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Abstract—People tracking is an important yet chal-
lenging task for mobile robots operating in populated
environments and interacting with humans. What
makes this problem difficult is that human behavior is
complex and hard to predict. However, motion of peo-
ple, the rate at which people appear and where they
appear are not random but strongly place-dependent
and follow patterns that are engendered by the envi-
ronment. In this paper we make use of such informa-
tion for the purpose of people tracking. Concretely,
we learn a probabilistic representation, called spatial
affordance map, to spatially ground activity events
acquired by observing people in the environment. This
representation is a non-homogeneous spatial Poisson
process for which we derive expressions for life-long
Bayesian learning. We show how the spatial affor-
dance map can be used to compute refined probability
distributions over hypotheses in a multi-hypothesis
tracker and to make better, place-dependent predic-
tions of human motion. In experiments with real data
from a laser range finder, we demonstrate how both
extensions lead to more accurate tracking behavior.
The system runs in real-time on a typical desktop
computer.

I. Introduction

As robots enter more domains in which they interact
and cooperate closely with humans, people tracking is
becoming a key technology for several areas in robotics
such as human-robot interaction, intelligent cars or hu-
man activity understanding.

In this paper we pursue the approach to learn and
represent human spatial behavior for improved people
tracking. Human activity is strongly place-dependent. By
learning a spatial model that represents activity events
in a global reference frame and on large time scales,
the robot acquires place-dependent priors on human
behavior. As we will demonstrate, such priors can be used
to better hypothesize about the state of the world (that
is, the state of people in the world), and to make place-
dependent predictions of human motion that better re-
flect how people are using space. Concretely, we propose
a non-homogeneous spatial Poisson process to represent
the spatially varying distribution over relevant human
activity events for people tracking. The representation,
called spatial affordance map, holds space-dependent
Poisson rates for the occurrence of track events such as
creation, confirmation or false alarm. The map is then
incorporated into a multi-hypothesis tracking framework
using data from a laser range finder.

All authors are with the Social Robotics Lab, Depart-
ment of Computer Science, University of Freiburg, Germany
{luber,tipaldi,arras}@informatik.uni-freiburg.de.

In most related work on laser-based people tracking
[1], [2], [3], [4], [5], [6], [7], a person is represented as a
single state that encodes torso position and velocities.
People are extracted from range data as single blobs or
found by merging nearby point clusters that correspond
to legs. The problem of people tracking has also been
addressed as a leg tracking problem [8], [9], [10] where
people are represented by the states of two legs, either
in a single augmented state [9] or as a high-level track to
which two low-level leg tracks are associated [8], [10].

Different tracking and data association approaches
have been used for laser-based people tracking. The
nearest neighbor filter and variations thereof are typically
employed in earlier works [1], [2], [3]. A sample-based
joint probabilistic data association filter (JPDAF) has
been presented in Schulz et al. [4] and adopted by Topp
et al. [5]. The Multi-hypothesis tracking (MHT) approach
according to Reid [11] and Cox et al. [12] has been used in
[8], [7], [10]. What makes the MHT an attractive choice
is that it belongs to the most general data association
techniques. The method generates joint compatible as-
signments, integrates them over time, and is able to deal
with track creation, confirmation, occlusion, and deletion
events in a probabilistically consistent way. Other multi-
target data association techniques such as the global
nearest neighbor filter, the track splitting filter or the
JPDAF are suboptimal in nature as they simplify the
problem in one or the other way [13], [14]. For this
reasons, the MHT has become a widely accepted tool
in the target tracking community [14].

The MHT framework assumes that new track and
false alarm events are uniformly distributed in the sensor
field of view with fixed Poisson rates. This assumption
is justified in settings for which the approach has been
originally developed (using, e.g., radar or underwater
sonar). However, in the context of people tracking with
vision or laser these models are overly simplified. Par-
ticularly since people do not use environments randomly
but move, appear and disappear at specific locations that
correspond, for instance, to doors, entrances, or convex
corners. Further, false alarms are more likely to arise in
areas with cluttered backgrounds rather than in open
spaces. In this paper, we extend the MHT approach by
incorporating learned distributions over track interpreta-
tion events that serve as domain knowledge to the system
to better hypothesize about the state of the world.

For motion prediction of people, most researchers em-
ploy the Brownian motion model and the constant ve-
locity motion model. The former makes no assumptions



about the target dynamics, the latter assumes linear
target motion. Better motion models for people tracking
have been proposed by Bruce and Gordon [15] and Liao
et al. [16].

In [15], the robot learns goal locations in an envi-
ronment from people trajectories obtained by a laser-
based tracker. Goals are found as end points of clustered
trajectories. Human motion is then predicted along paths
that a planner generates from the location of people
being tracked to the goal locations. The performance of
the tracker was improved in comparison to a Brownian
motion model. Liao et al. [16] extract a Voronoi graph
from a map of the environment and represent the state
of people being on edges of that graph. This allows them
to predict motion of people along the edges that follow
the topological shape of the environment.

With maneuvering targets, a single model can be
insufficient to represent the target’s motion. Multiple
model based approaches in which different models run
in parallel and describe different aspects of the target
behavior are a widely accepted technique to deal with
maneuvering targets, in particular the Interacting Multi-
ple Model (IMM) algorithm [17]. Different target motion
models are also studied by Kwok and Fox [18]. The
approach is based on a Rao-Blackwellized particle filter
to model the potential interactions between a target
and its environment. The authors define a discrete set
of different target motion models from which the filter
draws samples. Then, conditioned on the model, the
target is tracked using Kalman filters.

Our approach extends prior work in two aspects, learn-
ing and place-dependent motion prediction. Opposed to
[16], [18] and IMM related methods, we do not rely on
predefined motion models but apply learning for this
task in order to acquire place-dependent models. In
[16], the positions of people is projected onto a Voronoi
graph which is a topologically correct but metrically poor
model for human motion. While sufficient for the purpose
of their work, there is no insight why people should
move on a Voronoi set, particularly in open spaces whose
topology is less well defined. Our approach, by contrast,
tracks the actual position of people and predicts their
motion according to metric, place-dependent models.
Opposed to [15] where motion prediction is done along
paths that a planner plans to a set of goal locations, our
learning approach predicts motion along the trajectories
that people are actually following.

The paper is structured as follows: the next section
gives an overview of the people tracker that will later be
extended. Section III introduces the theory of the spatial
affordance map and expressions for learning its parame-
ters. Section IV describes how the spatial affordance map
can be used to compute refined probability distributions
over hypotheses, while section V contains the theory for
the place-dependent motion model. Section VI presents
the experimental results followed by the conclusions in
section VII.

Fig. 1. An example scene from experiment 2 (frame 185) where
three people are being tracked.

II. Multi-Hypothesis Tracking of People

For people tracking, we pursue a Multi-Hypothesis
Tracking (MHT) approach described in Arras et al. [10]
based on the original MHT by Reid [11] and Cox and
Hingorani [12]. As we will use the tracker to learn the
spatial affordance map described hereafter, we give a
short outline. Sections IV and V, where the approach
will be extended, contains the technical details.

Summarizing, the MHT algorithm hypothesizes about
the state of the world by considering all statistically
feasible assignments between measurements and tracks
and all possible interpretations of measurements as false
alarms or new track and tracks as matched, occluded or
obsolete. A hypothesis Ωt

i is one possible set of assign-
ments and interpretations at time t.

For learning the spatial affordance map, the hypothesis
with maximal probability Ωt

best at time t is chosen to
produce the track events that subsequently serve as
observations for the map. In case of a sensor mounted on
a mobile platform, we assume the existence of a metric
map of the environment and the ability of the robot
to self-localize. Observations are then transformed from
local, robot-centric coordinates into the world reference
frame of the map.

III. Spatial Affordance Map

The spatial affordance map is a non-homogeneous
spatial Poisson process. This section describes the theory
and how learning is implemented in this application of a
Poisson process.

A Poisson distribution is a discrete distribution to
compute the probability of a certain number of events
given an expected average number of events over time or
space. The parameter of the distribution is the positive
real number λ, the rate at which events occur per time
or volume units. As we are interesting in modeling events
that occur randomly in time, the Poisson distribution is
a natural choice.

Based on the assumption that events in time occur
independently of one another, a Poisson process can
deal with distributions of time intervals between events.
Concretely, let N(t) be a discrete random variable to
represent the number of events occurring up to time t



with rate λ. Then we have that N(t) follows a Poisson
distribution with parameter λt

P (N(t) = k) =
e−λt(λt)k

k!
k = 0, 1, . . . (1)

In general, the rate parameter may change over time. In
this case, the generalized rate function is given as λ(t)
and the expected number of events between time a and
b is

λa,b =
∫ b

a

λ(t) dt. (2)

A homogeneous Poisson process is a special case of a
non-homogeneous process with constant rate λ(t) = λ.

The spatial Poisson process introduces a spatial depen-
dency on the rate function given as λ(~x, t) with ~x ∈ X
where X is a vector space such as R2 or R3. For any
subset S ⊂ X of finite extent (e.g. a spatial region),
the number of events occurring inside this region can
be modeled as a Poisson process with associated rate
function λS(t) such that

λS(t) =
∫

S

λ(~x, t) d~x. (3)

In the case that this generalized rate function is a
separable function of time and space, we have:

λ(~x, t) = f(~x)λ(t) (4)

for some function f(~x) for which we can demand∫
X

f(~x) d~x = 1 (5)

without loss of generality. This particular decomposition
allows us to decouple the occurrence of events between
time and space. Given Eq. 5, λ(t) defines the occurrence
rate of events, while f(~x) can be interpreted as a proba-
bility distribution on where the event occurs in space.

Learning the spatio-temporal distribution of events in
an environment is equivalent to learn the generalized rate
function λ(~x, t). However, learning the full continuous
function is a highly expensive process. For this reason,
we approximate the non-homogeneous spatial Poisson
process with a piecewise homogeneous one. The approxi-
mation is performed by discretizing the environment into
a bidimensional grid, where each cell represents a local
homogeneous Poisson process with a fixed rate over time,

Pij(k) =
e−λij (λij)k

k!
k = 0, 1, . . . (6)

where λij is assumed to be constant over time. Finally,
the spatial affordance map is the generalized rate func-
tion λ(~x, t) using a grid approximation,

λ(~x, t) '
∑

(i,j)∈X

λij1ij(~x) (7)

with 1ij(~x) being the indicator function defined as

1ij(x) =
{

1 if x ∈ cellij ,
0 if x /∈ cellij .

(8)

The type of approximation is not imperative and goes
without loss of generality. Other space tessellation tech-
niques such as graphs, quadtrees or arbitrary regions of
homogeneous Poisson rates can equally be used. Subdi-
vision of space into regions of fixed Poisson rates has
the property that the preferable decomposition in Eq. 4
holds.

Each type of human activity event can be used to
learn its own probability distribution in the map. We
can therefore think of the map as a representation with
multiple layers, one for every type of event. For the
purpose of this paper, the map has three layers, one
for new tracks, for matched tracks and for false alarms.
The first layer represents the distribution and rates of
people appearing in the environment. The second layer
can be considered a space usage probability and contains
a walkable area map of the environment. The false alarm
layer represents the place-dependent reliability of the
detector.

A. Learning
In this section we show how to learn the parameter

of a single cell in our grid from a sequence K1..n of
n observations ki ∈ {0, 1}. We use Bayesian inference
for parameter learning, since the Bayesian approach can
provide information on cells via a prior distribution. We
model the parameter λ using a Gamma distribution,
as it is the conjugate prior of the Poisson distribution.
Let λ be distributed according to the Gamma density,
λ ∼ Gamma(α, β), parametrized by the two parameters
α and β,

Gamma(λ;α, β) =
βα

Γ(α)
λα−1e−β λ for λ > 0. (9)

Then, learning the rate parameter λ consists in estimat-
ing the parameters of a Gamma distribution. At discrete
time index i, the posterior probability of λi according to
Bayes’ rule is computed as

P (λi|K1..i) ∼ P (ki|λi−1)P (λi−1) (10)

with P (λi−1) = Gamma(αi−1, βi−1) being the prior and
P (ki|λi−1) = P (ki) from Eq. 6 the likelihood. Then by
substitution, it can be shown that the update rules for
the parameters are

αi = αi−1 + ki βi = βi−1 + 1. (11)

The posterior mean of the rate parameter in a single cell
is finally obtained as the expected value of the Gamma,

λ̂Bayesian = E[λ] =
α

β
=

#positive events + 1
#observations + 1

. (12)

For i = 0 the quasi uniform Gamma prior for α = 1, β =
1 is taken. The advantages of the Bayesian estimator are
that it provides a variance estimate which is a measure
of confidence of the mean and that it allows to properly
initialize never observed cells.

Given the learned rates we can estimate the space
distribution of the various events. This distribution is



obtained from the rate function of our spatial affordance
map λ(~x, t). While this estimation is hard in the general
setting of a non-homogeneous spatial Poisson process,
it becomes easy to compute if the separability property
of Eq. 4 holds1. In this case, the pdf, f(~x), is obtained
by

f(~x) =
λ(~x, t)
λ(t)

(13)

where λ(~x, t) is the spatial affordance map. The nomi-
nator, λ(t), can be obtained from the map by substitut-
ing the expression for f(~x) into the constraint defined
in Eq. 5. Hence,

λ(t) =
∫

X

λ(~x, t) d~x. (14)

In our grid, those quantities are computed as

f(~x) =

∑
(i,j)∈X λij1ij(~x)∑

(i,j)∈X λij
. (15)

In case of several layers in the map, each layer contains
the distribution f(~x) of the respective type of events.
Note that learning in the spatial affordance map is
simply realized by counting in a grid. This makes life-long
learning particularly straightforward as new information
can be added at any time by one or multiple robots.

Figure 2 shows two layers of the spatial affordance map
of our laboratory, learned during a first experiment. The
picture on the left shows the space usage distribution of
the environment. The modes in this distribution corre-
spond to often used places and have the meaning of goal
locations in that room (two desks and a sofa). On the
right, the distribution of new tracks is depicted whose
peaks denote locations where people appear (doors). The
reason for the peaks at other locations than the doors is
that when subjects use an object (sit on a chair, lie on the
sofa), they cause a track loss. When they reenter space,
they are detected again as new tracks.

IV. MHT With Spatial Information

The Multi-Hypothesis Tracking approach has its roots
in the target tracking community and was designed
for sensors such as radar or underwater sonar. When
employed with data from a mobile platform with cameras
or laser range finders, it is questionable if the same sta-
tistical assumptions hold. The MHT assumes a Poisson
distribution for the occurrences of new tracks and false
alarms over time and a uniform probability of these
events over space within the sensor field of view V . While
this is a valid assumption for a radar aimed upwards into
the sky, this is unrealistic for people being tracked by
a mobile robot. The arrival of people is well modeled
by a Poisson distribution but is clearly non-uniform
over space. People typically appear and disappear at
specific locations that correspond, for instance, to doors,
entrances, or convex corners.

1Note that for a non-separable rate function, the Poisson process
can model places whose importance changes over time.

Fig. 2. Spatial affordance map of the laboratory in experiment 1.
The probability distribution of matched track events is shown on
the left, the distribution of new track events is shown on the
right. The marked locations in each distribution (extracted with
a peak finder and visualized by contours of equal probability) have
different meanings. While on the left they correspond to places that
are often used by people (two desks and a sofa), the maxima of the
new track distribution (right) denote locations where people appear
(two doors and a sofa).

It is exactly this information that the spatial affor-
dance map holds. We can therefore seamlessly extend
the MHT approach with the learned Poisson rates for the
arrival events of people and learned location statistics for
new tracks and false alarms.

At time t, each possible set of assignments and inter-
pretations forms a hypothesis Ωt

i. Let Z(t) = {zi(t)}mt
i=1

be the set of mt measurements which in our case is the
set of detected people in the laser data. For detection, we
use a learned classifier based on a collection of boosted
features [19]. Let further ψi(t) denote a set of assignments
which associates predicted tracks to measurements in
Z(t) and let Zt be the set of all measurements up to time
t. Starting from a hypothesis of the previous time step,
called a parent hypothesis Ωt−1

p(i), and a new set Z(t), there
are many possible assignment sets ψ(t), each giving birth
to a child hypothesis that branches off the parent. This
makes up an exponentially growing hypothesis tree. For
a real-time implementation, the growing tree needs to be
pruned. To guide the pruning, each hypothesis receives
a probability, recursively calculated as the product of a
normalizer η, a measurement likelihood, an assignment
set probability and the parent hypothesis probability
[11],

p(Ωt
l | Zt) = η · p(Z(t) | ψi(t),Ωt−1

p(i)) (16)

p(ψi(t) | Ωt−1
p(i), Z

t−1) · p(Ωt−1
p(i) | Z

t−1).

While the last term is known from the previous iteration,
the two expressions that will be affected by our extension
are the measurement likelihood and the assignment set
probability.

For the measurement likelihood, we assume that a
measurement zi(t) associated to a track xj has a Gaus-
sian pdf centered on the measurement prediction ẑj(t)
with innovation covariance matrix Sij(t), N (zi(t)) :=
N (zi(t) ; ẑj(t), Sij(t)). The regular MHT now assumes
that the pdf of a measurement belonging to a new track
or false alarm is uniform in V , the sensor field of view,



with probability V −1. Thus

p(Z(t) | ψi(t),Ωt−1
p(i)) = V −(NF +NN ) ·

mt∏
i=1

N (zi(t))δi (17)

with NF and NN being the number of measurements
labeled as false alarms and new tracks respectively. δi is
an indicator variable being 1 if measurement i has been
associated to a track, and 0 otherwise.

Given the spatial affordance map, the term changes as
follows. The probability of new tracks V −1 can now be
replaced by

pN (~x) =
λN (~x, t)
λN (t)

=
λN (~x, t)∫

V
λN (~x, t) d~x

(18)

where λN (~x, t) is the learned Poisson rate of new tracks
in the map and ~x the position of measurement z′i(t)
transformed into global coordinates. The same derivation
applies for false alarms. Given our grid, Eq. 18 becomes

pN (~x) =
λN (z′i(t), t)∑
(i,j)∈V λij,N

. (19)

The probability of false alarms pF (~x) is calculated in the
same way using the learned Poisson rate of false alarms
λF (~x, t) in the map.

The original expression for the assignment set proba-
bility can be shown to be [10]

p(ψi(t) | Ωt−1
p(i), Z

t−1) = η′ · pNM

M · pNO

O · pND

D (20)

λNN

N · λNF

F · V (NF +NN )

where NM , NO, and ND are the number of matched,
occluded and deleted tracks, respectively. The parame-
ters pM , pO, and pD denote the probability of matching,
occlusion and deletion that are subject to pM +pO+pD =
1. The regular MHT now assumes that the number
of new tracks NN and false alarms NF both follow a
fixed rate Poisson distribution with expected number of
occurrences λNV and λFV in the observation volume V .

Given the spatial affordance map, they can be replaced
by rates from the learned spatial Poisson process with
rate functions λN (t) and λF (t) respectively.

Substituting the modified terms back into Eq. 16
makes, like in the original approach, that many terms
cancel out leading to an easy-to-implement expression
for a hypothesis probability

p(Ωt
l | Zt) = η′′ · pNM

M · pNO

O · pND

D ·
mt∏
i=1

[N (zi(t))δi (21)

λN (z′i(t), t)
κi · λF (z′i(t), t)

φi ] · p(Ωt−1
p(i) | Z

t−1)

with δi and κi being indicator variables whether a track
is matched to a measurement or new, respectively, and
φi indicating if a measurement is declared to be a false
alarm.

The insight of this extension of the MHT is that we
replace fixed parameters by learned distributions. This
kind of domain knowledge helps the tracker to better

interpret measurements and tracks, leading to refined
probability distributions over hypotheses at the same
run-time costs.

V. Place-Dependent Motion Models

Tracking algorithms rely on the predict-update cycle,
where a motion model predicts the future target posi-
tion which is then validated by an observation in the
update phase. Without validation, caused, for instance,
by the target being hidden during an occlusion event, the
state evolves blindly following only the prediction model.
Good motion models are especially important for people
tracking as people typically undergo lengthy occlusion
events during interaction with each other or with the
environment.

As motion of people is hard to predict, having a precise
model is difficult. People can abruptly stop, turn back,
left or right, make a step sideways or accelerate suddenly.
However, motion of people is not random. In particular, it
follows patterns that are strongly place-dependent. They,
for instance, turn around convex corners, avoid static
obstacles, stop in front of doors and do not go through
walls. Clearly, the Brownian and the constant velocity
motion model are unable to capture the complexity of
these movements and even higher-order models would be
a very approximate choice.

For this reason, we extend the constant velocity mo-
tion assumption with a place-dependent model derived
from the learned space usage distribution in the spatial
affordance map. Let xt = ( xt yt ẋt ẏt )T be the
state of a track at time t and Σt its covariance estimate.
The motion model p(xt|xt−1) is then defined as

p(xt|xt−1) = N (xt;F xt−1, F Σt−1 F
T +Q) (22)

with F being the state transition matrix. The entries in
Q represent the acceleration capability of a human. We
extend this model by considering how the distribution of
the state at a generic time t is influenced by the previous
state and the map. This distribution is approximated by
the following factorization

p(xt|xt−1,m) ' p(xt|xt−1) · p(xt|m) (23)

where m is the spatial affordance map and p(xt|m) =
f(x) denotes the space usage probability of the portion
of the environment occupied by xt, as defined by Eq. 15.

A closed form estimation of this distribution does not
exist since the map contains a general density, poorly
described by a parametric distribution. We therefore
follow a sampling approach and use a particle filter
to address this estimation problem. The particle filter
is a sequential Monte Carlo technique based on the
importance sampling principle. In practice, it represents
a target distribution in form of a set of weighted samples

p(xt|xt−1,m) '
∑

i

w(i)δ
x
(i)
t

(xt). (24)



Fig. 3. Trajectory of a person in experiment 2 taking a left turn
during an occlusion event. Predictions from a constant velocity
motion model (dashed ellipse) and the new model (solid ellipse) are
shown. The background grid (in blue) shows the learned space usage
distribution of the spatial affordance map. The small black dots are
the weighted samples of the place-dependent motion model. The
model is able to predict the target “around the corner” yielding
much better motion predictions in this type of situations.

where δ
x
(i)
t

(xt) is the impulse function centered in x
(i)
t .

Sampling directly from that distribution is not possible
so the algorithm first computes samples from a so called
proposal distribution, π. The algorithm, then, computes
the importance weight related to the i-th sample that
takes into account the mismatch among the target dis-
tribution τ and the proposal distribution w = τ

π . The
weights are then normalized such that

∑
w = 1.

In our case, we take the constant velocity model to
derive the proposal π. The importance weights are then
represented by the space usage probability

w(i) =
p(xt|xt−1,m)

p(x(i)
t |t−1)

= p(x(i)
t |m). (25)

The new motion model has now the form of a weighted
sample set. Since we are using Kalman filters for tracking,
the first two moments of this distribution is estimated by

µ̂ =
∑

i

w(i)x
(i)
t (26)

Σ̂ =
∑

i

w(i)(µ̂− x
(i)
t )(µ̂− x

(i)
t )T . (27)

The target is then predicted using µ̂ as the state pre-
diction with associated covariance Σ̂. Obviously, the last
step is not needed when using particle filters for tracking.

An example situation that exemplifies how this motion
model works is shown in Figure 3. A person that takes
a left turn in a hallway is tracked over a lengthy occlu-
sion event. The constant velocity motion model (dashed
ellipse) predicts the target into a wall and outside the
walkable area of the environment. The place-dependent
model (solid ellipse) is able to follow the left turn with
a state covariance in the shape of the hallway. In other
words, the model predicts the target“around the corner”.
The tracker with the constant velocity motion loses track
as the reappearing person is outside the validation gate
(shown as 95% ellipses).

VI. Experiments

For the experiments we collected two data sets, one in
a laboratory (experiment 1, Figure 4) and one in an office
building (experiment 2, Figure 6). As sensors we used a
fixed Sick laser scanner with an angular resolution of 0.5
degree.

The spatial affordance maps were trained based on the
tracker described in [10], the grid cells were chosen to be
30 cm in size. The parameters of the tracker have been
learned from a training data set with 28 tracks over 889
frames. All data associations including occlusions have
been hand-labeled. This led to a matching probability
pM = 0.515, an occlusion probability pO = 0.472, a
deletion probability pD = 0.013, a fixed Poisson rate for
new tracks λN = 0.033 and a fixed Poisson rate for false
alarms as λF = 0.0011. The rates have been estimated
using the Bayesian approach in Eq. 12.

The implementation of our system runs in real-time on
a 2.8 GHz quad-core CPU. The cycle time of a typical
setting with NHyp = 50, 500 samples for the particle
filter, and up to eight parallel tracks is around 12 Hz
when sensor data are immediately available.

A. MHT with Spatial Information

The original MHT is compared to the approach using
the spatial affordance map on the data set from the lab-
oratory over 4588 frames and with a total number of 130
people entering and leaving the sensor field of view. The
ground truth has been determined by manual inspection.
For the comparison we count the total number of tracks
that are created by the current best hypotheses of the
two tracking methods. This value is indication of the
tracking accuracy, especially of the ability to deal with
track occlusion. We use a pruning strategy which limits
the maximum number of hypotheses at every step to
NHyp (the multi-parent variant of the pruning algorithm
proposed by Murty [20]). In order to show the evolution
of the error as a function of NHyp, the computational
effort, NHyp is varied from 1 to 50. The results are shown
in Figure 5.

The result shows a significant improvement of the ex-
tended MHT over the regular approach. The explanation
is given by an example. As can be seen in Figure 2 right,
few new track events have been observed in the center of
the room. If at such a place a track occlusion occurs (e.g.
from another person), hypotheses that interpret this as
an obsolete track followed by a new track receive a much
smaller probability through the spatial affordance map
than hypotheses that assume this to be an occlusion. The
fact that the green graph in Figure 5 is below the ground
truth indicates that the modified approach favors track
occlusions slightly too much over deletion/creation pairs.
The result however demonstrates clearly that the spatial
affordance map enables a tracker to better hypothesize
about the state of tracks, leading to a more accurate
tracking behavior.



Fig. 4. Four (of 28) example tracks from experiment 1.

Fig. 5. The total number of tracks as a function of NHyp, the
number of generated hypotheses. The tracking experiment had 4588
frames with a total of 130 people. The red line shows the MHT
approach, the dotted green line the extended approach. The graph
shows that replacing the fixed Poisson rates by the ones in the
spatial affordance map improves the tracking accuracy significantly.

B. Place-Dependent Motion Model

In the second experiment, the constant velocity motion
model is compared to our place-dependent motion model.
A training set over 7443 frames with 50 person tracks
in a office-like environment was recorded to learn the
spatial affordance map (see Figure 6 and Figure 3). A test
set with 1611 frames and eight people tracks was used
to compare the two models. The data set was labeled
by hand to determine both, the ground truth positions
of people and the true data associations. In order to
make the task more difficult, we defined areas in which
target observations are ignored as if the person had been
occluded by an object or another person. These areas
were placed at hallway corners and U-turns where people
typically maneuver. As the occlusion is simulated, the
ground truth position of the targets is still available. As
a measure of accuracy, the posterior position estimates of
both approaches to the ground truth is calculated. The
resulting estimation error in x is shown in Figure 7 (the
error in y is similar).

The diagram shows much smaller estimation errors
and 2σ bounds for the place-dependent motion model
during target maneuvers. An important result is that the
predicted covariances do not grow boundless during the
occlusion events (peaks in the error plots). As illustrated
in Figure 3, the shape of the covariance predictions
follows the walkable area map at the very place of the

Fig. 6. Six (of 50) example tracks from experiment 2.

Fig. 7. Comparison between constant velocity motion model
(top) and place-dependent motion model (bottom). Peaks corre-
spond to occluded target maneuvers (turns around corners and U-
turns). Fig. 3 shows the left turn of a person at step 217 of this
experiment. While both approaches are largely consistent from a
estimation point of view, the place-dependent model results in an
overall smaller estimation error and smaller uncertainties. For eight
manually inspected tracks, the constant velocity motion model lost
a track three times while the new model had no track loss.

target. Smaller covariances lead to lower levels of data
association ambiguity, and thus, to decreased computa-
tional costs and more accurate probability distribution
over pruned hypothesis trees.

For eight manually inspected tracks, the constant ve-
locity motion model lost a track three times while the
new model had no track loss. By tuning the entries of the
process noise covariance Q, the constant velocity motion
model can be made to avoid such losses, but this is clearly
the wrong way to go as it brings along an even higher
level of data association ambiguity.



VII. Conclusions

In this paper we presented an extended multi-
hypothesis approach to laser-based people tracking that
incorporates information on how people use space.

We proposed a non-homogeneous spatial Poisson pro-
cess, called spatial affordance map, to represent the
spatially varying distributions over track interpretation
events of a MHT tracker and derive expressions for
Bayesian learning of the map.

The spatial affordance map enabled us to relax and
overcome the simplistic fixed Poisson rate assumption
for new tracks and false alarms in the MHT approach.
Using a learned spatio-temporal Poisson rate function,
the system was able to compute refined probability distri-
butions over hypotheses, resulting in a significantly more
accurate tracking behavior in terms of steady track iden-
tities. The map further allowed us to derive a new, place-
dependent model to predict target motion. The model
showed superior performance in predicting maneuvering
targets especially during lengthy occlusion events when
compared to a constant velocity motion model.

In the future, we plan to extend the representation to
a non-stationary Poisson process.
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