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Abstract

We define a family of embedded domain specific languages for generating HTML and XML
documents. Each language is implemented as a combinator library in Haskell. The gener-
ated HTML/XML documents are guaranteed to be well-formed. In addition, each library
can guarantee that the generated documents are valid XML documents to a certain extent
(for HTML only a weaker guarantee is possible). On top of the libraries, Haskell serves
as a meta language to define parameterized documents, to map structured documents to
HTML/XML, to define conditional content, or to define entire web sites.

The combinator libraries support element-transforming style, a programming style that
allows programs to have a visual appearance similar to HTML/XML documents, without
modifying the syntax of Haskell.
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1 Introduction

HTML and XML (HTML 4.01, 1999; XML1.0, 2000; XHTML 1.0, 2000) have
emerged as standard formats for the dissemination of information. HTML is pri-
marily targeted at delivering information via the Web. Besides some fixed means
for structuring documents, it includes facilities to control their layout on the screen.
In contrast, XML has been developed as an extensible format for tree structured
documents and it does not include a layout semantics per se. In both cases, trees
are represented using strings with markup notation to delimit the individual nodes
(elements in XML terminology) of the tree. Each element may have a finite number
of child elements and a finite number of attributes. For example,

<DL compact="compact">

<DT> DTD </DT>

<DD> Document Type Definition </DD>

</DL>

represents a tree with five elements. The root element has name DL, an attribute
with name compact and (string) value compact, and two child elements. The first
child has name DT and, as only child, the text DTD. The second child has name DD

and also a textual child. Each non-textual element starts with an opening tag, e.g.,
<DL>, and ends with a closing tag, e.g., </DL>, where both tags carry the name of
the element.
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Early information sources in the Web were static, in the sense that a request for
a document resulted in delivering the contents of a file via the network. This simple
picture changed quickly and radically. Today’s information sources are dynamic and
highly configurable. As requests are often parameterized (by language preference,
image quality, and so on), servers must compose their responses from templates,
results of computations, and data base accesses.

Hence, there is an increasing demand for convenient ways of creating HTML
and XML documents dynamically. Unfortunately, many applications do so in an
inappropriate way by treating documents as strings. However, HTML and XML
have structural restrictions that are easily violated using a string-based approach.
First, documents must be well-formed, which means that opening and closing tags
match. Moreover, documents must be valid, which means that they conform to a
DTD (document type definition). A DTD governs the nesting of tree elements. For
example, the following part of HTML’s DTD governs the contents of DL elements:

<!ELEMENT DL - - (DT | DD)+>

It specifies that the children of a DL element must be a non-empty sequence of either
DT or DD elements. The content description (DT | DD)+ is essentially a regular
expressions.

The DTD also governs the set of attributes that each element may assume. For
example, here is the declaration of the compact attribute for the DL element (ex-
cerpted from the HTML DTD):

<!ATTLIST DL compact (compact) #IMPLIED>

It tells us that a DL element can take an attribute named compact. The value of
this attribute must be the string compact, but the attribute needs not be present
(expressed by #IMPLIED).

In a valid document, each element carries at most one occurrence of each declared
attribute. An attribute declaration may require that certain attributes be present
and it can impose type restrictions on the value of the attribute.

Early browsers and HTML processors where fairly lax about these restrictions
and corrected many of the blunders automatically. Such an approach was feasible
because HTML is defined by one fixed DTD. In addition, HTML’s DTD is rather
permissive because it was created after the fact. With XML, each organization can
define its own DTDs for its applications and validating XML processors (for exam-
ple, browsers) must report violations of the DTD and may reject invalid documents.
Hence, it is important that generated documents conform to their stated DTD.

It is easy to construct libraries that support the generation of well-formed HTML
and XML. It is more demanding to support the generation of valid HTML and
XML. The latter is the design goal of the libraries that we present in this work:

Whenever the generating program is type correct,
the generated document should be valid.

The main contribution of this work is the demonstration that it is possible to create
practically useable Haskell libraries that achieve this goal by exploiting a few recent
extensions to its type system. For pragmatic reasons, we are offering a number of
alternatives with the following weaker guarantees.
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Well-formedness. In a well-formed document, opening and closing tags match
and attributes have the form name ="value ", where value is an arbitrary string.

Weak validity. A document is weakly valid if it is well-formed and valid with
respect to a flattened version of its DTD. To obtain the flattened version of a
DTD, each content description c is replaced by (L1 | ...| Ln)* where L1, . . . ,
Ln are the distinct element names that occur in c.
Attributes are only admissible if they are specified in the DTD. The types of the
attribute values are also checked, but it is not checked whether required attributes
are present, nor whether attributes are given multiple times.

Elementary validity. A document is elementary valid if it is weakly valid and if
the contents of each element satisfies the content description given for it.

Validity. A document is valid if it is elementary valid and all attribute occurrences
conform to the DTD (XML1.0, 2000).

We will sometimes say full validity instead of just validity to distinguish it from the
weaker notions.

Our approach builds on a generic representation for XML elements. The repre-
sentation ensures well-formedness and it comes with a pretty-printer that renders
documents in XML syntax. We wrap this representation in three differently typed
combinator libraries that guarantee weak, elementary, and full validity, respectively.
Each library models the information from the DTD in Haskell’s type class system,
relying on multi-parameter type classes (Peyton Jones et al., 1997) and functional
dependencies (Jones, 2000), in particular.

All typed libraries wrap the underlying generic representation of an XML element
into a value of type ELT t, where t is a tag type which determines the name of the
represented element. The only operation on values of type ELT t is the function

add :: AddTo s t => ELT s -> ELT t -> ELT s

add elem child = ...

which adds a child of type ELT t to an element of type ELT s. The predicate AddTo
s t in the type of add refers to a two-parameter type class. It ensures that the new
child is admissible according to the DTD. The type class AddTo and the tag types
both depend on the DTD and they are generated from it:

• for each element name t, generate a tag type t (by a slight abuse of language,
we sometimes use the element name for the tag type and vice versa);

• for each pair of tag types s and t, where the name t occurs in the content
description for s elements, generate an instance declaration instance AddTo

s t (this achieves weak validity).

For instance, according to the HTML DTD, the tag type for the DL element is DL,
the type for DL elements is ELT DL, and the instance declarations concerning DL
elements and its children are

instance AddTo DL DD

instance AddTo DL DT

They express that add may be used at types

add :: ELT DL -> ELT DD -> ELT DL

add :: ELT DL -> ELT DT -> ELT DL
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(among others defined by further instance declarations). Hence, both DD and DT

elements are allowed as child elements of a DL element.
Building on this framework, the library defines, for each element name t, an

element constructor, i.e., a function that creates an empty t element. There is also
a higher-order version of the element constructor for t that takes as a parameter an
element transformer function of type ELT t -> ELT t, which adds children to the
t element, and that returns another element transformer of type ELT s -> ELT s,
which adds the constructed t element to an s element. The resulting higher-order
element constructor has a type of the form

AddTo s t => (ELT t -> ELT t) -> (ELT s -> ELT s)

For instance, the higher-order constructors for DL, DD, and DT elements are

dl :: AddTo s DL => (ELT DL -> ELT DL) -> ELT s -> ELT s

dd :: AddTo s DD => (ELT DD -> ELT DD) -> ELT s -> ELT s

dt :: AddTo s DT => (ELT DT -> ELT DT) -> ELT s -> ELT s

The higher-order constructors enable element-transforming style, a programming
style which treats single elements, attributes, and groups of elements and attributes
in a uniform way. Element-transforming style is the preferred way of using the
library because it avoids some typing problems (see Sec. 2.2.1) and also leads to a
natural appearance of document generators. For example, the expression

dl (attr COMPACT "compact" ##

dt (text "DTD") ## dd (text "Document Type Definition"))

generates the example document at the beginning of this section (the infix func-
tion ## composes element transformers). The function attr inserts the attribute
COMPACT. It will be discussed in Sec. 2.2.4.

We develop the typed encodings with example HTML documents and concentrate
on weak validity, since our experience indicates that weak validity gives sufficient
guarantees in practice. Later on, we generalize to XML by specifying a translation
from an XML DTD to a specialized Haskell module. We also consider strengthening
the guarantees of the library for elementary and full validity. By choosing other
translations, the generated library enforces weak, elementary, or full validity. It is
not possible to achieve full validity for HTML 4.01 because it is defined by an
SGML DTD which relies on features not present in XML. Still, we obtain a very
good approximation. However, full validity can be achieved for XHTML. See Sec. 6.3
for a detailed discussion.

While the encodings for weak validity and elementary validity are practically
useful for generating parameterized documents, the encodings for full validity are
too restrictive for that purpose. Still, they demonstrate that a Haskell compiler may
be used as a validation tool for XML documents.

Our libraries are being used to generate Web pages offline and to construct
CGI programs (WASH, 2001). The current version of the library, generated for
HTML 4.01 from the official DTD (HTML 4.01, 1999), is available from the au-
thor’s Web page1.

1 http://www.informatik.uni-freiburg.de/~thiemann/haskell/WASH/
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1.1 Related Work

In previous work (Thiemann, 2000) we made a first attempt at the library presented
here. The previous implementation is less flexible and unnecessary complicated.

MAWL (Atkinson et al., 1997) is one of the first languages for generating HTML
documents. It relies on first-order templates, where holes can be filled with data
items, but not with other document templates. There is a repetition construct,
which can fill a hole repeatedly with the elements of a list.

MAWL has been refined in a number of ways by Sandholm and Schwartzbach
(2000), who define a language and a type system for dynamically composable doc-
uments with higher-order templates from scratch. They define an inference engine
based on standard flow analysis techniques and prove its soundness. Their type
system provides form-specific type information and it ensures that composition
does not destroy the document structure. Our libraries also provide for dynami-
cally composable documents. While we do not provide form-specific information,
we guarantee validity of the generated documents in various degrees. Furthermore,
our library is integrated into Haskell.

Subsequent work by Brabrand and others (2001) addresses the issue of validity
using a type system.

Wallace and Runciman (1999) describe Haskell libraries for parsing, unparsing,
and processing XML. They have two different approaches for processing XML. The
generic approach uses one fixed data type to represent documents and it comes
with a powerful set of combinators for processing documents. While this library is
suitable for document generation, it only guarantees well-formedness of the output.
In contrast, our library provides different degrees of validity with respect to a given
DTD.

In their second approach, Wallace and Runciman transform an XML DTD into
a number of specialized Haskell data types and provide functions for parsing from
and unparsing to XML syntax. The actual functions to process elements of these
data types must be written from scratch; the document-processing combinators
are not applicable. This approach guarantees that the resulting XML document
is valid by giving up a lot of flexibility in processing. In contrast, our approach
uses an underlying generic representation and employs the type system for further
guarantees.

Some libraries for CGI programming (Hanus, 2000; Hughes, 2000; Meijer, 2000)
rely on generic representations, similar to the one chosen by Wallace and Runci-
man, to generate their output. These libraries make no guarantees beyond well-
formedness.

XDuce (Hosoya & Pierce, 2000; Hosoya et al., 2000) is a typed first-order language
for processing XML documents. Its type system is based on regular expressions,
which describe the nesting of elements, and subtyping. The element part of a DTD
can be translated to XDuce types without changing its semantics.

A companion paper (Hosoya & Pierce, 2001) defines a pattern-matching facility
which allows for regular expressions in patterns. The typing discipline (regular ex-
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pression types) provides precise typings for pattern variables and guides the checks
for redundant patterns and exhaustiveness of pattern matching.

Type-indexed rows (Shields & Meijer, 2001) form the basis of the language XMλ,
a higher-order functional language for typed processing of XML documents. Type-
indexed rows (TIR) generalize record typing by indexing a type not with a set of
field names, but rather with a set of types. TIRs are well suited for XML doc-
ument processing because they can express untagged unions (by using a TIR to
generate a sum type) as well as unordered sequences (by using a TIR to generate
a “record” type). Like XML, TIRs require one-unambiguous content descriptions
(Brüggemann-Klein & Wood, 1998).

Both approaches, XDuce and XMλ, are applicable to document generation as
a special case of document transformation. In comparison to either approach, our
libraries are specialized to a particular DTD, they do not consider the typed in-
spection of documents, and their types fit into Haskell’s type system, so that it is
not necessary to learn a new type system.

There are quite a few approaches to XML query languages that are loosely related
to our work. We just pick two illustrative examples. YAT (Cluet et al., 1998) is a
system for building mediators. A mediator performs transparent data conversion
between different formats. YAT consists of a number of converters from external
formats into an internal, tree-based format. A particular feature of YAT is its
transformation language YATL that works on this internal format. It is a pattern-
based language with the distinctive feature that programs may be instantiated
according to a particular subject pattern. Programs may also be composed. YATL
has a type system whose primary purpose is to check that composition is safe.
Generated trees conform to the patterns that generate them, and these output
patterns can encode similar information than a DTD.

XML Query Algebra (Fernandez et al., 2001) is a typed XML transformation lan-
guage. It works on a generic representation of XML and enforces further guarantees
through the type system. The type system is closely related to XDuce and is largely
compatible with XML Schema (World-Wide Web Consortium, 2000a; World-Wide
Web Consortium, 2000b).

In the logic programming world, there are several toolkits for generating HTML
pages. The PiLLoW toolkit (Cabeza & Hermenegildo, 1997) allows for easy cre-
ation of documents including CGI functionality. It is widely used to connect logic
programs to the WWW. LogicWeb (Loke & Davison, 1996) offers an even tighter
integration which includes client-side scripting. None of these offers advanced typing
features.

1.2 Overview

In Section 2, we first introduce the main concepts and then work through three
simple examples to explain the programmer’s view of the library. Section 3 gives a
brief introduction to document type definitions (DTDs). Then, Section 4 deals with
the implementation of the library for the special case of weak validity. Starting from
the underlying, untyped representation, we move on to define the typed wrapper
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on top of the untyped layer. Finally, we discuss the type classes that determine how
elements and attributes may be put together. Section 5 defines the translation from
a DTD to an instance of the library for weak validity. In Section 6, we discuss the
progression from weak validity to full validity (for XML) and explain the problem
with modeling full validity for HTML in Haskell’s type system. Section 7 concludes.

In the paper, we assume some familiarity with Haskell, HTML, and XML. Strictly
speaking, the libraries are not valid Haskell98 programs due to the use of multi-
parameter type classes (Peyton Jones et al., 1997) and functional dependencies
(Jones, 2000) (only for elementary and full validity). However, a number of Haskell
implementations support this extension.2

2 Examples

After a brief overview of the functionality of the HTML library, we work through
some examples. The first example is a Hello World document. For pedagogical rea-
sons, the example does not use the higher-order element constructors mentioned in
the introduction. In the next section, when we move on to parameterized documents,
we point out the deficiencies of using plain element constructors and introduce
element-transforming style. The second example describes a prototype implemen-
tation of a simple hypertext system.

2.1 Hello World

In this section, we construct a generator for a static document:

<html><head><title>Hello World!</title>

</head>

<body><h1>Hello World!</h1>

</body>

</html>

The basic pattern for constructing a document is to create an empty element and
then add child elements to it. The function

make :: TAG t => t -> ELT t

maps a tag type t to an empty element with the corresponding name. The type
of an element ELT t indicates its name t. The predicate “TAG t =>” restricts the
possible instances of t to elements of the type class TAG. A type class is a set of
types that permit a particular set of operations, the member functions. In this case,
the type class TAG characterizes the set of admissible tag types and make is its
member function.

For each element name Tag of HTML, there is a data type Tag with a single
element Tag and each of these types is an instance of TAG. Hence, the expression
HTML has type HTML and the predicate TAG HTML is satisfied so that the expression

2 In particular, the code in this paper has been tested with ghc version 5.00 and the February 2001
release of the Haskell interpreter Hugs in -98 mode. The storage space for instances in Hugs
has been increased to 10000 (define NUM INSTS in src/prelude.h).
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make HTML

has type

ELT HTML

and stands for the document

<html></html>

The function text’ :: String -> ELT CDATA is the constructor for textual el-
ements. The type CDATA is the tag type for these elements. Hence,

hwtext :: ELT CDATA

hwtext = text’ "Hello World!"

constructs the textual element used in the example.
The next task is the addition of a child element to an element. The function

add :: AddTo s t => ELT s -> ELT t -> ELT s

serves this purpose. The parent element has type ELT s whereas the child element
has type ELT t. The two-parameter type class AddTo implements a binary relation
between the name t of a child element and the name s of its parent. An instance
declaration states that a particular pair of types belongs to AddTo. For example,
the declarations

instance AddTo TITLE CDATA

instance AddTo H1 CDATA

indicate that

make TITLE ‘add‘ text’ "Hello World!"

make H1 ‘add‘ text’ "Hello World!"

are both acceptable expressions of type ELT TITLE and ELT H1, respectively3.
Consulting the DTD assures us that that following combinations must also be

acceptable.

instance AddTo HEAD TITLE

instance AddTo HTML HEAD

instance AddTo BODY H1

instance AddTo HTML BODY

Hence, the complete code for our example is

make HTML

‘add‘ (make HEAD ‘add‘ (make TITLE ‘add‘ hwtext))

‘add‘ (make BODY ‘add‘ (make H1 ‘add‘ hwtext))

This expression has type ELT HTML and it stands for the document shown at the
beginning of this section.

If there is no instance declaration for a particular combination of element name
and child element name, then the type checker prevents us from adding the child
element. For example, it is illegal to put a header H1 element into a title element:

> make TITLE ‘add‘ make H1

ERROR - Unresolved overloading

*** Type : AddTo TITLE H1 => ELT TITLE

*** Expression : add (make TITLE) (make H1)

3 In Haskell, an identifier in grave accents (like ‘add‘) is an infix operator.
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2.2 Parameterized Documents

Although direct use of make and add as in the preceding subsection is sufficient
to demonstrate the basic features of the library, their use is cumbersome and has
severe limitations. In this subsection, we identify the limitations and propose a
solution that works well for many parameterized documents.

2.2.1 Limitations of Simple Element Construction

Suppose we want to generate the body of a document with a parameterized function
that adds a fixed header and footer:

genBody’ contents =

make BODY ‘add‘ (make H1)

‘add‘ contents

‘add‘ (make ADDRESS)

This function type-checks, but the inferred type is unfortunate news:

genBody’ :: AddTo BODY t => ELT t -> ELT BODY

Why is it unfortunate? Because the parameter contents is restricted to exactly
one element. It cannot be empty and it cannot stand for more than one element.
The straightforward idea of “somehow” passing a standard list of elements fails
because standard lists are homogeneous. In a homogeneous list, each element has
the same type. Such a restriction rules out a list containing both, a textual element
of type ELT CDATA and a definition list of type ELT DL. Hence, standard lists are
not suitable for grouping elements.

A similar problem occurs when we consider conditional content.

mytext’ italic =

if italic then make I ‘add‘ text’ "mytext"

else text’ "mytext"

In this case, the type checker rejects the definition. The True-branch of the con-
ditional has type ELT I whereas the False-branch has type ELT CDATA. Hence, a
type clash results.

We solve the above problems by proposing not to use the constructors directly,
but rather wrap the them into higher-order functions. The resulting element-trans-
forming style of programming yields a satisfactory and natural programming model
for document generators.

2.2.2 Element-Transforming Style

The idea of element-transforming style is to never return elements directly but
rather deal with them indirectly using transformer functions. Hence, an element
constructor takes as a parameter a transformer that modifies the constructed ele-
ment and returns as its result a transformer that adds the constructed element to
an enclosing element. For example, the combinator for TITLE is

title :: AddTo s TITLE => (ELT TITLE -> ELT TITLE) -> (ELT s -> ELT s)
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that is, it maps a transformer for TITLE elements to a transformer for s elements,
provided that the s element admits the addition of TITLE.

The combinator for textual elements is simpler, since text cannot be transformed:

text :: AddTo s CDATA => String -> (ELT s -> ELT s)

Let us now first review our “Hello World” example in this style, and then check
that element-transforming style addresses the two problems mentioned above. The
revised expression

html (head (title (text "Hello World!"))

## body (h1 (text "Hello World!")))

type checks with type AddTo s HTML => ELT s -> ELT s. The code is visually
more appealing than the previous attempt and arguably more concise than the
HTML source generated from it.

It remains to explain the combinator ##. The argument of an element constructor
is a transformer of the element. An addition of a child element is an elementary
transformation. If we want to add more children, then we need to compose trans-
formations using ##. Since transformations are just functions, composition is just
(forward, diagrammatic) composition of functions:

f ## g = \x -> g (f x)

Whenever we do not want to transform an element, we plug in the empty trans-
formation, the identity function:

empty x = x

It turns out that element-transforming style gives us a powerful means to deal
with sequences of elements (and attributes, as we will see). Intuitively, each con-
structor returns a singleton sequence, empty returns an empty sequence, and ##

concatenates sequences. Due to the implementation by function composition, con-
catenation is an associative operation that runs in constant time.

The ability to talk about sequences of elements solves our problem with the
parameterized document:

genBody contents =

body (h1 empty ## contents ## address empty)

The function genBody has type (AddTo s BODY) => (ELT BODY -> ELT BODY)
-> ELT s -> ELT s. Hence, contents can assume an arbitrary sequence of elements,
provided that each participant of the sequence is a transformer for BODY. All three
expressions below are legal and have type (AddTo s BODY) => ELT s -> ELT s.

genBody empty

genBody (text "Heureka!")

genBody (h2 empty ## h2 empty)

Element-transforming style also solves the problem with conditional content: The
function mytext defined by

mytext italic =

if italic then i (text "mytext")

else text "mytext"

has type (AddTo s I, AddTo s CDATA) => Bool -> ELT s -> ELT s, which ex-
presses that the enclosing element must be ready to accept an I element as well as
a CDATA element.
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2.2.3 The Toplevel Element

There is no direct access to the constructed elements anymore. Hence, the library
provides a combinator

build_document :: (ELT HTML -> ELT HTML) -> ELT DOCUMENT

to construct a toplevel element. The expression build document tr creates an
empty HTML element, applies the HTML transformer tr to it, and returns a data
structure that represents an entire HTML document, including header information.
For example, pretty-printing the value of

build_document (head (title (text "Hello World!"))

## body (h1 (text "Hello World!")))

yields

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html><head><title>Hello World!</title>

</head>

<body><h1>Hello World!</h1>

</body>

</html>

2.2.4 Attributes

Attributes names are treated in the same way as element names. For each attribute
name, there is a one-element type Attr with element Attr. Each of these types
is an instance of a type class ATTRIBUTE. For example, the href attribute gives
rise to the type HREF with element HREF. Similar to the relation between tag types
and elements, the type HREF only provides the name of the attribute. The actual
attribute instance (a name-value pair) is represented by a value of type ATTR HREF.

Similar as with elements, there is a direct function to add an attribute to an
element.

add_attr :: AddAttr t a => ELT t -> ATTR a -> ELT t

The type class AddAttr t a used in its type determines whether a t element admits
an attribute with name a. For example, the declaration

instance AddAttr A HREF

determines that an HREF attribute is admissible for an A element.
Clearly, we want to group attributes in the same way as we have worked it out for

elements above. Hence, we proceed immediately to the element-transforming style
definition of the attribute constructors.

attr :: (AttrValue a v, AddAttr t a) => a -> v -> ELT t -> ELT t

The first parameter (of type a) is the attribute name. The second parameter (of
type v) is the attribute value. The result is an element transformer for elements
with name t, provided that

• AddAttr t a: the attribute name is admissible for a t element and
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• AttrValue a v: the type of the attribute value is admissible for this attribute
name.4

For example, the expression attr HREF "mailto:thiemann@acm.org" evaluates to
an element transformer of type AddAttr t HREF => ELT t -> ELT t.

Again, element-transforming style makes it easy to define parameterized at-
tributes.

hlink :: (AddTo t A, AttrValue HREF v)

=> (ELT A -> ELT A) -> v -> ELT t -> ELT t

hlink body url =

a (body ## attr HREF url)

The definition of hlink shows that the attributes for an element can appear any-
where in the transformer for this element. Supplying them through transformers
immediately enables grouping of attributes and it frees us from supplying extra
arguments to the constructors or having special attribute-sensitive constructors,
which is the approach commonly taken in HTML libraries (Meijer, 2000; Hanus,
2001).

2.3 A Larger Example: Simple Hypertext

In this subsection, we consider the translation of a simple hypertext system to
HTML. The system structures a text as a set of nodes which are interconnected
by hyperlinks. Each node has a unique name, by which it can be referred to, and
(in our simplified version) three links. The links point to the next, previous, and
up nodes, that is, the next or previous one on the same hierarchical level of nodes,
whereas the up link points to a node higher up in the hierarchy. Each of these nodes
is rendered to HTML in essentially the same way.

The datatype for a node has six fields.

data Node =

Node String -- name of node

[NodeContent] -- contents of the node

[Node] -- list of children

-- administrative fields (filled in automatically):

String -- name stub for generated files

Int -- unique number of node

[Int] -- section counter

type NodeContent = String

The author of such a structure only has to specify the contents of each node and
to list the children. The function node2html below translates one node into the
corresponding HTML data structure.

node2html :: Node -> Maybe Node -> Maybe Node -> Maybe Node -> ELT DOCUMENT

node2html (Node name contents children _ _ count) m_next m_previous m_up =

html_doc title

4 This pattern should be clear by now, so we defer the explanation of AttrValue to Sec. 4.5.



Typed Representation for HTML and XML 13

( maybe_link "Next" m_next

## maybe_link "Previous" m_previous

## maybe_link "Up" m_up

## hr empty

## pars contents

## my_menu node_ref children)

where

title = show_sec_count count ++ name

The function html_doc takes a title String and an element transformer for a
<body> element to create a simple standard document structure. In the body, there
are three hyperlinks labeled Next, Previous, and Up created by maybe_link. The
maybe_link function takes a label of type String and an optional node. If there
is a node present, then maybe_link creates a labeled link. Otherwise, the label
appears as plain text. Next there is a horizontal rule, followed by the text struc-
tured in paragraphs (pars contents) and finally a menu of the children (my menu

node ref children), where node ref creates a link to a node. Of these, the func-
tions my menu and pars are probably the most interesting ones.
my_menu :: (AddTo MENU a, AddTo b MENU) =>

(item -> ELT LI -> ELT a) -> [item] -> ELT b -> ELT b

my_menu make_ref [] =

empty

my_menu make_ref children =

menu (foldr add_node empty children)

where

add_node node items = li (make_ref node) ## items

The function my menu takes as arguments a function make ref that constructs a
link from an item and a list of menu items. If the list of items is empty, then
no element is constructed. Otherwise, my menu creates a <menu> that contains one
<li> element with a link for each item.

The pars function takes a list of strings and transforms it into a sequence of
paragraphs.
pars :: AddTo a P => [String] -> ELT a -> ELT a

pars = (foldr (##) empty) . (Prelude.map (p . text))

Each input string is first transformed by text into a textual element, which is
wrapped into a paragraph by p. The function Prelude.map is the usual map func-
tion for lists.5

The complete implementation only requires some simple auxiliary functions and
a main function tree2html :: Node -> Maybe Node -> String -> IO () which
takes a Node data structure, an optional reference to an enclosing document, and a
filename stub into an IO action. Executing this main function results in automat-
ically assigning a filename to each node, translating it to HTML, and writing the
resulting HTML source texts to the respective files. The code is available through
the WASH-web page (WASH, 2001).

5 The qualification by the module name Prelude. is necessary because the library also defines a
function map, which implements the HTML element map. The other occurrences of dots . are
infix operators that denote (backwards) function composition.
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<!ATTLIST OL

type CDATA #IMPLIED -- numbering style --

compact (compact) #IMPLIED -- reduced interitem spacing --

start NUMBER #IMPLIED -- starting sequence number --

>

Fig. 1. Definition of attributes for OL (excerpt)

3 Document Type Definitions

The validity of a particular combination of an element name and a child element
name as well as of an element name and an attribute is governed by a DTD (docu-
ment type definition). This section considers a subset of SGML-DTDs since widely
used versions of HTML are defined in this way. Dealing with XML-DTDs is analo-
gous.

Basically, a DTD contains two kinds of entries, element definitions and attribute
definitions6. An element definition defines an element name and declares its child
elements using a content description. An attribute definition defines the admissible
attributes for an element, their types, and sometimes their default values.

A typical element definition has the form

<!ELEMENT DL - - (DT | DD)+>

where DL defines the name of the element, the two dashes state that both the
opening tag and the closing tag must be written (an O indicates that they are
optional), and the (DT | DD)+ is the content description. The latter specifies the
names of the child elements. In this case, the child elements may have names DT

or DD, and at least one of them must be present. The content description is a
restricted regular expression using the operators , for sequencing, | for alternative,
* for repetition, + for one or more repetitions, and ? for one or zero occurrences.7

Also, EMPTY is a content description, which is self-explanatory. The restriction on
regular expressions is that they must be one-unambiguous (Brüggemann-Klein &
Wood, 1998).

Figure 1 shows a typical attribute definition from the HTML4.01 DTD. It declares
admissible attributes and enforces a simple type discipline on attribute values. In
the definition

• OL is the name of the element to which the attributes belong,
• type, compact, and start are the names of attributes,
• CDATA, (compact), and NUMBER specify their respective types: a string, an

enumeration type with one element compact, and a number, and
• #IMPLIED specifies that the attribute is optional and has no default value. Al-

ternatively, attributes can be #REQUIRED or this column can provide a default
value.

6 We ignore the abbreviation and structuring mechanisms of entities and conditional sections,
since they can be eliminated by a pre-pass.

7 SGML has an additional operator a & b, which denotes an arbitrary interleaving of a and b.
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The text between the pairs of dashes -- is a comment.

4 Implementation

In this section, we explain the implementation of the library for weak validity. We
start out with the underlying representation for well-formed HTML documents and
build a typed layer on top of it. The main tools for building the typed layer are type
classes and phantom types (parameterized types where the type parameter does not
appear on the right side of the definition).

4.1 Data Representation

A generic representation for XML elements must define two abstract datatypes of
attribute instances and elements.

data ATTR_ -- abstract

attr_ :: String -> String -> ATTR_

attr_name :: ATTR_ -> String

attr_value :: ATTR_ -> String

A value of type ATTR_ is an attribute instance. It is created from two strings, the
attribute name and its value, by the constructor attr_. The selector functions
attr_name and attr_value extract the respective components, again.

data ELEMENT_ -- abstract

element_ :: String -> [ATTR_] -> [ELEMENT_] -> ELEMENT_

empty_ :: String -> [ATTR_] -> ELEMENT_

cdata_ :: String -> ELEMENT_

doctype_ :: [String] -> [ELEMENT_] -> ELEMENT_

add_ :: ELEMENT_ -> ELEMENT_ -> ELEMENT_

add_attr_ :: ELEMENT_ -> ATTR_ -> ELEMENT_

putElement :: ELEMENT_ -> IO ()

The datatype ELEMENT_ models elements. It has four constructors. The first one,
element_ creates an element from an element name (a string), a list of attribute
instances, and a list of child elements. The empty_ constructor is intended to model
HTML elements like <hr> whose content description is empty and whose closing
tags may be omitted. Elements constructed with empty_ are only printed differently
to elements constructed with element_.8 The cdata_ constructor creates a textual
element from a string, and the doctype_ constructor creates the toplevel element
of a document.

The expression add el child adds the element child to the list of elements
of el . The expression add attr el at adds the attribute instance at to the list

8 This constructor will probably be phased out in the transition to XML due to XML’s shorthand
notation for empty elements <hr/>.
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of attributes of element el . Finally, the expression putElement el returns an IO

action that prints the element el in HTML syntax.
For example,

element_ "DL" []

[element_ "DD" [] [cdata_ "Document Type Definition"],

element_ "DT" [] [cdata_ "DTD"]])

prints as

<DL><DT>DTD</DT>

<DD>Document Type Definition</DD>

</DL>

The low level representation keeps the list of child elements in reverse order so that
the add operation runs in constant time.

4.2 Types for Attributes

The typed layer for attributes consists of a phantom type for attribute instances, a
number of singleton types that stand for attribute names, a type class that collects
these singleton types, and a type class that enforces a simple type discipline on the
values of an attribute.

The phantom type is realized by

data ATTR a = ATTR { unATTR :: ATTR_ }

which defines the constructor ATTR and the selector unATTR. The intention is that
the type variable, a, is only ever instantiated by types that stand for attribute
names. Later on, we use this typing to relate admissible attributes to elements
using the type class AddAttr. The attribute-name types are collected in the type
class ATTRIBUTE:

class Show a => ATTRIBUTE a where

show_name :: a -> String

--

show_name = map toLower . show

The first line says that every member type of ATTRIBUTE must belong to the pre-
defined class Show9. Every type t that belongs to Show has a show function of
type t -> String. The default implementation of ATTRIBUTE’s member function
show name is to convert the attribute name to a string and then convert this string
to all lower case.

For example, the declarations for the attribute TYPE of <ol> (cf. Fig. 1) are as
follows.

data TYPE = TYPE deriving Show

instance ATTRIBUTE TYPE

9 See section 6.3.3 of (Haskell98, 1998)
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The first line constructs a one-element type TYPE and instructs the compiler to
automatically make it into (“derive”) an instance of Show.10 The second line makes
TYPE an instance of the ATTRIBUTE class. Since there is no overriding definition for
show_name, its default definition (from the class declaration) is used for TYPE.

As explained in Sec. 3, a DTD enforces a simple type discipline on the attribute
values. Consequently, we provide a type class AttrValue that relates an attribute-
name type to the types of its potential values. The class AttrValue has no member
functions and is just used to restrict the type of a function mkAttr that takes an
attribute name and a value and constructs an attribute of the right type. The type
of the attribute name, a, must be a member of ATTRIBUTE and the type of the
value, v, must be a member of Show, so that it can be converted to a string.

class (ATTRIBUTE a, Show v) => AttrValue a v

mkAttr :: AttrValue a v => a -> v -> ATTR a

mkAttr a v = ATTR (attr_ (show_name a) (show v))

This typing in connection with the instance declarations for AttrValue ensures
that only values of the correct type can be adopted for attributes.

For example, the attributes specific to <ol> (cf. Fig. 1) require the following
instance declarations:

instance AttrValue TYPE String

instance AttrValue COMPACT COMPACT_compact

instance AttrValue START Integer

The type COMPACT compact has just a single element, which shows as compact.
With the above definitions in place, we can write code like this:

mkAttr TYPE "i" :: ATTR TYPE

mkAttr COMPACT COMPACT_compact :: ATTR COMPACT

mkAttr START (42::Integer) :: ATTR START

4.3 Types for Elements

The typed representation of elements introduces another phantom type.

data ELT t = ELT { unELT :: ELEMENT_ }

In addition, there is one data type (tag type) for each HTML element name. These
types are the candidates for the parameter t of ELT. For example, the tag types for
<dl>, <dd>, and <dt> are defined thus

data DL = DL deriving Show

data DD = DD deriving Show

data DT = DT deriving Show

Every tag type is a member of the type class TAG.

class Show t => TAG t where

make :: t -> ELT t

show_tag :: t -> String

--

10 The deriving mechanism is only available for a few predefined classes.
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make = make_standard

show_tag = map toLower . show

make_standard t = ELT (element_ (show_tag t) [] [])

make_empty t = ELT (empty_ (show_tag t) [])

The member function make of this class maps a value of type t to a “wrapped”
element of type ELT t. This way, the type of a wrapped element reflects its name.
The default implementation of make, make_standard, uses the element_ construc-
tor. Elements declared as empty in the DTD override make with make_empty in
their instance declaration. Elements constructed with make have neither children
nor attributes, initially.

4.4 Adding Elements

This section considers the addition of a weakly valid child element to a weakly valid
element. Such an addition preserves weak validity if the name of the child element
is mentioned in the content description of the parent element. The type checker can
guarantee preservation because the name of each element is exactly the tag type in
the type of an element, ELT t.

4.4.1 Relating Elements to Children

The library models the relation between the name of an element and the name of
a child element by the two-parameter type class AddTo.

class (TAG s, TAG t) => AddTo s t

add :: AddTo s t => ELT s -> ELT t -> ELT s

add (ELT e_) (ELT e’_) =

ELT (add_ e_ e’_)

In AddTo s t the s is the name of the parent element and t is the name of the child
element. The function add unwraps both elements, adds the “raw” child element
e’_ into the raw element e_, and wraps the result back into an element of type ELT
s. The type class AddTo merely restricts the polymorphic type of add.

Each instance of AddTo specifies that a certain parent element accepts a certain
child element. For example,

instance AddTo DL DT

instance AddTo DL DD

state that the only allowed contents of a definition list (<dl>) are <dt> (term in
definition list) and <dd> (definition of a term) elements. It corresponds directly to
the HTML DTD (document type definition) which defines the dl element like this:

<!ELEMENT DL - - (DT | DD)+>

Actually, this phrase says a little more than our instance declarations because it
insists that each <dl> contains at least one <dt> or <dd>. We’ll return to that point
later in Section 6.
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4.4.2 Element Transformers

In Sec. 2.2.1, we have seen that direct programming with make and add is awkward
and limiting. Hence, we introduced higher-order element constructor functions that
yield element transformers. The implementation of these higher-order element con-
structors is straightforward. Here is the implementation for the dl element (all
others are analogous).

dl :: AddTo s t => (ELT DL -> ELT t) -> ELT s -> ELT s

dl f elt = elt ‘add‘ f (make DL)

The first argument, f, of dl is a transformer for the newly created <dl> element. The
second argument, elt, is the element, in which the transformed <dl> element will
be inserted. The predicate AddTo s t originates from the use of the add function
and indicates that the result, t, of transforming the new <dl> element is suitable
for putting it into the enclosing elt of type ELT s.

The type of dl is a little bit more general than necessary because the transformer
function may change the type of the newly generated element from ELT DL to ELT

t. In most cases, the type parameter t will be equal to DL. Later, in Sec. 6.1, we
exploit the extra generality.

4.5 Relating Elements with Attributes

Not every attribute makes sense for a particular element. Analogously to the class
AddTo for elements, the type class AddAttr is used to restrict the polymorphic type
of add_attr.

class (TAG t, ATTRIBUTE a) => AddAttr t a

add_attr :: AddAttr t a => ELT t -> ATTR a -> ELT t

add_attr (ELT e_) (ATTR att) =

ELT (add_attr_ e_ att)

The function add_attr unwraps the element and the attribute instance, joins the
new attribute using add_attr_, and wraps the element back into its typed represen-
tation. The instance declarations govern exactly which typed attribute is admissible
for a particular typed element.

For example, according to Fig. 1, the OL element can take three attributes, TYPE,
COMPACT, and START. Our library encodes this restriction with the following three
instance declarations.

instance AddAttr OL TYPE

instance AddAttr OL COMPACT

instance AddAttr OL START

Finally, for a smooth integration with element processing, we provide the at-
tribute functions in the form of element transformers. It is a straightforward com-
bination of add_attr and mkAttr.

attr :: (AttrValue a v, AddAttr t a) => a -> v -> ELT t -> ELT t

attr a v into = add_attr into (mkAttr a v)
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4.6 Character Data

Up to now, we assumed that all elements can be constructed from the element
name using the make function. The only exception is character data. The data type
for elements already provides a constructor cdata_ for it. It remains to define a
function that turns a string into a component of the right type. The type CDATA

serves as a pseudo tag type.

data CDATA = CDATA deriving Show

instance TAG CDATA

text :: (AddTo a CDATA) => String -> ELT a -> ELT a

text str elta = add elta (ELT (cdata_ str) :: ELT CDATA)

The function text takes a string, turns it into a value of type ELEMENT_, and then
wraps it into a value of type ELT CDATA using an explicit type annotation.

4.7 Main Document

The main document is constructed using the function

build_document :: (ELT HTML -> ELT HTML) -> ELT DOCUMENT

build_document contents =

make DOCUMENT # html contents

It transforms an empty HTML element using contents and applies the result to
the document constructed by make DOCUMENT. The latter just constructs a data
structure, which contains the document type information at the beginning of an
HTML document and adds the top-level HTML element. The # operator is just
reversed function application: a # f = f a.

The following definition introduces the type DOCUMENT as a tag type and defines
its constructor function by overloading make.

data DOCUMENT = DOCUMENT deriving Show

instance AddTo DOCUMENT HTML

instance TAG DOCUMENT where

make DOCUMENT =

ELT (doctype_

["HTML"

,"PUBLIC"

,"\"-//W3C//DTD HTML 4.01//EN\""

,"\"http://www.w3.org/TR/html4/strict.dtd\""]

[])

5 From HTML to XML

Since the DTD of HTML is fixed, we can perform the construction outlined in the
previous section once and for all by hand. In practice, it is more convenient to au-
tomatize the construction. Hence, we have designed and implemented a translation
that converts a DTD to Haskell code. The generated Haskell library provides all
the datatype and instance declarations discussed in the previous section.
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DTJ<!ELEMENT tag begin end content>K =
ET tag content

DTJ<!ATTLIST tag body>K =
AT tag JbodyK

ET tag content =
data UJtagK = UJtagK deriving Show

LJtagK f elt = elt ‘add‘ f (make UJtagK)
CT tag content

CT tag EMPTY =
instance TAG UJtagK where make = make empty

CT tag content =
instance TAG UJtagK
instance AddTo UJtagK UJchild-tagK for each child-tag ∈ content

AT tag J K =
-- nothing

AT tag Jname type default restK =
data UJnameK = UJnameK deriving Show

instance ATTRIBUTE UJnameK
instance AddAttr UJtagK UJnameK
VT name type
AT tag JrestK

VT name CDATA =
instance AttrValue UJnameK String

VT name ID =
instance AttrValue UJnameK String

VT name NUMBER =
instance AttrValue UJnameK Integer

VT name (val1|...|valn) =
data UJval1 K = UJval1 K deriving Show

instance AttrValue UJnameK UJval1 K
...
data UJvalnK = UJvalnK deriving Show

instance AttrValue UJnameK UJvalnK

Fig. 2. Translation from DTD to Haskell

Figure 2 defines the translation distributed over a number of functions. All func-
tions yield top-level Haskell definitions.

• DT translates an item from a DTD;
• ET translates an element definition by generating a data type for the element

name, defining its interface function, and passing on to CT;
• CT generates the instance declaration for TAG (which depends on whether

the content is EMPTY) and definitions for the content part of an element;
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• AT translates an attribute list definition by generating

— its data type,
— its instance declarations for ATTRIBUTE and AddAttr, and
— its value definitions using VT;

• VT generates the data types for attribute values (if necessary) and instance
declarations for class AttrValue.

• U and L are name mangling functions that transform a name in a DTD
to a valid Haskell identifier, starting with an uppercase character or with a
lowercase one.

The definition of the translation glosses over the following problems, which are
addressed in the implementation.

• A DTD might use the same name for an element name, an attribute name, and
an attribute value from an enumerated type. For example, HTML 4.01 uses
the names CITE, DIR, LINK, and TITLE as element names and also as attribute
names. The translation must only define a single data type for those names.

• A name in a DTD may contain characters that are not allowed in Haskell iden-
tifiers (for example, the attribute name HTTP-EQUIV in HTML 4.01). Hence
there must be a mapping to valid Haskell identifiers and a particular instance
of Show must be defined for these attribute names:

data HTTP_EQUIV = HTTP_EQUIV

instance Show HTTP_EQUIV where

show HTTP_EQUIV = "HTTP-EQUIV"

instance ATTRIBUTE HTTP_EQUIV

Translating the HTML 4.01 DTD (HTML 4.01, 1999) in this way yields 5220 lines
(roughly 148k) of Haskell code. Most of these lines (4850) are instance declarations.
There are 281 lines of data declarations and the remaining lines define the interface
functions.

6 Beyond Weak Validity

The typed encoding presented so far guarantees weak validity of the generated
HTML/XML documents. While our experience shows that weak validity works
well in practice, it is still interesting to see if Haskell’s type classes can deliver
stronger guarantees. This section shows that it is indeed possible.

6.1 Elementary Validity

Consider again the content description for the dl element:

<!ELEMENT DL - - (DT | DD)+>

This definition requires that

1. the children of <dl> are either <dd> or <dt> elements and
2. that at least one child is present.
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However, the encoding introduced in Sec. 2–4 only enforced the first requirement,
thus tacitly changing the content description to (DT | DD)*.

How can we instruct Haskell’s type inference engine to enforce a content descrip-
tion more accurately? To see this, we first consider how a validating XML processor
performs this task. Such a processor builds a finite automaton from each content
description. Whenever it enters the list of children of a particular element, the pro-
cessor retrieves the appropriate automaton and checks that the sequence of element
names of the children is accepted by the automaton. The contents of the children
are checked recursively.

While a typical processor performs this task dynamically at run-time, we intend
to perform it statically at compile-time. To this end, we have to model the dynamic
processing engine at compile-time.

6.1.1 Basic Approach

The natural place for maintaining additional compile-time information is in the
phantom type for elements. The type of an element is now ELT (s, qs), where s
is a tag type and qs is a type that tracks the state of the automaton. This idea
leads to the following typing for the add function:

add :: (AddTo s t, FinalState’ t qt, NextState’ s qs t qs’)

=> ELT (s, qs) -> ELT (t, qt) -> ELT (s, qs’)

• The predicate AddTo s t relates element names to the names of child ele-
ments, as before.

• The predicate FinalState’ t qt expresses that the parameter qt of the
child element must be a final state for the automaton of t. Otherwise, an
incomplete element (for example, an element <dl></dl> without contents)
can sneak into another element.

• The predicate NextState’ s qs t qs’ defines the state transition from state
qs to state qs’ on input t of the automaton that implements the content de-
scription for s elements. As usual, t stands for the name of the child element.

As an example, we consider the automaton for <dl>. It has two states, State0
and State1, where State0 is the initial state. Beyond the instance declarations for
AddTo, the following declarations are required to implement the finite automaton.

data State0 = State0

data State1 = State1

instance FinalState’ DL State1

instance NextState’ DL State0 DD State1

instance NextState’ DL State0 DT State1

instance NextState’ DL State1 DD State1

instance NextState’ DL State1 DT State1

The types State0, State1, and so on, are singleton types like the types for
element names and attribute names before. They can be shared among all automata.
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The instance for FinalState’ indicates that a <dl> element can only be added
to another element if its state is State1. In this particular case, it means that there
must be at least one child.

The instances for NextState’ implement the transition function of the mini-
mal deterministic finite automaton for (DD | DT)+. The construction of the finite
automaton from a regular expression is standard (Hopcroft & Ullman, 1979).

The creation of new elements must correctly initialize the state part of the ELT
type. The automaton of each element must be set to its initial state:

make’ :: TAG t => t -> ELT (t, State0)

6.1.2 Refined Approach

Unfortunately, the basic approach outlines in 6.1.1 defers type errors to a fairly
late stage. Suppose that we have two elements dd :: ELT (DD, State0) and dl
:: ELT (DL, State0). Adding dd to dl gives rise to the typing

add dl dd ::

(AddTo DL DD, FinalState’ DD State0, NextState’ DL State0 DD qs’)

=> ELT (DL, qs’)

Since DD is an admissible child for DL, there is an instance AddTo DL DD. Further,
the automaton for DD has just one state State0, which is also the final state. Hence,
all but the NextState’ predicate can be reduced by the type checker.

add dl dd :: (NextState’ DL State0 DD qs’)

=> ELT (DL, qs’)

To add the element add dl dd into another element, the type checker has to show
that FinalState’ DL qs’ but all it has is NextState’ DL State0 DD qs’, which
cannot be reduced because qs’ is not instantiated. At the toplevel, the type checker
reports these remaining constraints as unresolved overloading.

Fortunately, it is possible to save the situation by providing additional informa-
tion. The key to the solution is the fact that NextState’ is not just a relation on
types but also a function on types. Jones’s extension of Haskell’s type system by
functional dependencies (Jones, 2000) enables us to express this property as follows:

class NextState’ s qs t qs’ | s qs t -> qs’

The functional dependency | s qs t -> qs’ reads “where s, qs, and t determine
qs’ uniquely”. The type checker takes advantage of this information during simplifi-
cation of predicates. From the predicate NextState’ DL State0 DD qs’ it derives
that qs’ must be State1 and determines the typing of the example expression as

add dl dd :: ELT (DL, State1)

With this typing, we can easily insert the element add dl dd into another element.
Since the state is determined, the predicate FinalState’ DL State1 can always
be reduced.

6.1.3 Implementation

In the actual implementation, which is also generated automatically by translation
from the DTD, we perform a product construction. We merge the element name
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and the state information into one type, so that each element name gives rise to
as many types as the finite automaton derived from its content description has
states. This way, we can collapse all three type classes, AddTo, NextState’, and
FinalState’ into one class:
class NextState s t s’ | s t -> s’

If we regard the “new” tag types as pairs (s, qs) of “old” tag types and states,
then the connection is as follows: There is an instance NextState (s, qs) (t, qt)

(s, qs’) if and only if NextState’ s qs t qs’ and AddTo s t and FinalState’

t qt.
For example, here are the instances for the <dl> element:

instance NextState DL DD DL_1

instance NextState DL DT DL_1

instance NextState DL_1 DD DL_1

instance NextState DL_1 DT DL_1

where DL stands for (DL, State0), DL 1 stands for (DL, State1), DD for (DD,

State0), and DT for (DT, State0).
Initially, we expected a huge number of states in the automata derived from the

content descriptions. However, it turns out that the number of states is small. For
the majority of element names, the number of states is one because their content de-
scription has the form (elt1 |...|eltn )*. Even the automaton for a complicated
element like TABLE has just seven different states.

6.2 Full Validity

From elementary validity, there is only a small step to full validity where each
attribute occurs at most once and required attributes are guaranteed to be present.
The first requirement is expressed by the regular language

L = {w ∈ Σ∗ | each symbol of a ∈ Σ occurs at most once in w}

where Σ is the set of attribute names. If attribute a is required, then we must
consider the language L ∩ Ra where Ra = Σ∗aΣ∗. Clearly, Ra is regular and so is
L ∩ Ra.

Hence, the task is again to recognize a regular language so that the automaton
approach demonstrated in the previous subsection is applicable, in principle. The
phantom variable of ELT can again keep track of the state of the attribute automa-
ton. As before, this constructs implicitly the product of the element automaton and
the attribute automaton for each element name.

Unfortunately, this approach is not practical because the automata recognizing
L have a huge number of states. Most elements take 16 or more attributes in
arbitrary order, and in a valid element each attribute may not occur more than
once. A deterministic automaton that checks this restriction has at least 216 states.

6.2.1 Vector of States

However, an alternative approach is possible, which is inspired by work on record
types (Rémy, 1992; Wand, 1989). The idea is to encode the state using one type
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<!ATTLIST FORM

action CDATA #REQUIRED -- server-side form handler --

method (GET|POST) GET -- HTTP method used to submit the form--

enctype CDATA "application/x-www-form-urlencoded"

>

Fig. 3. Attributes of FORM (excerpt)

ATTRS with as many parameters as there are different attributes. Each of these type
parameters determines the presence or absence of a particular attribute.11 Hence,
they range over two one-element types:

data PRESENT = PRESENT

data ABSENT = ABSENT

data ATTRS action method enctype =

ATTRS action method enctype

(For illustration purposes, the type ATTRS only considers some attributes of FORM,
defined in Fig. 3. HTML 4.01 defines 132 attributes in total, hence ATTRS has 132
parameters in reality.) The element type ELT receives an additional (phantom) type
parameter. The make function creates an empty FORM element with all parameters
of ATTRS set to ABSENT, meaning that no attribute is present, yet.

make’ :: TAG t => t -> ELT (t, ATTRS ABSENT ABSENT ABSENT)

To keep track of the presence or absence of particular attributes, the functions
add and add_attr receive suitable types (their implementations remain the same
as before):

add_attr :: (AddAttr t a, AttrValid v a v’) =>

ELT (t, v) -> ATTR a -> ELT (t, v’)

add :: (AddTo s t, AttrFinal t v) =>

ELT (s, v’) -> ELT (t, v) -> ELT (s, v’)

The types mention two new type classes AttrValid and AttrFinal. The predicate
AttrValid v a v’ implements the transition function: If v (= ATTRS ...) is the
current attribute state and a is the name of an attribute to be added, then v’ is
the next attribute state. Clearly, AttrValid is a function because v’ depends on v

and a. This is specified using a functional dependency. The predicate AttrFinal t

v determines if the attribute state v is a final state for the element with name t.
Here are the class definitions and some illustrative instances.

class ATTRIBUTE a => AttrValid v a v’ | v a -> v’

class TAG t => AttrFinal t v

instance AttrValid (ATTRS ABSENT method enctype) ACTION

(ATTRS PRESENT method enctype)

instance AttrValid (ATTRS action ABSENT enctype) METHOD

11 In fact, this is yet another instance of the product construction: the type ATTRS models the
combined state space of the two-state automata for the attributes.
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(ATTRS action PRESENT enctype)

instance AttrValid (ATTRS action method ABSENT ) ENCTYPE

(ATTRS action method PRESENT)

instance AttrFinal FORM (ATTRS PRESENT method enctype)

instance AttrFinal CDATA (ATTRS ABSENT ABSENT ABSENT)

instance AttrFinal BODY (ATTRS ABSENT ABSENT ABSENT)

The instance of AttrFinal for FORM states that an action attribute must be
present, the other attributes can be arbitrary. CDATA and BODY elements do not
take any of these attributes. Hence, their final attribute states contain ABSENT only.

For example:

Main> putStr $ show_document $ build_document (body (form empty))

ERROR - Unresolved overloading

*** Type : AttrFinal FORM (ATTRS ABSENT ABSENT ABSENT) => IO ()

*** Expression : putStr $ show_document $ build_document (body (form empty))

The term is rejected because there is no suitable instance of AttrFinal. If we
provide the required attribute, then the result is displayed.

Main> putStr $ show_document $

build_document (body (form (attr ACTION "mailto:alex")))

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html><body><form action="mailto:alex"></form>

</body>

</html>

Finally, if we provide the same attribute twice, a type error occurs, too.

Main> putStr $ show_document $ build_document

(body (form (attr ACTION "mailto:alex"

## attr ACTION "mailto:alex")))

ERROR - Unresolved overloading

*** Type : (AttrValid (ATTRS PRESENT ABSENT ABSENT) ACTION a,

AttrFinal FORM a) => IO ()

*** Expression : putStr $ show_document $ build_document

(body (form (attr ACTION "mailto:alex"

## attr ACTION "mailto:alex")))

6.2.2 More Accurate Type Errors

It should be noted that these type errors are often deferred to a point where they are
difficult to comprehend. For example, the predicate AttrValid (ATTRS PRESENT

ABSENT ABSENT) ACTION a indicates an attempt to add the ACTION attribute to
an element that already has an ACTION attribute. Fortunately, it is possible to force
these errors to occur earlier by using functional dependencies, again.

While type classes are only good for encoding positive information, due to the
open-world assumption underlying their design, functional dependencies can supply
some negative information. In this case, the idea is to add another parameter to
AttrValid’ (and leaving AttrFinal as before):
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class ATTRIBUTE a => AttrValid’ v a v’ r | v a -> v’ r

instance AttrValid’ (ATTRS action method enctype) ACTION

(ATTRS PRESENT method enctype) action

instance AttrValid’ (ATTRS action method enctype) METHOD

(ATTRS action PRESENT enctype) method

instance AttrValid’ (ATTRS action method enctype) ENCTYPE

(ATTRS action method PRESENT) enctype

The new parameter r is determined by v and a, as indicated by the functional
dependency, and records the state of the attribute before adding the new attribute
instance. The trick is now to change the type of the add_attr function.

add_attr :: (AddAttr t a, AttrValid’ v a v’ ABSENT) =>

ELT (t, v) -> ATTR a -> ELT (t, v’)

This type requires that, whenever we add an attribute named a to the element,
then it must have been ABSENT before. Now, the type error occurs as soon as the
types for v and a are known, that is, at the application of the add_attr function.

A similar improvement to error reporting is possible by changing the AttrFinal
class:

class TAG t => AttrFinal t v | t -> v

This is again based on the observation that AttrFinal is really a function.

6.2.3 Conditional Content Revisited

The more precise typing needed for full validity has some unpleasant consequences.
As an example, let us consider the topic of conditional content. Suppose we want to
write a function that conditionally adds the COMPACT attribute to an ordered list:

maybeCompact flag =

if flag then attr COMPACT COMPACT_compact

else empty

Given the typings for full validity, we find that

attr COMPACT COMPACT_compact ::

(AddAttr t COMPACT, AttrValid v COMPACT v’) =>

ELT (t, v) -> ELT (t, v’)

empty :: ELT (t, v) -> ELT (t, v)

Hence the typing for maybeCompact:

maybeCompact :: (AddAttr t COMPACT, AttrValid v COMPACT v)

=> Bool -> (ELT (t, v) -> ELT (t, v))

Clearly, the predicate AttrValid v COMPACT v is not satisfiable because there is no
instance of AttrValid where the state, v, before adding the attribute is identical to
the state, v, after adding the attribute. The source of the problem is the typing of
empty, which forces us to unify the two states. While it is possible to define empty’
with type ELT (t, v) -> ELT (t, v’), it is not appropriate to do so because one
conditional that uses empty’ in both branches completely defeats the purpose of
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<!ELEMENT BODY O O (%flow;)* +(INS|DEL) -- document body -->

<!ELEMENT HEAD O O (%head.content;) +(SCRIPT|STYLE|META|LINK|OBJECT)

-- document head -->

<!ELEMENT A - - (%inline;)* -(A) -- anchor -->

<!ELEMENT FORM - - (%flow;)* -(FORM) -- interactive form -->

<!ELEMENT BUTTON - -

(%flow;)* -(A|%formctrl;|FORM|ISINDEX|FIELDSET|IFRAME)

-- push button -->

Fig. 4. Element declarations with inclusions and exceptions

having the state variable v at all. Our conclusion is that restrictions on attribute
occurrences should better be checked dynamically using run-time tests.

We have presently chosen not to implement full validity in the library because of
the above drawbacks. In addition, the last group of checks dealing with attributes
gives rise to another 1595 instance declarations (without the last two tricks from
Sec. 6.2.2), which bumps the size of the library’s source code from 148k to 3.2M.

6.3 Exceptions and Inclusions

Exceptions and inclusions pose problems that are specific to HTML and other
markup languages that are instances of SGML. Both concepts, exceptions and in-
clusions, have been removed from XML.

An inclusion in an element declaration of a DTD indicates that, within the de-
clared element, certain elements are admissible regardless of the content description
of their immediate parent element. Dually, there are exceptions, which abolish the
use of some elements, regardless of the content description of their immediate parent
element.

For example, consider the element declarations in Fig. 4 extracted from the
HTML4.01 DTD.12 The first two element declarations, for <body> and <head>,
specify inclusions indicated by +: anywhere in the descendants of a <body> element
(not just the children!), it is legal to use <ins> and <del> elements, regardless of
the current content description. Likewise, anywhere deep in a <head> element, one
of the SCRIPT, STYLE, META, LINK, or OBJECT elements may be used.

The remaining three element declarations contain exceptions indicated by -. The
first indicates that an <a> element may not appear nested inside an <a> element.
Likewise, <form> elements may not be nested, and neither <a>, <form>, <isindex>,
. . .may appear inside of <button> elements.

Interestingly, it seems possible to encode exceptions using a multi-parameter type
class, whereas the encoding of inclusions seems to require an extension of the type
class model. The key idea to encode negative information for exceptions comes
again from type systems for records, which express the absence of a particular field

12 The entity references like %flow; and %inline; can be safely ignored in our discussion.
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name (Rémy, 1992; Wand, 1989). We demonstrate the approach using the example
above.

In the absence of special row types, we define a data type ELEMS with as many
type parameters as there are different element names. In our example, this amounts
to

data ELEMS a form button isindex =

ELEMS a form button isindex

The two types PRESENT and ABSENT are again used to signal the presence or absence
of particular elements using the ELEMS type.

The type ELT receives two additional parameters, an above parameter and a
below parameter. The below parameter reflects the use of element names below
the element, whereas the above parameter reflects the use of element names above
and among the siblings of the element. Both will be instantiated with a particular
instance of the ELEMS type. The type class EXCEPTION governs the propagation of
information between below and above through the type of the add function.

add :: (AddTo s t, EXCEPTION s above below) =>

ELT (s, above, below) -> ELT (t, below, oo) -> ELT (s, above, below)

class EXCEPTION tag above below | tag -> above below

instance EXCEPTION

A (ELEMS PRESENT form button isindex) (ELEMS ABSENT form button isindex)

instance EXCEPTION

FORM (ELEMS a PRESENT button isindex) (ELEMS a ABSENT button isindex)

instance EXCEPTION

BUTTON (ELEMS a form PRESENT isindex) (ELEMS ABSENT ABSENT ABSENT ABSENT)

instance EXCEPTION

ISINDEX (ELEMS a form button PRESENT) (ELEMS ABSENT ABSENT ABSENT ABSENT)

The instance declaration for A says that the elements below cannot contain an A. If
there were an A, then the type of the corresponding variable would be instantiated
to PRESENT, thus colliding with the type ABSENT required by the EXCEPTION class.
The remaining elements, FORM, BUTTON, and ISINDEX are “inherited”. The instance
declaration for FORM is similar.

The instance declaration for BUTTON says that there must not be an element with
name A, FORM, BUTTON, or ISINDEX nested within a BUTTON element. The instance
declaration for ISINDEX is similar.

For inclusions, the type of add is too restrictive. It is necessary to express the
following information:

• s and t are related by AddTo or t is allowed by an enclosing inclusion decla-
ration

• and t is not disallowed by an enclosing exception declaration.

While disallowance and allowance can be formalized using the EXCEPTION class
above and another type class (using two additional type variables), there remains
the problem of expressing the disjunction in the type class system. Presently im-
plemented type checkers can only deal with conjunctions of class predicates.

Progressing from HTML to XML (Bray et al., 1998) also solves the problem
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because XML does not support exceptions, anymore. In fact, in XHTML (XHTML
1.0, 2000) the side conditions on <a> and <form> are only mentioned informally
because they are not expressible using an XML DTD.

The current library implements neither inclusions nor exceptions. First, they are
not necessary due to the imminent transition to XML and XHTML. And second,
they would render the library useless due to the enormous increase in size caused
by the instance declarations for a type with 89 parameters (the number of element
names used by HTML 4.01), as demonstrated with the attributes.

7 Conclusion

We have designed a family of embedded domain specific languages for meta pro-
gramming of web pages and web sites. Each of these languages is implemented
as a combinator library in Haskell. Haskell’s type classes and in particular multi-
parameter classes with functional dependencies were instrumental in the construc-
tion. We have introduced element-transforming style as a means to concisely con-
struct abstractions and fragments of web pages. The resulting programming style
is very natural and yields visually appealing programs.

We found the library easy and intuitive to use. The possibility to abstract com-
monly used patterns pays off enormously, its benefits are already visible in the
examples shown in Section 2. We also found the type checking capabilities for weak
validity sufficient because it captures many common errors (using an element or
attribute in the wrong place). Initial experiments with the more elaborate static
scheme for elementary validity outlined in Section 6.1 yield quite natural and precise
typings, too.

On the negative side, type errors are fairly hard on users who are not deeply
into Haskell. It would be nice if type errors could be filtered and translated so
that they are more informative to casual users of the library. These users might
also appreciate a syntax which is closer to HTML/XML. This is subject to further
investigation.
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