
Learning to Guide Random Tree Planners in High Dimensional Spaces

Jörg Röwekämper Gian Diego Tipaldi Wolfram Burgard

Fig. 1. Example paths for a mobile manipulation platform computed with RRT-Connect [13] (left) and our approach (right). Red indicates the area covered
by the robot manipulators and blue that of the robot base. Note that our approach returns smoother paths with fewer movements of the manipulators.

Abstract— In this paper we present the projection and bias
heuristic (PBH), a motion planning algorithm that makes use of
low-dimensional projections to improve sampling-based plan-
ning algorithms. In contrast to other state-of-the-art methods,
we do not assume that projections are either random or given
by an expert user. Rather, our goal is to learn projections
such that planning on them improves the efficiency and the
quality of solutions. We present both, a method to learn
effective projections and a sampling algorithm that makes use
of them. We show that our approach can be easily integrated
into popular sampling-based planners. Extensive experiments
performed in simulated environments demonstrate that our
approach produces paths that are in general shorter than those
obtained with state-of-the-art algorithms. Moreover, it generally
requires less computation time.

I. INTRODUCTION

Path planning is a key requisite to obtain the desirable
navigation autonomy for mobile robots. With the increasing
complexity and structure of robots, one needs to consider
high dimensional state spaces. This is especially true when
considering mobile manipulation tasks, that require to plan
for the mobile platform and the manipulator at the same time.

Given the high dimensionality, researchers started to move
away from the classical paradigm of finding global optimal
plans and started to explore randomized algorithms to trade
efficiency with optimality. The randomized path planner
(RPP) [2] can be considered the first work in this direction
while the probabilistic roadmap planner (PRM) [11] can be
considered the pioneer of current sampling based algorithms.
The idea of sampling was also introduced for single-query
tree-based planners with expansive space trees (EST) [8],
and one of the most popular algorithms is represented by
the rapidly exploring random tree (RRT) algorithm [15, 14].

All authors are with the Department of Computer Science at the Univer-
sity of Freiburg, Germany.

This work has partly been supported by the German Reserach Foundation
under contract number EXC1086 and by the European Commission under
contract number ERC-267686-LifeNav.

The main idea is to grow a tree of motions from the current
configuration of the robot (start) to a desired configuration
(goal), depending on the performed task. The original idea
of RRT has been extended and several effective heuristics to
speed up the search have been proposed [22, 20, 16].

However, when the state space grows, deciding which part
of the tree to expand and in which direction is not trivial. To
overcome this problem, recently proposed approaches use a
low-dimensional projection to guide the random sampling
and mitigate the curse of dimensionality. For example, a
common approach for mobile manipulators is to first plan
motions in the low-dimensional projection of the mobile
base towards the goal and use the full joint space only
when the current configuration in the workspace is close
to the goal. Although effective in most of the cases, this
solution is highly engineered and requires the user to define
valid projections and heuristics on when to switch between
them. Automatically finding a good projection is still an open
problem [19, 21].

In this paper, we aim at relaxing the need for an expert
user to define valid heuristics and projections for different
kinds of configuration spaces. Although valid solutions have
been proposed for well known kinematic chains, no general
and principled technique is known on how to adapt those
heuristics to different robots or how to learn them from
data. We strongly believe that it is not necessary to explore
the whole state space every time, but that certain regions
of the state space are more important for certain tasks or in
particular steps of the planning phase. By allowing the search
to be performed only in those regions, we are able to increase
the efficiency of sample-based planning. This idea shares
some grounds with the task and motion planning approach
of Sucan et al. [19], where several planning problems on
different configuration subspaces are run in parallel and
the algorithm gives more computational resources to the
most promising one. In this work, instead of trying different



configurations, we aim at learning a function that returns
an effective projection and sampling bias. The function is
learned from a set of randomly generated planning problems
by maximizing the success rate of planning, i. e., the ratio
between rejected samples (due to collisions) and total gen-
erated samples.

We integrated our approach in both the RRT [15] and the
RRT-Connect [13] algorithms and performed an extensive set
of experiments using two simulated environments. We com-
pared the performance of our approach with state-of-the-art
planning algorithms for both unidirectional and bidirectional
planners. The results show that our approach produces paths
that are in general shorter than state-of-the-art algorithms and
in less time in most of the cases.

II. RELATED WORK

Sampling-based motion planning is an effective means to
solve complex path planning problems and one of the most
popular paradigms for planning in high dimensional spaces.
Many different planning algorithms have been developed
such as RRT [15], PRM [11], EST [8], kinematic planning
by interior-exterior cell exploration (KPIECE) [18] and more.
Works on projections for deterministic planning algorithms,
such as [7, 5, 3], are also presented but are considered out
of the scope of this work.

The RRT algorithm was introduced by La Valle and
Kuffner [15]. Since then, several heuristics to improve the
sampling have been developed. Urmson et al. [22] proposed
a set of heuristic functions to bias the search towards low-
cost solutions. The heuristic guidance is applied by weighting
the probability density function used to build the random
tree. Kuffner et al. [12] introduced the space-filling trees, the
analogous of space-filling curves with a tree-like structure.
The trees are defined by an incremental process to ensure that
every point in the space is reachable by a finite length path.
Bidirectional trees have also been introduced to improve
efficiency [13]. The algorithm grows two separate trees: one
from start to goal and another from goal to start. The motiva-
tion of the approach is that random trees tend to have a good
coverage close to the starting point and a more sparse one in
places far from them. By expanding two trees in parallel, one
obtains a better coverage of the space and a faster algorithm.
Karaman et al. [9, 10] modified the sampling algorithm
and proved some optimality guarantees for sampling-based
planners. The resulting algorithm, RRT*, is able to eventually
find the optimal solution given that enough samples have
been drawn. To improve the performance of RRT* in high
dimensional spaces, Agkun et al.presented a modification of
the sampling heuristic for RRT* [1] to address its limitations
in high-dimensional configuration spaces. They introduced
both a sampling bias and a simple node-rejection criterion
to increase efficiency. Sucan et al. [20] presented a compre-
hensive survey on recently developed heuristics.

More related to the approach presented here are works on
planning on state space projections to improve efficiency and
coverage. Projections are used for example in KPIECE [18]
to approximate the coverage of the configuration space.

The authors employed a multi-level grid-based discretization
to estimate the coverage of the state space and focus the
exploration on less covered areas. While in the original
approach projections were assumed to be given by a user, in
a successive work [21] the performance of commonly used
projections are compared to random projections. The results
showed than random projections perform on par or even
better that user-defined ones, while being easier to obtain. In
a similar way, researchers explored the use of workspace pro-
jections and decompositions instead of state space ones. In
the synergistic combination of layers of planning algorithm
(SyCLoP), Plaku et al. [17] decompose the workspace and
connect the resulting regions in a graph to encode physical
adjacency. This graph is then searched to obtain sequences
of regions that can be explored with sampling-based tree
methods to obtain a final solution. Maly et al. [16] extended
SyCLoP to perform the high-level decomposition over a
given low-dimensional projected subspace. They evaluated
the performance of SyCLoP with random projections, user
provided ones and linear dimensionality reduction. Brock
and Kavraki [4] propose to capture the relevant connectivity
of the free space in a low-dimensional projection and then
plan for the degrees of freedom in the original space. The
projections used in those approaches, however, are either
random or rely on expert users to provide them. On the
contrary, the focus of this paper is to learn such projections
in a way that planning on them simultaneously improves
solution efficiency and quality.

From a different perspective, but closely related to pro-
jections for efficient planning, Sucan et al. introduced the
concept of task and motion planning [19]. They decompose
the planning problem into a set of smaller problems of
reduced dimensionality and perform planning for a limited
time on each of those problems. Furthermore, they use a
high-level task planner to select which problem to consider
next. Our approach follows a similar idea but applies directly
in the motion planning algorithm. Instead of using high-
level reasoning to decide which projection to use, we learn
a function that returns the best one at any state in the
configuration space.

III. PLANNING WITH LOW-DIMENSIONAL PROJECTIONS

We consider a motion planning problem p as a search
problem in the configuration space X of a robot R aiming
at finding a valid path in the free space Xfree ⊆ X from an
initial state xstart to a goal state xgoal .

In the remaining of the paper, we use a bi-manual mobile
manipulator as a motivational example and follow the nota-
tion of [19] to describe the state space and its projections.
We further restrict ourselves to consider a special class of
projections, i. e., the ones implicitly defined by a subset of
the available joints of the robot.

Let J be the set of joints of R and XJ the associated
state space. Let J = {Ji | Ji ∈ 2J \∅} the set of all possible
combinations of joints in J , where 2J is the power set of
J and each subset Ji defines a low-dimensional space Xi.
Let further Ja ⊆ J define the possible set of joints to plan



Algorithm 1 Expand Tree

Tk = expandTree(Tk−1)
1: xr ← Sample(XJ)
2: xn ← SelectNode(xr)
3: (Jactive , Jpassive ,xbias)← H(d(xn,xgoal))
4: xactive ← ExpandLazy(xn,xr, Jactive)
5: xpassive ← ExpandLazy(xn,xbias , Jpassive)
6: x← Liftactive(xactive ,xpassive)
7: if Collide(x) then
8: return Tk−1

9: else
10: return GrowTree(Tk−1,x)

motions from start to goal. Let Project i : XJ → Xi be
the function that projects a point in a low-dimensional space
and Lift i : Xi × XJ \ Xi → XJ be the function that lifts
a point from a low-dimensional space to the original one.
Given x ∈ Xi and y ∈ XJ \ Xi, we define z = Lift i(x,y)
to be the state that has the same values as x for the joints
in Ji and the same value as y for the joints in J \ Ji. A
common assumption is that Ja is provided by the user and
contains a limited number of joint sets. Moreover, a random
tree is grown in each Jj ∈ Ja by iteratively projecting and
lifting a high-dimensional sample onto the low-dimensional
space and vice-versa. This is the approach used in [19].

In this paper, we relax the assumptions that valid pro-
jections must be provided by the user and avoid that the
planning algorithm must switch between each of these pro-
jections. Let us assume for now that there is a function

H : R≥0 → J×XJ (1)

that computes a projection Jactive ∈ J and a configuration
bias xbias ∈ XJ given the distance d(xcurr,xgoal) between
the current configuration of the robot and the goal configu-
ration. The idea behind this function is that by 1) growing
the tree in the low-dimensional space Jactive and 2) guiding
the sampling towards xbias in J \ Jactive , we can reduce
the number of samples needed to reach the goal. In the next
section, we describe how such a function can be learned from
randomly generated planning problems.

This function can be easily integrated in any tree-based
sampling algorithm. We choose to integrate it within both
RRT [15] and RRT-Connect [13]. We replaced the sampling
method of RRT with the following algorithm, whose pseudo-
code is shown in Algorithm 1. First, a node in the cur-
rent tree is selected for expansion by sampling a random
state xr from XJ (1) and selecting the closest state xn

in the tree (2). Then, we compute the distance between
xn and xgoal to compute Jactive , Jpassive = J \ Jactive
and xbias from H(d(xn,xgoal)). We project xn and xr

onto the low-dimensional space Jactive , compute xactive and
connect it to the tree as in the standard RRT algorithm.
A similar expansion is then performed in Jpassive , where
we project xn and xbias instead and compute xpassive . The
two projected trees are then lifted to the original space
XJ using Liftactive(xactive ,xpassive). The sample is finally
accepted if no collision is detected in XJ . To account for
probabilistic completeness of the algorithm, we sample in

Algorithm 2 Rank Low-Dimensional Projections

Ĵ = rankProjections(Np, J, ai, ai+1, t)
11: P ← GenerateRandomProblemsFreeSpace(Np, ai, ai+1)
12: Ĵ ← ∅
13: for all Ji ∈ J do
14: ntotal ← SolveLowDimensionalProblems(P , Ji ,Nr , t)
15: if ntotal 6= null then
16: Ĵ ← Ĵ ∪ {(Ji, ntotal)}
17: return SortProjections(Ĵ)

the full configuration space with probability 0.05.
For RRT-Connect, we only modified the sampling method,

similarly to the RRT, without changing the connection strat-
egy. The only difference is that the role of xstart and xgoal

is switched for the start tree.

IV. LEARNING LOW-DIMENSIONAL PROJECTIONS

In this section we describe our algorithm to learn the
function H : R≥0 → J × XJ from data. Our aim is
to obtain a generic solution that requires as little external
prior information from an expert user as possible. The only
components required by our approach are:
• A model of environment in which we can simulate a

set a planning problems.
• A collision checking module that tests whether a con-

figuration collides with obstacles.
• A distance function d(xi,xj) between states xi and xj .
To make the learning process computationally feasible,

we discretize R≥0 in a set of intervals and assume H to
be a piecewise constant function on those intervals. Given
a minimum size for the intervals amin and a number of
intervals k, we chose the intervals to be [ai, ai+1) , where
a0 = 0, ai = amin2

i−1, i = 1, · · · , k − 1 and ak = ∞. By
exploiting the dynamic programming principle, it is possible
to learn the function independently for each interval. Suppose
for any state x with d(x,xgoal) < ai there exist a motion
to reach the goal qgoal using some H . This is true if we
suppose that a solution to the planning problem using the
full configuration space exists and have H(·) = (J,xgoal).
Then we only need to learn the function H to compute
Jactive and xbias such that we can reach some state xn with
d(xn,xgoal) < ai from any state x with ai ≤ d(x,xgoal) <
ai+1.

The learning process is composed of two parts. In the first
part, we simulate a set of planning problems in free space to
obtain a ranking of the set of projections J. We then simulate
a set of planning problems in an environment with obstacles
to select the best projection Ji and bias xbias that minimize
the number of rejected samples due to collisions.

A. Ranking Low-Dimensional Projections in Free Space

For each interval we first employ Algorithm 2 to rank
the set of projections J. This will be used in the next step
to speed-up the search of the best pair of projection and
bias. The algorithm proceeds as follow. First we generate
a set of Np random planning problems P in absence of
obstacles for the interval [ai, ai+1), that is with starting
configuration xstart s.t. ai ≤ d(x,xstart) < ai+1 and



Algorithm 3 Select Bias and Projection

(Ji,xbias) = learnFunction(Np, Nbias , Nr, Ĵ , ai, ai+1, t)
18: P ← GenerateRandomProblems(Np, ai, ai+1)
19: repeat
20: (Jactive , Jpassive)← SelectBestProjection(Ĵ)
21: Q← GenerateRandomStates(Nbias , Jpassive)
22: for all x ∈ Q do
23: nsuccess ← SolveProblems(P , Ji ,x,Nr , t)
24: if nsuccess 6= null ∧ nsuccess > nbest then
25: nbest ← nsuccess

26: xbias ← x
27: Ĵ ← Ĵ \ Jactive

28: until xbias 6= null
29: return (Jactive ,xbias)

termination condition d(x,xgoal) < ai. We then solve each
planning problem in P , with an RRT planner in the low-
dimensional space Xi, for each joint set Ji ∈ J for Nr

times. When a solution is found, we return the number of
tree expansion steps ntotal that the RRT performed and add
the pair (Ji, ntotal) to the set Ĵ . If no solution is found after
a time t we abort the search and discard the projection Ji.
The set Ĵ is then sorted according to ntotal .

B. Computing the Best Projection and Configuration Bias

Once the possible projections have been computed and
sorted, a similar algorithm is performed to obtain the best
combination of projection and bias (Algorithm 3). We again
consider each interval separately and start by generating a
set of Np random planning problems P in the presence
of obstacles for the interval [ai, ai+1). The algorithm then
iterates until a valid pair (Jactive ,xbias) is found. We first
extract the best Jactive from Ĵ . We then generate a set Q
of Nbias random states xbias for the joints in Jpassive =
J \Jactive as candidate biases. Then, we solve each planning
problem in P with an RRT by only sampling in the low-
dimensional space Xi and fixing the remaining joints on
xbias for each bias xbias ∈ Q for Nr times. When a
solution is found, we return the success rate of the planner
nsuccess , i.e., the ratio between the number of times the tree
was expanded and the number of total trials. This number
represents the success rate of a random sample to expand
the tree in a collision free area. If no solution is found after
a time t we abort the search and discard the projection Ji.
Otherwise, we return the pair (Jactive ,xbias), whose xbias

reported the maximum success rate.

V. EXPERIMENTS

We performed an extensive set of experiments using two
simulated environments: office-like and maze-like. A third
environment was used to learn the projections and the biases.
As robotic platform, we simulated an omnidirectional mobile
manipulator with a cylindrical base and two manipulators
with 5 degrees of freedom each, resulting in a 13 DOF in
total. The simulated environments are modeled as 2.5D with
size of 20m by 10m: the manipulators are constrained to
planar motion and obstacles can collide with the base only,
the arms only or all of them. Figure 3 shows the environ-
ment we used during the learning phase, while Figures 5

Fig. 3. Environment used to learn the heuristic function.

nsuccess = 0.48 nsuccess = 0.68

Fig. 4. Examples of bad (left) and good (right) configurations of xbias ,
learned for the passive set Jpassive . The base of the robot is depicted in
blue, while the arms in red. Note that the system implicitly learned that
folding the arms lead to a reduced footprint and a better chance of success.

and 6 show the office-like and the maze-like environments
respectively. The start and goal position for the experiments
are also indicated in the figures.

Different planning problems with different characteristics
were tested. Scenarios A→B and B→A represent problems
where the start and goal configurations are very far away in
the state space. In the scenarios A→C and C→B we tested
how the planner performs if the start or goal configurations
are in a restricted area where several maneuvers are needed
to avoid collisions. Finally, D→E represents scenarios of
middle distances and F→G scenarios where the movement
of the base is very minimal.

We used the Open Motion Planning Library [6] as a refer-
ence implementation to compare our approach with standard
planners from the library such as KPIECE, bi-directional
KPIECE (BKPIECE), RRT, RRT*, and RRT-Connect. All
experiments were performed on the same desktop PC. We
ran each planning problem 50 times and averaged the results.
If a planning problem did not finish after t = 10min we
abort the search and did not use the results for computing
the average. For all planners we used a goal bias of 5%. We
used Euclidean distance in configuration space for the nearest
neighbor search with a planner range set to 5. For KPIECE,
we tried several projections to determine the coverage. The
best results were produced by projecting the right end effec-
tor into the workspace and using a discretization of 0.25m.
We evaluated our approach with unidirectional (Table I) and
bidirectional (Table II) planners.

For learning the proposed function H , we used the fol-
lowing values for the parameters: Np = 10, Nbias = 1500,
Nr = 20, amin = 0.25, k = 4, and t = 5min . As a distance
function d(xi,xj) we used the Euclidean distance between



Fig. 5. Office environment used for comparison with the start and goal
configurations for the different problems tested in the experiments.

Fig. 6. Maze environment used for comparison with the start and goal
configurations for the different problems tested in the experiments.

the end-effector pose of the right manipulator at the two
states. Finally, the special SE (2) space of the mobile base
was considered as one joint with 3 DOF. In this scenario,
the algorithm learned that the best projection up to 0.5m
distance to the goal is the one given by only the base joints.
In the interval [0.25, 0.5) the best projection consist of the
base, the first three joints of the right manipulator and the
third joint of the left manipulator. When getting closer to the
goal, the whole configuration space is used. Figure 4 shows
two examples of xbias for the interval [1,∞). The image
on the right of the figure shows the best configuration with
nsuccess = 0.68 and the one on the left an example of a poor
configuration with nsuccess = 0.48.

A. Results

The results of our experiments for the office environment
are shown in Table I and Table II. For PBH, the timings
only report planning time and not learning time. We only
learned H once in an offline phase and used he same H for
all the problems and the environments. For the unidirectional
case, KPIECE and our approach (RRT + PBH) are the only
planners that returned a solution for all the cases in scenarios
A→B and B→A. If we look at the resulting path length we
see that RRT + PBH consistently provide shorter paths than
both KPIECE and RRT. As for planning time, RRT + PBH
is either the fastest planner (A→B) or the second fastest
(B→A). The results for D→E are similar to B→A.

Scenario A→C shows some of the limitations of the
proposed approach. The planner gets stuck in the confined
space at the beginning and is not able to successfully return a
valid path all the time. Its behavior is similar to that of RRT

TABLE I. Unidirectional planners map office environment

Scenario Planner Time (s) Success (%) Length
KPIECE 12.344 100 423.6

A→B RRT 9.277 16 124.2
RRT* 25.075 26 70.9

RRT + PBH 6.211 100 83.7
KPIECE 18.100 100 436.8

B→A RRT 197.700 34 153.7
RRT* 245.272 20 70.9

RRT + PBH 22.164 100 105.5
KPIECE 77.067 96 311.6

A→C RRT 79.361 8 98.04
RRT* - 0 -

RRT + PBH 443.687 2 87.5
KPIECE 4.374 100 218.8

C→B RRT 45.303 34 90.0
RRT* 16.086 26 45.7

RRT + PBH 5.319 100 64.5
KPIECE 2.001 100 95.6

D→E RRT 80.580 26 36.1
RRT* 165.773 14 20.1

RRT + PBH 6.357 100 39.9
KPIECE 0.161 100 61.6

F→G RRT - 0 -
RRT* - 0 -

RRT + PBH 0.891 100 36.9

TABLE II. Bidirectional planners office environment

Scenario Planner Time (s) Success (%) Length
BKPIECE 49.088 100 675.0

A→B RRT-Connect 2.696 100 126.0
RRT-Connect + PBH 1.401 100 73.8

BKPIECE 47.225 100 454.1
B→A RRT-Connect 2.714 100 125.7

RRT-Connect + PBH 1.642 100 73.6
BKPIECE 47.551 100 454.1

A→C RRT-Connect 3.084 100 88.9
RRT-Connect + PBH 2.829 100 60.4

BKPIECE 10.104 100 401.3
C→B RRT-Connect 1.320 100 77.9

RRT-Connect + PBH 2.338 100 59.0
BKPIECE 0.343 100 137.5

D→E RRT-Connect 0.110 100 30.7
RRT-Connect + PBH 0.168 100 22.9

BKPIECE 0.175 100 121.6
F→G RRT-Connect 0.028 100 21.8

RRT-Connect + PBH 0.028 100 22.0

without projections but still better than RRT*. The coverage
property of KPIECE lets it achieve a 100% success rate. The
main reason behind the failure of PBH is the fact that the
robot tends to move the arms towards the bias and this results
on many samples being discarded.

In Scenario C→B the start position is still confined but to
a minor extent. There, RRT + PBH obtain a success rate of
100%, the same as KPIECE, while RRT and RRT* only have
a success rate of 34% and 26%. RRT + PBH also return the
shortest paths. In the last planning scenario F→G, no path
was found for both RRT and RRT*, where our approach and
KPIECE have a success rate of 100%.

Table II shows the results of bidirectional planners. All
planners had a success rate of 100%. It should be noted that
although the same projections were used, BKPIECE takes
more time than KPIECE in most of the scenarios. This is
probably due to the fact that both directions are covered and
when start and goal are farther apart more time is needed.
Another important aspect to note is that when we apply PBH
to RRT-Connect, we obtain 100% success rate in all the
scenarios. We believe that this is due to the fact that our



TABLE III. Bidirectional planners maze environment

Scenario Planner Time (s) Success (%) Length
BKPIECE 10.875 100 1058.8

A→B RRT-Connect 37.396 100 402.7
RRT-Connect + PBH 5.745 100 146.5

BKPIECE 11.668 100 1068.3
B→A RRT-Connect 43.309 100 396.9

RRT-Connect + PBH 6.730 100 147.7

heuristic now implicitly depends on both the distance to the
goal (goal-tree) and to the start position (start-tree). With re-
spect to planning time and path length, RRT-Connect + PBH
consistently provides shorter paths and requires less time
most of the times. Figure 1 shows two example paths
returned by RRT-Connect and RRT-Connect + PBH for the
scenario A→B. In the path returned by RRT-Connect the
arms of the robot constantly move, resulting in a longer
overall path. With our approach, the arms do not move much
during motion and the footprint is minimized. Please note
that no prior knowledge was used to force this behavior.
Rather it has been learned from randomly generated planning
problems.

Finally, to show how the learned heuristic generalizes to
different environments we also evaluated the bidirectional
planners in a maze environment (Table III). The advantage
of Jactive and xbias becomes important in this case and the
experimental results clearly demonstrate that. In this envi-
ronment, RRT-Connect + PBH is always the fastest planner
and provides the shortest paths.

B. Discussion

Although the experiments demonstrate that PBH can dras-
tically improve the performance of both RRT and RRT-
Connect, there are situations where its usage results in
a decrease in performance. One example is provided by
scenario A→C, where the planner could not reach the goal
configuration in most of the cases. The learned projection
Jactive did not include the part of the joint space needed
to obtain a valid path, since none of the random planning
problems used for learning contained a scenario similar to
A→C.

Please also note that the way KPIECE and our approach
employ projections is also different. KPIECE uses the pro-
jection to estimate the coverage of the state space to decide
where to extend the tree, while we combine it with RRT and
RRT-Connect and still randomly sample a state and extend
the tree from the nearest state. We mainly use the projection
to have a selective bias and extend the tree towards the
random sample in Jactive and towards xbias in Jpassive . This
results in KPIECE trying to explore the whole state space
while our approach tends to explore only parts of it.

VI. CONCLUSION

In this paper we presented PBH, a planning algorithm
that makes use of low-dimensional projections to improve
sampling-based planning algorithms. In contrast to other
methods, our approach does not rely on user-defined pro-
jections, but instead uses a heuristic function to obtain good
projections according to the distance between the current and

the goal configuration. We further show how such a function
can be learned from a set of randomly generated planning
problems and obtained by maximizing the success rate of
planning. We integrated our approach into both the RRT and
the RRT-Connect algorithms and compared it with state-of-
the-art planners. The experimental results demonstrated that
PBH produces paths that are in general shorter then those
obtained with state-of-the-art algorithms and furthermore
requires less time in most of the cases.

REFERENCES
[1] B. Akgun and M. Stilman. Sampling heuristics for optimal motion

planning in high dimensions. In IEEE/RSJ Int. Conf. on Intel. Rob.
and Sys. (IROS), 2011.

[2] J. Barraquand and J.-C. Latombe. Robot motion planning: A dis-
tributed representation approach. Int. Journal of Robotics Research,
10(6):628–649, 1991.

[3] D. Berenson, P. Abbeel, and K. Goldberg. A robot path planning
framework that learns from experience. In IEEE Int. Conf. on Rob. &
Aut. (ICRA), 2012.

[4] O. Brock and L. E. Kavraki. Decomposition-based motion planning:
A framework for real-time motion planning in high-dimensional
configuration spaces. In IEEE Int. Conf. on Rob. & Aut. (ICRA),
2001.

[5] B. J. Cohen, S. Chitta, and M. Likhachev. Search-based planning for
manipulation with motion primitives. In IEEE Int. Conf. on Rob. &
Aut. (ICRA), 2010.

[6] I. A. Şucan, M. Moll, and L. E. Kavraki. The Open Motion Planning
Library. IEEE Robotics & Automation Magazine, 19(4):72–82, 2012.

[7] K. Gochev, A. Safonova, and M. Likhachev. Planning with adaptive
dimensionality for mobile manipulation. In IEEE Int. Conf. on Rob.
& Aut. (ICRA), 2012.

[8] D. Hsu, J.-C. Latombe, and R. Motwani. Path planning in expansive
configuration spaces. In IEEE Int. Conf. on Rob. & Aut. (ICRA), 1997.

[9] S. Karaman and E. Frazzoli. Incremental sampling-based algorithms
for optimal motion planning. In Proc. of Robotics: Science and
Systems (RSS), 2010.

[10] S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and S. Teller.
Anytime motion planning using the RRT*. In IEEE Int. Conf. on
Rob. & Aut. (ICRA), 2011.

[11] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces. IEEE Trans. on Rob. and Aut., 12(4):566–580, 1996.

[12] J. J. Kuffner and S. M. LaValle. Space-filling trees: A new perspective
on incremental search for motion planning. In IEEE/RSJ Int. Conf. on
Intel. Rob. and Sys. (IROS), 2011.

[13] J. J. Kuffner Jr and S. M. LaValle. RRT-connect: An efficient approach
to single-query path planning. In IEEE Int. Conf. on Rob. & Aut.
(ICRA), 2000.

[14] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning.
Int. Journal of Robotics Research, 20(5):378–400, 2001.

[15] S. M. LaValle and J. J. Kuffner Jr. Randomized kinodynamic planning.
In IEEE Int. Conf. on Rob. & Aut. (ICRA), 1999.

[16] M. R. Maly and L. E. Kavraki. Low-dimensional projections for
syclop. In IEEE/RSJ Int. Conf. on Intel. Rob. and Sys. (IROS), 2012.

[17] E. Plaku, L. E. Kavraki, and M. Y. Vardi. Discrete search leading
continuous exploration for kinodynamic motion planning. In Proc. of
Robotics: Science and Systems (RSS), 2007.

[18] I. Şucan and L. Kavraki. Kinodynamic motion planning by interior-
exterior cell exploration. Algorithmic Foundation of Robotics VIII,
pages 449–464, 2009.

[19] I. A. Sucan and L. E. Kavraki. Mobile manipulation: Encoding motion
planning options using task motion multigraphs. In IEEE Int. Conf. on
Rob. & Aut. (ICRA), 2011.

[20] I. A. Sucan and L. E. Kavraki. On the implementation of single-query
sampling-based motion planners. In IEEE Int. Conf. on Rob. & Aut.
(ICRA), 2010.

[21] I. A. Sucan and L. E. Kavraki. On the performance of random
linear projections for sampling-based motion planning. In IEEE/RSJ
Int. Conf. on Intel. Rob. and Sys. (IROS), 2009.

[22] C. Urmson and R. Simmons. Approaches for heuristically biasing
RRT growth. In IEEE/RSJ Int. Conf. on Intel. Rob. and Sys. (IROS),
2003.


