomorphism from concrete
terms TΓ∪I with ε and concatenation to abstract terms with
E and ⊕. Hence, ε must be mapped to the unit E. If the

original word refers twice to arguments i and k (not neces-
sarily di�erent), it does not copy the arguments anymore,
but builds a term containing both arguments (or one ar-
gument twice). Joining a term building operation with a
copy operations (or another term building operation) yields
a term building operation containing the union of the argu-
ment positions.

Definition 5.5. The abstraction of a concrete transition,
an abstract parameter instantiation, is de�ned by

α(A
s−→ B) = A

c−→ B

where cj = (α(sj), α(Mj)) and Mj are the multisets asso-
ciated with s. Let API be the set of all abstract parameter
instantiations.

The abstraction of a term is de�ned by

α(ε) = E
α(x) = C(∅) x ∈ Σ
α(i) = J(i)
α(D(w1, . . . , wn)) = C(∅)⊕ α(w1)⊕ · · · ⊕ α(wn)

D ∈ N, a(D) = n
α(v · w) = α(v)⊕ α(w).

The abstraction of a multiset M is de�ned by

α(M)(a) =

8<: 0 M(a) = 0
1 M(a) = 1
∞ M(a) > 1.

Definition 5.6. De�ne abstract composition A
e−→ C =

A
c−→ B; B

d−→ C by

ej =

8>><>>:
dj if dj = (E, M ′)
(v, M]M ′) if dj = (J(i), M ′), ci = (v, M)
(v, M]M ′) if dj = (C({k1, . . . , km}), M ′)

and (v, M) = (C(∅), { })⊕
Lm

i=1 cki

Clearly, abstraction is compatible with composition.

Lemma 5.7. If α(A
s−→ B) = A

c−→ B and α(B
t−→ C) =

B
d−→ C then α(A

s;t−−→ C) = A
c;d−−→ C.

We can also go back from abstract transitions to concrete
ones. However, some care must be taken to only obtain
realizable concretizations, i.e., transitions which are actually
composable from primitive ones.

Definition 5.8. The concretization function γ is

γ(A
c−→ B) = { A0

p(1);...;p(m)

−−−−−−−−→ Am | A0 = A,

Ai−1
p(i)

−−→ Ai ∈ E(T G(M)), Am = B,

A
c−→ B = α(A0

p(1);...;p(m)

−−−−−−−−→ Am)}

where the p(i) are drawn from the primitive transitions.

Definition 5.9. Let M = ((N, a), Σ, P, S) be a macro
grammar. The abstract transition graph AT G(M) is a
labeled directed graph with set of nodes N and edges E ⊆
N×API ×N labeled with abstract parameter instantiations:

E = {A c−→ B | A → w ∈ P, B(s) ∈ w, c = α(s)}.

The closed abstract transition graph CAT G(M) is the clo-
sure of AT G(M) under transitivity. Its set of nodes is N
and its set of edges is the smallest set E∗ such that E ⊆ E∗

and if A
c−→ B ∈ E∗ and B

d−→ C ∈ E∗ then A
c;d−−→ C ∈ E∗.

Both AT G(M) and CAT G(M) are �nite because there are
only �nitely many pairs of nonterminals A and B and, for
each pair A and B, there are �nitely many abstract tran-

sitions A
c−→ B: Each of the �nitely many components of c

contains one of the �nitely many possible term abstractions
and a 2-bounded multiset over a �nite set, of which there
are also �nitely many.

Example 5.10. The term abstraction parts of the transi-
tion graphs for the grammars from Figure 9 look as follows.

Gabc:

S F (C{0},C{1},C{2})

(C{},C{},C{})

(E,E,E)

Glist:

S L N

(J0)

(J0)

(C{})

(J0) (J0)

(C{})

6. FINITENESS OF THE ABSTRACT
TRANSITION GRAPH

Having established a �nite abstraction of the transition graph
in the previous section, this section is devoted to deciding
if an abstract transition has in�nitely many concretizations.
To this end, we �rst de�ne a size function for abstract transi-
tions, which counts the number of elements in all multisets
associated to a term-building position. Then, an abstract
transition is in�nite if its size is in�nite.

Definition 6.1. Let A
c−→ B be an abstract transition.

The size of c is de�ned as

|c| = |
[
j

{Mj | cj = (vj , Mj), ∃K.vj = C(K)}|.

The c is �nite if its size is �nite, that is, if |c| < ∞.

Theorem 6.2. Suppose that A
c−→ B is �nite. Then the

associated set of concrete transitions γ(A
c−→ B) is �nite.

This theorem can be proved by induction on the (�nite) size
of the abstract transition. However, getting the induction
through requires a strengthened assumption as stated in the
following lemma.

Lemma 6.3. Let A
c−→ B be an abstract transition and

N ⊆ {0, . . . , a(B)− 1}, a subset of B's argument positions.
Let further |c|N = |

S
j∈N{Mj | cj = (vj , Mj), ∃K.vj =

C(K)}| be the size of the N-components of c.

If |c|N is �nite then the set γ(A
c−→ B) projected on its N-

components is �nite.

Theorem 6.2 follows from the lemma by choosing

N = {0, . . . , a(B)− 1}.

The use of N is required because the size of an abstract tran-
sition is only subadditive: The size of a composed transition
may be smaller than the size of its constituends because a
subsequent constituend may ignore argument positions and
thus cancel intermediate growth. As an example consider
the composition of two one-component abstract transitions
where the second cancels the e�ort of the former:

(C({0}), {(p, 0)}); (E, { }) = (E, { }).

The set N indicates the argument positions which are not
canceled by subsequent constituends, which makes the N -
indexed size monotonic (subject to the correct choice of N).

Proof. The proof of Lemma 6.3 is by course-of-value induc-
tion on the size |c|N where c has components cj = (vj , Mj).

If |c|N = 0 then, for each j ∈ N , vj ∈ {E} ∪ {J(i) | 0 ≤ i <
a(A)}. Hence, for each s ∈ γ(c) and for each j ∈ N , sj = ε
or sj = i, for some 0 ≤ i < a(A).

If |c|N > 0 then let N =
S

j∈N,∃K.vj=C(K) Mj and split

γ(c) =
S
I⊆N SI into disjoint subsets (some of which may

be empty) indexed by the subsets I of N as follows.

A transition s = p(1); · · · ; p(m) (considered as composition
of primitive transitions) belongs to subset SI where I =

{(p(k), i1), . . . , (p
(k), iq)} ⊆ N if k ∈ {1, . . . , m} is maxi-

mal such that |α(p(k+1)); · · · ; α(p(m))|N = 0, but for c(2) =

α(p(k)); · · · ; α(p(m)) it holds that I =
S
{Mj | j ∈ N, c

(2)
j =

(vj , Mj), ∃K.vj = C(K)} and thus |c(2)|N = q > 0. Such a
k must exist, otherwise there is a contradiction to |c|N > 0.

Essentially, p(k) is the last primitive transition that con-
tributes to the growth in the N -components of s. The sub-
sequent transitions only pass on values, cancel values, or
perform computation outside of N .

The point is that for each sequence in SI there is such a k
and the abstraction of the sequence can be split into

• c(1) = α(p(1)); · · · ; α(p(k−1)),

• c(2) = α(p(k)); · · · ; α(p(m)),

where D′ p(k)

−−−→ D such that

• 0 < |c(2)|N = q ≤ |c|N , that is, while its size is not
necessarily less than the original size, the size q can be

attributed to a single primitive transition p(k), which
we analyse next;

• there exists some N1 ⊆ {0, . . . , a(D′) − 1} such that

|c(1)|N1 = |c|N − q < |c|N . N1 consists of the posi-

tions not ignored by c(2). These positions are exactly
the indices that occur in the abstract terms of the N -
components of c(2).

The inductive hypothesis is applicable to c(1) so that the
N1-components of the composition p(1); · · · ; p(k−1) assume
only �nitely many di�erent values. Next, the primitive tran-
sition p(k) is fully determined by I.2 Clearly, it only pro-
duces �nitely many results in the components that only de-
pend on N1. Now, by construction, the N -components of
p(k+1); · · · ; p(m) must be drawn from ε and {0, . . . , a(D)−1}
so that this transition can only perform one of �nitely many
possible choices from the output components of p(k). Hence,
the N -components only assume �nitely many values.

The desired result follows from the observation that there
are �nitely many subsets I ⊆ N and each of them yields
�nitely many values as just explained. Some of the sub-
sets SI may be empty, for example, the one indexed with
I = { } or any index which mentions di�erent primitive
transitions.

Lemma 6.4. The following statements are equivalent.

1. There exists an in�nite transition A
c−→ B.

2. There exists an in�nite transition D
d−→ D.

3. There exists an in�nite, idempotent transition D
e−→ D.

4. There exists an idempotent, self-embedding transition

D
e−→ D.

Proof. Case (1) ⇒ (2). Suppose that there exists an in-

�nite transition A
c−→ B. Take any concretization s of c.

Because c is in�nite, there is some j such that cj = (vj , Mj)
with vj = C(K) and, for some p and i, the multiplicity of

(p, i) in Mj is greater than one, and D′ p−→ D. But that
means that s splits up into

A −→ D′ p−→ D
t−→ D′ p−→ D −→ B

where α(t; p)i = (C(K′), M ′) with (p, i) ∈ M ′ and i ∈ K′.

Thus, D
t;p;t;p−−−−→ D abstracts to an in�nite transition D

d−→ D
where d = α(t; p; t; p).

Case (1) ⇐ (2). Trivial.

Case (2) ⇒ (3). If D
d−→ D is in�nite, then its concretiza-

tions can be split as in the previous case to �nd some con-

crete D′ tp−→ D′. Wlog, let D′ = D and d = α(tp; tp).
2There may be in�nitely many lengths m of sequences and
in�nitely many positions k; the point is that each such se-
quence may be split into parts c(1) and c(2) with well-de�ned
behavior.

Because the set of abstractions is �nite, the sequence (d),
(d; d), (d; d; d), and so on must become stationary at some

n > 1. Choosing e = d
(n)

yields an in�nite, idempotent
transition.

Case (2) ⇐ (3). Trivial.

Case (1) ⇒ (4). Select t and p as in the proof for (1) ⇒ (2).
Because of the choice of t and p, d = α(t; p) is self-embedding
in position i. By �niteness of the abstraction, there is a
�nite power of d which is idempotent (each power is also
self-embedding).

Case (4) ⇒ (3). Suppose that D
e−→ D is idempotent and

self-embedding, say, ei = (C(K′), M ′) with i ∈ K′. In any

concretization s = p(1); . . . ; p(m) there must be some k and

j so that p
(k)
j is responsible for the C in ei which means

that (p(k), j) ∈ M ′. Thus, for d = e; e it holds that di =

(C(K′), M ′′) with (p(k), j) ∈ M ′′ with multiplicity > 1 so
that d is in�nite and idempotent.

Theorem 6.2 gives rise to a su�cient criterion for ensuring
quasi-termination.

Theorem 6.5. The concrete transition graph CT G(M) is
�nite i� all idempotent transitions in CAT G(M) are �nite.

Proof. If all idempotent c ∈ CAT G(M) are �nite, then
Lemma 6.4 ensures that all transitions in CAT G(M) are �-
nite. Hence, Theorem 6.2 ensures that there are only �nitely
many concretizations for each abstract transition, so that
CT G(M) is �nite.

If any idempotent c is in�nite, then Lemma 6.4 tells us that
there is also some self-embedding transition d. From the
concretizations of d, we can construct in�nitely many con-
�gurations.

An analysis based on Theorem 6.5 is still very expensive. It
amounts to constructing CAT G(M) and then checking all
idempotent transitions for �niteness. However, Lemma 6.4
yields a simpli�cation. By item 4 of the lemma, the exis-
tence of an in�nite abstract transition is equivalent to the
existence of a self-embedding idempotent transition. Hence,
an implementation of the analysis need not keep track of the
2-bounded multisets but that it is su�cient to work with just
the term abstraction and detect self-embedding.

7. IMPLEMENTATION
We have implemented grammar specialization as a stand-
alone tool3 geared at specializing input grammars for bi-
son [7] or yacc [14]. It extends the syntax of rules slightly
by allowing a macro de�nition on the left-hand side of a rule
and macro invocations on the right-hand side. Figure 10
contains an example excerpted from a yacc grammar ex-
tended with parameterized rules and Figure 11 contains the

3The code is available at http://www.informatik.
uni-freiburg.de/~thiemann/haskell/YSPEC.

%{
/* API for generic list construction */
List makeSingleton (void * elem);
List addLast (List, void * elem);
%}

/* parameterized rule */
commalist.1 (item)
: item

{ $$ = makeSingleton ((void *)$1); }
| commalist.1 (item) ',' item

{ $$ = addLast ($1, (void *)$3); }
;

/* two uses, both returning results of type List */
patternlist: commalist.1(pattern) ;
explist1: commalist.1(expr) ;

Figure 10: Excerpt of a parameterized Yacc gram-

mar.

/* parameterized rule */
commalist.1__nexpr__1_0
: expr_

{ $$ = makeSingleton ((void *)$1); }
| commalist.1__nexpr__1_0 ',' expr_

{ $$ = addLast ($1, (void *)$3); }
;

/* parameterized rule */
commalist.1__npattern__1_0
: pattern_

{ $$ = makeSingleton ((void *)$1); }
| commalist.1__npattern__1_0 ',' pattern_

{ $$ = addLast ($1, (void *)$3); }
;

Figure 11: Specialized fragment.

corresponding fragment of the specialized grammar (which
is suitable for processing with yacc).

The implementation consists of roughly 1000 lines of Haskell
code [19]. About half of the code deals with parsing and
printing bison grammars. The code is written in a frame-
work style which abstracts over the representation of gram-
mars, so that specialization backends for other kinds of parser
generators can be written easily. The main e�ort is in writ-
ing the parser for grammar �les.

One extension that we have contemplated, but not imple-
mented is code parameters. Right now, a grammar author
must resort to design generic datastructures like the List
type in Figure 10 with parameterized rules. While this
choice is pragmatic, it does have a number of drawbacks.
First, type safety is not guaranteed in a language like C
which does not have generics. The users of the rules have to
insert the correct casts to extract values out of the generic
datastructures. Second, inside of one program, the use of
the rules is restricted to one particular implementation of
the generic datastructure (List in the example).

These drawbacks could be addressed with code parameters.
A code parameter is an additional parameter to a nontermi-
nal that takes an action, i.e., a code fragment surrounded
by curly braces, as an argument. The specialization process
then not only expands grammatical parameters (as demon-
strated in this paper), but also actions. For instance, a pa-
rameterized nonterminal like commalist.1 might take two
action parameters to be used in place of the generic actions.
This way, each call to commalist.1 could provide its own
implementation for makeSingleton and addLast, thus solv-
ing the two problems outlined in the previous paragraph.
This extension would �t in nicely with the theory developed
for detecting termination.

However, we have refrained from implementing this exten-
sion because a realistic implemention would have to sup-
port code splices, where a code parameter is inserted into
an action skeleton speci�ed with the parameterized rule. A
good implementation of code splices, in turn, requires deal-
ing with the delicate issues of hygiene and name capture and
thus parsing of C code. Such a project would go well beyond
the proof-of-purpose implementation that we provide.

8. RELATED WORK
Parser combinators [22, 13] are a highly �exible way of spec-
ifying parsers in functional programming languages. In par-
ticular, the use of polymorphic functions and parameterized
parsers is a natural way of structuring code. In contrast
to the present work, parser combinators are restricted to
perform predictive or top-down parsing. Recent advances
[21] have widened their scope considerably with respect to
earlier, ine�cient proof-of-concept implementations. The
present work makes some of the polymorphism and �exibil-
ity that make parser combinators attractive available to all
parser generators.

Cameron introduced a syntactic extension for context-free
grammars to speci�y permutation phrases [3] and presents
imperative pseudo-code demonstrating how to extend a pre-
dictive parser with the new construct without just simply

expanding the grammar. Baars et al. [2] show how to add
permutation phrases to a functional parser combinator li-
brary. Such extensions come for free with our grammar spe-
cialization technology.

The syntax de�nition formalism SDF [25] supports arbitrary
context-free grammars and creates GLR parsers [16, 24, 20]
for them. For convenience, right-hand sides may contain
an extended set of regular operators. An SDF speci�cation
also de�nes a lexical syntax. SDF includes an abbreviation
mechanism which works by expansion. However, the mech-
anism is much weaker because SDF neither specializes the
grammars nor does it analyse the termination of the special-
ization.

Extensions of LR parsing with regular operators on the
right-hand sides of productions have been explored by Chap-
man [4]. He extends the standard item set construction with
new cases for these operators. However, the attached seman-
tic actions are �xed to e.g. list construction.

The compiler construction toolkit Eli [11] also constructs
bottom-up parsers from grammars with regular right-hand
sides. The regular operators are expanded in a preceding
grammar transformation. Extended BNF productions are
more often supported by LL parser generators [18]. Our
work makes such an expansion mechanism accessible to the
programmer.

VanWijngaarden (or W-) grammars [26] are a Turing-complete
parameterized grammar formalism used in the de�nition of
ALGOL 68. Conceptually, W-grammars consist of two-
levels. The �rst level de�nes context-free languages of in-
terpretations of grammar symbols. These interpretations
are used to generate the actual grammar productions by
substitution into rule templates. However, W-grammars are
a conceptual modeling tool and are not geared at gener-
ating e�cient recognizers. Rather, they have been designed
for describing context-sensitive aspects of programming lan-
guages. They lack the conciseness and ease of use of direct
parameterization, which is a familiar concept from program-
ming practice. This two-level mechanism could be encoded
with macro grammars (indeed, the expression of semantic
conditions was one of Fischer's motivations for inventing
them). However, the thus constructed macro grammars gen-
erate context-sensitive languages and are thus not amenable
to our specialization framework.

The method for analyzing termination of the specialization
are inspired by work on the termination of program spe-
cialization [9] and size-change termination [17]. The termi-
nation of program specialization is a much broader topic
than the termination of grammar specialization. The latter
is a special case of specialization for a �rst-order functional
programming language which has some peculiar restrictions.
First, the language does not have a conditional, that is, the
invocation of a macro rule always invokes all macros in all
right-hand sides of the rule. Second, the language has only
increasing operators. A rule can either ignore a parameter,
pass it along unchanged, or pass it on as part of a larger
term. However, it cannot decompose or otherwise decrease
a parameter. Thus, while the termination of grammar spe-
cialization is simpler than that of program specialization, it

(Perm x rest acc) : x (acc rest)
| (rest (Pcons x acc))

(Pend acc) : /* empty */

(Pcons x rest tail) : rest (Perm x tail)
(Pnil tail) : (tail Pnil)

FieldModifiers : (Perm 'static'
(Perm 'final'
(Perm 'public' Pend))
Pnil)

Figure 12: A variable-length permutation phrase.

is su�ciently di�erent to require its only analysis, as pre-
sented in the present paper.

9. FUTURE WORK
The main drawback of the present work is its restriction
to �rst-order macros. For some problems, a higher-order
formulation is the most appropriate. As an example, let's
reconsider the encoding of permutation phrases from Sec-
tion 2. It can be adjusted to permutation phrases of any
number of items. However, each number n of items requires
the de�nition of a separate nonterminal PermPn with the
associated productions.

If we admit arbitrary arities (other than 〈〉) as parameters
and also allow partial macro applications, as customary in
functional programming, then we can state rules for en-
coding permutation phrases with a variable numbers of to-
kens to permute. Figure 12 shows support macros for such
phrases.

The main workhorse is the Perm nonterminal, which takes
three parameters. The m parameter contains the current
parsing alternative. The rest parameter contains the re-
maining alternatives. The acc parameter accumulates un-
used parsing alternatives in the form of a list composed of
Pcons and Pnil.

The idea is that (Perm x rest acc) tries to parse a phrase
that either starts with x (�rst production) or with one of
the remaining alternatives (second production). If parsing
x succeeds, then (acc rest) resurrects the unused parsing
alternatives by prepending them to the unused alternatives.
This prepending is performed by the productions for Pcons
and Pnil, they reactivate their elements at the same time
by changing Pcons back to Perm. If parsing x does not suc-
ceed, then the unused alternative is Pconsed on top of the
accumulator acc.

If Pend is reached, then all alternatives have been tried and
they are dismissed because there is no way to parse the
phrase, anymore.

The specialization procedure would also work for this kind
of grammar, but our analysis would require a signi�cant
extension.

10. CONCLUSION
Macro grammars extend context-free grammars with macro-
like productions. Each nonterminal symbol may have pa-

rameters which can be arbitrarily instantiated at every invo-
cation of the nonterminal. This extension enhances context-
free grammars with procedural abstraction.

In general, macro grammars recognize context-sensitive gram-
mars, which are ine�cient to parse. We have de�ned gram-
mar specialization to transform the productions of a macro
grammar into a set of context-free productions. In general,
this set is in�nite, but we have developed a static analysis
which gives su�cient and necessary conditions as to when
the resulting set of context-free productions is �nite (thus
giving rise to a context-free grammar).

We have implemented grammar specialization in the YSpec
tool, which is available from http://www.informatik.uni-freiburg.
de/~thiemann/haskell/YSPEC.

11. REFERENCES
[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers

Principles, Techniques, and Tools. Addison-Wesley,
1986.

[2] A. I. Baars, A. Löh, and S. D. Swierstra. Functional
pearl: Parsing permutation phrases. J. Functional
Programming, 14(6):635�646, Nov. 2004.

[3] R. D. Cameron. Extending context-free grammars
with permutation phrases. Letters on Programming
Languages and Systems, 2(1-4):85�94, 1993.

[4] N. P. Chapman. LR parsing: theory and practice.
Cambridge University Press, Cambridge, UK, 1987.

[5] K. Culik and R. Cohen. LR-regular grammars�an
extension of LR(k) grammars. J. Comput. Syst. Sci.,
7:66�96, 1973.

[6] W. Damm. The IO- and OI-hierarchies. Theoretical
Computer Science, 20(2):95�207, May 1982.

[7] C. Donnelly and R. Stallman. Bison�The
YACC-compatible Parser Generator. Free Software
Foundation, Boston, MA, Nov. 1995. Part of the Bison
distribution.

[8] M. J. Fischer. Grammars with macro-like productions.
In IEEE Conference Record of 9th Annual Symposium
on Switching and Automata Theory, pages 131�142,
1968.

[9] A. J. Glenstrup and N. D. Jones. Termination analysis
and specialization-point insertion in o�ine partial
evaluation. ACM Trans. Prog. Lang. and Systems,
27(6):1147�1215, 2005.

[10] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java
Language Speci�cation. Addison-Wesley, third edition,
June 2005.

[11] R. W. Gray, V. P. Heuring, S. P. Levi, A. M. Sloane,
and W. M. Waite. Eli: A complete, �exible compiler
construction system. Communications of the ACM,
35(2):121�130, Feb. 1992.

[12] J. Hatcli�. An introduction to online and o�ine
partial evaluation using a simple �owchart language.
In J. Hatcli�, T. Æ. Mogensen, and P. Thiemann,
editors, Partial Evaluation�Practice and Theory.
Proceedings of the 1998 DIKU International
Summerschool, number 1706 in LNCS, pages 20�82.
Springer, Copenhagen, Denmark, 1999.

[13] G. Hutton and E. Meijer. Monadic parsing in Haskell.
Journal of Functional Programming, 8(4), 1998.

[14] S. C. Johnson. Yacc�yet another compiler compiler.
Technical Report 32, AT&T Bell Laboratories,
Murray Hill, NJ, 1975.

[15] N. Jones, C. Gomard, and P. Sestoft. Partial
Evaluation and Automatic Program Generation.
Prentice-Hall, 1993.

[16] B. Lang. Deterministic techniques for e�cient
non-deterministic parsers. In ICALP1974, pages
255�269, 1974.

[17] C. S. Lee, N. D. Jones, and A. M. Ben-Amram. The
size-change principle for program termination. In
H. R. Nielson, editor, Proc. 2001 ACM Symp. POPL,
pages 81�92, London, England, Jan. 2001. ACM Press.

[18] T. J. Parr and R. W. Quong. ANTLR: A
predicated-LL(k) parser generator. Software�Practice
& Experience, 25(7):789�810, July 1995.

[19] S. Peyton Jones, editor. Haskell 98 Language and
Libraries, The Revised Report. Cambridge University
Press, 2003.

[20] J. Rekers. Parser Generation for Interactive
Environments. PhD thesis, University of Amsterdam,
1992.

[21] S. D. Swierstra. Fast, error repairing parsing
combinators. http:
//www.cs.uu.nl/groups/ST/Software/UU_Parsing/,
Aug. 2003.

[22] S. D. Swierstra and L. Duponcheel. Deterministic,
error-correcting combinator parsers. In J. Launchbury,
E. Meijer, and T. Sheard, editors, Advanced
Functional Programming, volume 1129 of LNCS, pages
184�207. Springer-Verlag, 1996.

[23] P. Thiemann and M. Neubauer. Parameterized LR
parsing. In G. Hedin and E. van Wyk, editors, Fourth
Workshop on Language Descriptions, Tools and
Applications, LDTA 2004, volume 110 of ENTCS,
pages 115�132, Barcelona, Spain, Apr. 2004. Elsevier
Science.

[24] M. Tomita. E�cient Parsing for Natural Languages.
Kluwer Academic Publishers, 1985.

[25] M. van den Brand and P. Klint. ASF+SDF
meta-environment user manual.
http://www.cwi.nl/projects/MetaEnv/meta/doc/
manual/user-manual.html, July 2002.

[26] A. e. van Wijngaarden. Report on the algorithmic
language ALGOL 68. Numerische Mathematik,
14(2):79�218, 1969.

[27] R. Wilhelm and D. Maurer. Compiler Design.
Addison-Wesley, 1995.

