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Abstract—Aerial manipulation is a new research area that
extends the potential of aerial vehicles, allowing them to phys-
ically interact with the environment. Modeling and control of
such a system is not a trivial problem due to the coupled
dynamics of the aerial vehicle and the robotic manipulator.
This paper presents a robust and non linear control system for
a Hexacopter equipped with a two-degrees-of-freedom robotic
arm. The proposed mathematical model, which is based on a
quaternion representation, takes into account the changing inertia
and the mass distribution, depending on the arm configuration.
We show how the attitude control, using a quaternion-based
backstepping, is able to react to the disturbances caused by the
arm. In the backstepping design, we introduce a command filter,
which contributes to reduce the computational complexity of the
algorithm. Finally, we present simulation results that demonstrate
the stability of our approach and provide a comparison to a
standard PD control.

I. INTRODUCTION

In recent years, both UAVs and mobile manipulation with
ground vehicles have seen a growing research interest due to
the numerous industrial applications. The combination of the
agile mobility of an aerial vehicle with the capability of a
robotic manipulator invites new applications, i.e., transporta-
tion in remote places, manipulation and construction in dan-
gerous and inaccessible sites, and rescue operations. Moreover,
it is possible to consider multiple UAVs for cooperative tasks
(e.g., transportation of heavy payload or cooperative building)
like proposed in the ARCAS (Aerial Robotics Cooperative
Assembly System) project [1].

The inclusion of a manipulator not only contributes to
increase the payload but also affects the dynamics of the
system and makes the problem of stability and controllability
much harder. In particular, the behavior of the robot changes
due to the modification of the mass distribution and the
moment of inertia depending on the configuration of the arm.
Moreover, the contact forces during manipulation introduce
further destabilizing effects. These challenges make this prob-
lem interesting and non-trivial.

Our main focus is the design of a robust control law for a
Hexacopter endowed with a two-degrees of-freedom (2-DoF)
arm. In such a system the development of a robust control law
is required to compensate the torque given by the motion of the
arm and its interaction with the environment. Furthermore, the
control has to ensure robustness against parametric uncertain-
ties as well as unmodeled dynamics. We design the equation

of the motion of the whole system using the Newton-Euler
formulation for translational and rotational dynamics of a rigid
body. For modeling the attitude dynamics, we use the quater-
nion approach, which helps to circumvent the singularities that
occur with Euler angles. It allows further improvements in
complex airborne tasks that require singular configurations,
like opening a door or manipulating objects on the ceiling.
Moreover, a quaternion-based controller reduces the compu-
tational cost of an already complex control algorithm. To
control the attitude of the robot we propose a command filtered
backstepping [2] controller. The command filter is an extension
of the backstepping approach that simplifies its implementation
by obviating the need for analytical computation of command
signal derivatives. The main contribution of our work lies in
considering explicitly a time-variant inertia and its derivative
in the mathematical model. This allows us to increase the
robustness of our control with respect to previous control
approaches and, in turn, helps in dealing with unmodeled
parameters that can affect the stability of the robot during
manipulation tasks. We also show with simulations that our
approach is promising for applications that require precise
object manipulation.

The paper is structured as follows: Section III describes
dynamics and kinematics of the system, while Section IV
explains the description of the control system and its stability.
Finally, Section V shows simulation results of the proposed
control, also in comparison with a non-linear PD control.

II. RELATED WORK

To the best of our knowledge, relatively few contributions
have been made in the area of manipulation using areal
vehicles. Many previous approaches focus on contact inspec-
tion [3], [4], slung load transportation [5], [6] or grasping with
a 1-DoF gripper [7], [8]). The latter two approaches also used
a team of robots. For example, Lindsey et al. [9] constructed
a cubic structure with a team of quadrotors. Furthermore,
Micheal et al. [10] manipulated a payload into a desired
position with the use of cables attached to three quadrotors.
These applications focus on grasping and contact tasks without
realizing the complexity of a robotic arm.

Other researchers introduced a multiple degree of freedom
arm, with the intent to expand the capabilities of such a
system and perform more complex actions. For this purpose
both helicopters and multirotors have been used. In Kondak et
al. [11] a small scaled helicopter is equipped with a robotic978-1-4673-9163-4/15/ $31.00 © 2015 IEEE



arm and the interaction forces between the two subsystems
are analyzed. Lippiello et al. [12] present an Euler-Lagrange
formalism for the combined system. They further show that
the Cartesian impedance control establishes a mass-damper-
spring relationship between the motion of the whole system
and the external forces acting on it. Kim et al. [13] designed
a mathematical model of the combined system and developed
an adaptive sliding mode controller. They also performed an
experiment consisting of picking and delivering an object
inside a shelf. Jimenez-Cano et al. [14] proposed a Newton-
Euler approach for the dynamics and used Variable Parameter
Integral Backstepping (VPIB) control. Their controller is able
to stabilize the end-effector in a fixed position for precise aerial
manipulation tasks. They showed good results both with sim-
ulations and with outdoor experiments. Caccavale et al. [15]
proposed a two-layer adaptive controller for tracking motion
references using the Euler-Lagrange formulation. Heredia et
al. [16] developed a large-payload outdoor octocopter endowed
with a 7-DoF arm. They present experiments illustrating the
performance of the backstepping attitude control in challenging
conditions including lateral wind. However, in contrast to our
approach, all these works used an Euler angles parametrization
of the system, which introduces singularities. In addition,
most of them did not analyze the inertial properties of the
system, that affect the robustness of the control for particular
movements of the arm, e.g. when it is moving fast.

Orsag et al. [17] and Korpela et al. [18], [19] used a
Euler angle parametrization for the system and introduced
a mathematical formalism that describes the variations in
the moment of inertia. In their works, the authors pushed
the research field towards complex aerial manipulation. In
particular, they proposed a PI-D attitude control and applied
Routh-Hurwitz stability criteria to stabilize a quadrotor with
dual multi-degree manipulators. They performed experiments
involving grab and drop of a foam block and a long cylinder
as well as valve turning. Due to the slow movements of the
arm, they consider an approximation of the derivative of the
inertia matrix and it does not appear in the equations of
motion. In contrast to them, we introduce it in the mathematical
model and our derived controller is also able to react to fast
movements.

Álvarez-Muñoz et al. [20] employed a quaternion-based
parameterization for such a system. They consider a varying
mass distribution but a symmetric constant inertia matrix. This
allows them to simplify the inertia term in the design of the
control law, as it is not considered explicitly. In contrast to
this, we use time varying inertia. In this way, we improve the
robustness of the proposed control, that is able to adapt to the
substantial changes of the inertia moment.

III. MODEL DESIGN

This section discusses the quaternion-based mathematical
model used for the controller design and analyzes the differ-
ential equations governing the whole system.

A. Coordinate frames and unit quaternion kinematics

To establish the dynamic equations of the system, we need
to define the coordinate frames. Fig. 1 shows the configuration
of the coordinates for the system considered in this paper, i.e.,
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Fig. 1: Configuration of the coordinates of the system.

an hexacopter equipped with a 2-DoF robotic arm. The terms
Ow, Oh and Oli represent world, body and links coordinate
frame respectively. Rotations between the reference frames is
represented by the attitude matrix:

R ∈ SO(3) =
{

R ∈ R3×3 : RT R = I,det(R) = 1
}
, (1)

where I is the 3× 3 identity matrix. The rotation matrix can
be also expressed by the Euler-Rodrigues’ formula using the
quaternion parametrization:

R(q) = I +2η [ε×]+2[ε×]2, (2)

where the cross product between two vectors ω,v ∈ R3 is
represented by a matrix multiplication [w×]v = ω× v. Please
note that a quaternion q = [η εT ]T ∈ R×R3 is a unit vector
and can be represented as:

q =

[
cos β

2
k̂ sin β

2

]
=

[
η

ε

]
. (3)

Is also worth noticing that quaternions q and −q represent
the same attitude but opposite directions of rotation axis. Let
ω = [ωx ωy ωz]

T be the angular velocity vector of the
hexacopter coordinate frame Oh, relative to the world reference
frame Ow. The quaternion kinematics is given by:[

η̇

ε̇

]
=

1
2

[
−εT

ηI +[ε×]

]
ω =

1
2

Q(q)ω. (4)

B. Dynamics and kinematics of the whole system

The rigid body mathematical model of the hexacopter
has been already analyzed in several works and it is well
understood. Typically, it is assumed that the mass distribution
of the hexacopter is symmetric, which lead to simplified model
equations. With the introduction of a manipulator the mass dis-
tribution is no longer symmetric and its movement produces a
twofold effect: a shift in the center of mass and a change in the
moment of inertia. In this section we present the mathematical
model which considers the manipulator configuration.

Considering a hexacopter with a 2-DoF robotic arm, let
θ = [θ1,θ2] be the joint coordinates of the arm. The motion of
the system can be decomposed into translational and rotational
components, whereas the dynamics of the combined system
can be described by the Newton-Euler formalism:

T :
{

ṗ = v
mtot v̇ =−mtotg+R(q)Fb

, (5)

R :
{

q̇ = 1
2 Q(q)ω

Jtot(θ)ω̇ +[[Dθ Jtot(θ)]θ̇ ]ω =−[ω×]Jtot(θ)ω + τtot
,

(6)
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Fig. 2: Position vectors of each links w.r.t. Oh

where p and v are linear position and velocity in body
frame coordinates, g is the acceleration due to gravity, mtot ,
mhexa + marm + mload is the total mass of the system, R(q)
represents the rotation matrix given in Eq. (2) and being
Jtot(θ) the inertia matrix of the system with respect to the
joint angles. Dθ Jtot(θ)∈R3×3×2 is the differential operator of
the inertia matrix with respect to the joint coordinates. As a
consequence, [[Dθ Jtot(θ)]θ̇ ] ∈ R3×3 is the time derivative of
Jtot(θ). Furthermore, Fb , [0 0 ftot ]

T and τtot , τ+τarm(θ)
respectively are the total thrust generated by the rotors and the
total torque acting on the UAV. Both ftot and τ are related
to the six propeller thrusts fi, i = 1, . . . ,6 via the following
relation:

 ftot
τx
τy
τz

=


1 1 1 1 1 1
− d

2 −d − d
2

d
2 d d

2
−
√

3
2 d 0

√
3

2 d
√

3
2 d 0 −

√
3

2 d
−c c −c c −c c




f1
f2
f3
f4
f5
f6

 , (7)

where d is the distance from each motor to the vehicle
center of mass, c , γd/γt , and γd and γt are respectively the
drag and thrust coefficient. τarm is the torque generated by the
arm onto the hexacopter w.r.t. its center, which is displaced
from the center of mass ([20]). In particular,

τarm = marmgζ ×R(q)e3, (8)

where, marm , mlink1 +mlink2 is the mass of the arm, ζ ∈ R3

the position of the center of mass of the hexacopter w.r.t. the
pivot point, and ê3 , [0 0 1]T . ζ can be expressed as:

ζ =
1

mt
[mlink1ρ1 +mlink2ρ2 +mloadρload ], (9)

where mt is the total mass of the manipulator (mlink1 +mlink2 )
and the load (mload). The terms ρi and ρl are the position
vectors of each link and of the load w.r.t. the hexacopter
reference frame. Considering Fig. 2 these position vectors are
given by:

ρ1 =
[
0 lc1 cos(θ1) lc1 sin(θ1)

]T (10a)

ρ2 =
[
0 (l1 + lc2)cos(θ1 +θ2) (l1 + lc2)sin(θ1 +θ2)

]T (10b)

ρl =
[
0 (l1 + l2)cos(θ1 +θ2) (l1 + l2)sin(θ1 +θ2)

]T
, (10c)

where lci is the distance from the joints and the center of mass
of each link, and li is the length of each link. The moment
of inertia of the whole system with respect to the hexacopter
reference frame, as showed in [17] is:

Jtot(θ), Jhexa + Jlink1(θ)+ Jlink2(θ), (11)

τarm

ftot, τ

θ1, θ2

p, q

refarm

Hexacopter Controller

Arm Controller

refhex

Fig. 3: Control scheme of the system.

where Jhexa is the inertia w.r.t. the hexacopter central axis and

Jlinki , RT
x

[Jxx 0 0
0 Jyy 0
0 0 Jzz

]
Rx +mlinki ρ̃i

2, (12)

is the inertia tensor of i-th link. In the formula, Rx transforms
the moment of inertia with respect to the coordinate system of
the hexacopter. The second term is obtained by straightforward
application of Huygens-Steiner theorem and ρ̃i is given by
Eq. (10), written in a skew matrix form.

IV. CONTROL SYSTEM DESIGN

In this section we present the control system architecture
(see Fig. 3) for stabilizing a hexacopter with a moving arm.
The dynamical model presented in the previous section showed
the complexity of the coupled system. In particular, Eq. (5) in-
dicates that the hexacopter is an under-actuated system and the
translational dynamics are strongly coupled with the attitude
dynamics. Furthermore, the movement of the arm introduces
torques (Eq. (8)) and moment of inertia variations (Eq. (11)).
For these reasons, the control system of the hexacopter can be
divided into an outer-loop, for the position, and an inner-loop,
for the attitude. The controller should be able to handle the
significant disturbances caused by the additional torque of the
arm, e.g., holding the position during pick and release phases.
Furthermore, the arm controller should take into account the
motion of the hexacopter, in order to get the end-effector to
reach the desired position.

Our work mainly focuses on attitude control. In fact, such
a controller ultimately needs to compensate and correct the
disturbances produced by the movements and the interactions
of the arm with the environment. Regarding the position
controller we use a standard PID, while the attitude controller
employs a command filtered and quaternion-based backstep-
ping technique. We use the “computed torque control” for the
arm joint control. We first present the design of the position
control, that generates the desired attitude signals for the back-
stepping inner-loop. Subsequently, we design the backstepping
architecture, showing the stability through Lyapunov theory
with respect to mass distribution and inertia changes.

A. Position control

Considering the desired position pd and compensating the
gravity force we can write the PID controller as

v̇d = Kp(pd− p)−Kdv+Ki

∫
(pd− p)dt +g. (13)

Here, Kp � 0, Kd � 0, Ki � 0 are proportional, derivative
and integral gain matrix respectively. To calculate the desired



attitude for the inner-loop controller, we can combine the
previous expression with Eq. (5), obtaining

v̇d = R(qd)

 0
0
ftot

mtot

 . (14)

The direction of the thrust is

f̂ =
v̇d

‖ v̇d ‖
, (15)

where

‖v̇d‖= ‖R(qd)‖

∥∥∥∥∥∥
 0

0
ftot

mtot
.

∥∥∥∥∥∥=
 0

0
‖ ftot ‖

mtot

 , (16)

We can express the desired attitude as

q̇d =

[
cos βd

2
k̂d sin βd

2

]
, (17)

where,

k̂d =
[
ê×3
]

f̂ ,

βd = atan2(
√

1− f̂ 2, f̂ ).
(18)

B. Command filtered backstepping attitude control

The design of the recursive backstepping algorithm and the
notation used are similar to the procedure presented in Zhao et
al. [2] with the difference of having a time dependent inertia
matrix.

Step 1: We define a backstepping virtual control variable
ωc to ensure that the attitude of the vehicle tracks the desired
attitude qd(t). We also set q(t) to be the current attitude of the
hexacopter and q̃(t) its tracking error, expressed as quaternion
product:

q̃(t), q(t)⊗qd(t)−1. (19)

To simplify the notation, hereafter the variables are not explic-
itly shown as a function of time t.

The robot’s attitude q is aligned to the desired attitude qd
whenever

q̃ = [η̃ ε̃]
T
= [±1 0 0 0]T . (20)

The attitude dynamic error ˙̃q is represented as:

˙̃q =

[ ˙̃η
˙̃ε

]
=

1
2

[
−ε̃T

η̃I +[ε̃×]

]
ω̃, (21)

where we define ω̃ , ω −ωc. Considering the backstepping
variable ε̃ , its derivative is:

˙̃ε =
1
2

T (q̃)(ω−R(q̃)ωd) =

=
1
2

T (q̃)(ωc + ω̃−R(q̃)ωd)
(22)

where T (q̃), η̃I+[ε̃×]. Computation of ωd , the corresponding
angular velocity of qd , is defined in the next subsection.
Considering the first Lyapunov function candidate

V1 = ε̃
T

ε̃ +(1− η̃)2. (23)

The time derivative of V1 is

V̇1 = 2ε̃
T ˙̃ε−2(1− η̃) ˙̃η (24)

and noticing that ε̃T [ε̃×] = 0, we obtain

V̇1 = ε̃
T (ωc + ω̃−R(q̃)ωd). (25)

Choosing
ωc =−K1ε̃ +R(q̃)ωd , (26)

we obtain
V̇1 =−ε̃

T K1ε̃ + ε̃
T

ω̃, (27)

which is negative definite if ω̃ = 0. Here, K1 = KT
1 ∈R3×3 � 0

is a feedback gain matrix.

Step 2: The goal is to choose a control law τ(t) such that
the actual angular rate ω(t) tracks the desired angular velocity
ωc(t). To calculate the dynamics of the tracking error related
to the angular velocity ω̃ , we use the second equation in (6).
Due to brevity of space we represent Jtot(θ) as Jtot . Observing
that the following equalities hold:

Jtot( ˙̃ω + ω̇c)+ [[Dθ Jtot ]θ̇ ](ω̃ +ωc) =

− (ω̃ +ωc)× Jtot(ω̃ +ωc)+ τtot ,
(28)

Jtot ˙̃ω +[[Dθ Jtot ]θ̇ ]ω̃ =−(ω̃ +ωc)× Jtot(ω̃ +ωc)

− Jtotω̇c + τtot − [[Dθ Jtot ]θ̇ ]ωc,
(29)

we obtain:

Jtot ˙̃ω +[[Dθ Jtot ]θ̇ ]ω̃ = Σ(ω̃,ωc)ω̃− [ω×c ]Jtotω̃

+ϒ(ωc, ω̇c)+ τ + τarm
(30)

where

ϒ(ωc, ω̇c) = [(Jtotωc)
×]ωc− Jtotω̇c− [[Dθ Jtot ]θ̇ ]ωc

Σ(ω̃,ωc) = [(Jtotω̃)×]+ [(Jtotωc)
×].

(31)

Considering the second Lyapunov function candidate

V2 =V1 +
1
2

ω̃
T Jtot(θ)ω̃ (32)

its time derivative is

V̇2 =−ε̃
T K1ε̃ + ε̃

T
ω̃ + ω̃

T Jtot ˙̃ω +
1
2

ω̃
T [[Dθ Jtot ]θ̇ ]ω̃. (33)

adding and subtracting
1
2

ω̃T [[Dθ Jtot(θ)]θ̇ ]ω̃ we obtain:

V̇2 =− ε̃
T K1ε̃ + ε̃

T
ω̃ + ω̃

T (Jtot ˙̃ω +[[Dθ Jtot ]θ̇ ]

− 1
2
[[Dθ Jtot ]θ̇ ]ω̃).

(34)

Finally, using Eq. (30),

V̇2 =− ε̃
T K1ε̃ + ε̃

T
ω̃ + ω̃

T (Σω̃− [ω×c ]Jtotω̃ +ϒ+

+ τ + τarm−
1
2
[[Dθ Jtot ]θ̇ ]ω̃).

(35)

choosing the control law

τ =−K2ω̃− ε̃−ϒ− τarm +[ω×c ]Jtotω̃ +
1
2
[[Dθ Jtot ]θ̇ ]ω̃ (36)

and noticing that ω̃T Σω̃ = 0, we obtain

V̇2 =−ε̃
T K1ε̃− ω̃

T K2ω̃ (37)



which is a negative definite function of ε̃ and ω̃ . Here,
K2 = KT

2 ∈ R3×3 � 0 is a feedback gain matrix. This means
that, under the control law proposed in Eq. (36), the aerial
manipulator tracks the desired attitude. It is worth noting that
the proposed control includes feed forward terms in order to
compensate for the torque of the arm τarm and it also takes
into account Jtot(θ).

C. Command filtered backstepping

In the previous subsection we designed a backstepping
control law by using virtual control signals and their deriva-
tives. The analytical computation of the command derivative
ω̇c increases the complexity of the algorithm, making on-board
implementation difficult. The introduction of a command filter
in the backstepping design obviates the need of an analytical
derivation, making computation more feasible. For an in-depth
analysis of this mathematical tool we refer to Farrel et al. [21].
Furthermore, in order to maintain the unit norm property for
quaternion we introduce a second order quaternion filter that
computes the derivative of the command quaternion q̇d and its
angular acceleration ω̇d . Considering ωn the natural frequency
and ξ ∈ (0,1] the damping ratio, the command filter is designed
as: [

ωc
ω̇c

]
=

[
x1
x2

]
=⇒

{
ẋ1 = x2

ẋ2 =−ωn(x1−u)−2ξ ωnx2
(38)

where u = ωo
c = −K1ε̃ + R(q̃)ωd . In particular, considering

the desired output signal ωo
c as the input of the filter, the

latter ensures that the error ωc−ωo
c goes to 0. Regarding the

quaternion command filter, it is designed as

q̇d =
1
2

Q(qd)ωd

ω̇d =−ω
2
n ε̃−2ξ ωnωd .

(39)

It ensures that:

q̃d = qd⊗ (qo
d)
−1 = [±1 0 0 0]T . (40)

V. EXPERIMENTS

For testing the efficacy of our controller, we performed a set
of simulations in a MATLAB environment. For the recursive
Newton-Euler dynamics model of the manipulators we use the
Robotics Toolbox [22]. The simulator implements the whole
quaternion-based non-linear model of the system and it also
includes an animation. Furthermore, to make it more realistic
we add the noise due to the sensors, aerodynamic friction of the
air and we apply bounds on the control action. The simulation
parameters are as follow: mh = 3 Kg, mli = 0.35 Kg, d = 0.60
m, li = 0.30 m. The initial conditions are zero except for the
configuration of the arm θ1 = −80°, θ2 = 164° and for the
vertical position of the robot pz = 0.25 m.

Figures 4 to 7 show the simulations results. In the first
simulation, the hexacopter hovers while the arm moves from a
totally extended horizontal position to a fully extended vertical
position. The goal is to verify the variations of the moment of
inertia, shown in Fig. 4. The motion of the arm causes opposite
effects on Jxx, Jyy, which increase, and Jzz, which decreases.

In the second simulation, the goal is to grab with the end-
effector an object from a known position. Once the hexacopter
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Fig. 4: Variations of the moment of inertia.
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Fig. 5: End-effector position with PD (a) and backstepping attitude control
(b).

reaches the designed position, the arm moves towards the
object and grabs it. We show a comparison between two
different attitude controllers: a quaternion based non-linear
PD, that does not account for the disturbances caused by the
arm, and the command filtered backstepping. Fig. 5 shows the
trajectory of the end-effector in the vertical plane (Y-Z) and the
position of the object. The final position of the end-effector at
the end of the arm trajectory using the PD controller (Fig. 5a)
has a distance of about 18 cm respect to the designed position,
against the about 1 cm of the proposed controller (Fig. 5b).
Therefore, the use of the backstepping technique performs the
task better, whereas the PD control is not even able to grab
the object.

Finally, Fig. 6 shows the roll, pitch and yaw attitude
angles, while Fig. 7 shows the linear position of the hexacopter
(dashed line) respect to the reference values. Note that
although we consider a quaternion parametrization, we use
Euler angles to represent the attitude in the graphs, in order to
make them more intuitive. It can be seen that when the arm
starts to move, around 9 sec, its movement causes an oscillation
to the hexacopter around the x axes, that the PD is not able to
compensate. This results in a wrong position of the center of
mass of the hexacopter along the y axis, causing a discrepancy
between the position of the object and the final position of
the end-effector. It is clear that even small oscillations can
compromise the success of the task. Our approach reduces
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Fig. 6: Angular position with PD (a) and backstepping attitude control (b).
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Fig. 7: Linear position with PD (a) and backstepping attitude control (b).

the oscillation, thereby allowing the end-effector to reach the
desired position.

VI. CONCLUSIONS

In this paper we presented a mathematical model that
characterizes the coupled interaction between a Hexacopter
and its 2-DoF robotic arm using a non-linear and robust control
algorithm. We employed a quaternion-based representation to
deal with singularities and, unlike previous works, we explic-
itly considered the derivative term of the moment of inertia.
In addition, we utilized a command filtered implementation
of the backstepping approach to reduce the complexity of the
algorithm. We showed that with our approach the controller is
able to compensate for the changes that occur in the system
during the movements of the arm. In simulation experiments
we demonstrated the robustness of our control strategy and
an increased performance in comparison with a standard non-
linear PD controller. In future work we plan to evaluate our
algorithm also with a real robotic platform and to generalize
our approach so that it is able to estimate the mass the robot
is carrying. In addition, we want to investigate the designed
control scheme in the context of tasks that imply singularities
in the pose of the robot.
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