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Abstract— Networks of laser range finders are a popular
tool for monitoring large cluttered areas and to track people.
Whenever multiple scanners are used for this purpose, one
major problem is how to determine the relative positions of
all the scanners. In this paper, we present a novel approach
to calibrate a network of multiple planar laser range finders
scanning horizontally. To robustly deal with the potentially
restricted overlap between the fields of view, our approach
only requires a dynamic object, e.g., a person, moving through
the observed area. We employ a RANSAC-like algorithm to
find the correspondences between the measurements of the
different laser range finders. Based on these correspondences
we formulate a graph-based optimization problem to determine
the maximum likelihood extrinsic parameters of the sensor
network. Furthermore, we present a method to evaluate the
consistency of the resulting calibration based on visibility
constraints. Experiments on real and simulated data show that
the proposed approach yields better results than techniques
that only perform pairwise calibration.

I. INTRODUCTION

Laser range finders are widely used sensors in robotics
and in industry. Applications often aim to acquire spatial
information about the environment, to avoid obstacles, to
build maps or to localize a mobile robot in a map. They
have been further used to track people, to monitor areas or to
implement safety zones, i.e., to detect humans and switch off
dangerous machines when they are too close. For surveying
a larger area, typically a network of multiple laser range
finders is necessary. At the same time, for financial reasons,
one seeks to minimize the number of sensors in the network,
thereby reducing the overlap between their field of view.

Calibrating such a sensor network can be tedious, espe-
cially when the overlap between the visible areas of the
individual scanners is small. Standard calibration algorithms
often rely on predefined patterns or calibration aids [11,
22, 16]. These calibration patterns solve the perceptual
aliasing problem and improve the data association between
the observations. Afterwards, these methods employ scan
matching algorithms to align the associated measurements
and estimate the extrinsic parameters. In practice, the use
of dedicated calibration aids is not helpful in the context of
laser range scanners. At the same time, without aids, data
association is more problematic which directly influences
the calibration results as scan matching algorithms require
a good initial guess.
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Fig. 1. Top: Experimental setup with five laser range finders with unknown
poses. Bottom: Calibrated network using our approach. The colored wave-
fronts show the field of view of the individual laser range finders (depicted
as dots of the same color). The size of the environment is 27× 11.5m2.

In this paper we present a novel approach to calibrate
a network of multiple stationary, horizontally scanning 2D
laser range finders with limited overlap. We formulate the
extrinsic calibration problem as a joint maximum likelihood
estimation problem, in which we jointly estimate the ex-
trinsic parameters of all the laser range finders at once.
We model the optimization in a similar fashion to bundle
adjustment [21] and seek to minimize the reprojection error
of corresponding measurements from all laser range finder
pairs and all timestamps. To address the problem of gauge
freedom and non-observability of the whole system, we fix
one range finder to stay at the center of the global reference
frame. Our approach differs from most other calibration
techniques, which perform only pairwise calibration between
one master sensor and all the others. We do not rely on any
predefined calibration pattern and we automatically compute
a valid initial guess for the nonlinear optimization problem
exploiting the moving object. For providing a valid initial
guess to the nonlinear least square problem, we assume that
a moving object, e.g., a person, is present in the environment.
Furthermore, we developed a consistency measure for the
final calibration result, which we use to analyze the calibra-
tion results and improve them. We furthermore assume is
that the graph built from the overlaps between the visibility
areas of the individual scanners is connected, and that a



single dynamic object is moving through all overlapping
areas, i.e., traversing every edge of the graph. We do not
assume a specific laser range finder, nor we require a specific
resolution, frequency or field of view. The sensor network
can contain different types of laser range finders and only
requires that they are mounted horizontally and that they
provide consistent timestamps for their measurements.

II. RELATED WORK

Sensor calibration is a well studied field and many ap-
proaches have been developed in the last decades. In this
section, we mainly focus on approaches that perform cali-
bration of multiple sensors without the need of a calibration
pattern. We will not cover calibration algorithms for only
intrinsic parameters, nor calibration of an individual sensor
relative to the coordinate frame of a robot.

Many researchers focused on calibrating cameras with
respect to the laser range finder. For example, Zhang and
Pless [22] proposed a tool for camera-laser calibration.
They use a planar checkerboard pattern and to seek for
correspondences between the observations of a camera and
a laser range finder. They propose a direct solution and
a non-linear refinement step. Pandey et al. [16] extended
the work to 3D using a panoramic camera and a velodyne
scanner. Zhao et al. [23] presented a pairwise calibration
system between multiple laser range finders and cameras.
They perform the calibration of the sensors is with respect
to a common reference frame on the car and rely on a given
pairwise data association between points in the camera and
points in the scan. Mirzaei et al. [15] propose an approach
to jointly estimate the intrinsic parameters of a 3D laser
range finder and its extrinsic parameters with respect to a
camera. They divide the problem into two separate least
square minimization tasks and find a closed-form solution
to precisely determine an initial guess. Levinson and Thrun
[12] exploit depth discontinuities in laser data and edges
in images to estimate the 6-DoF transformation between a
Velodyne sensor and a camera. All these methods assume
that the involved sensors cover the same area and thus have
largely overlapping fields of view.

Other work focused on calibrating multiple laser range
finders with respect to themselves in a pairwise fashion. Choi
et al. [6] calibrate a pair of 2D laser range finders observing
different, non co-planar planes. Their approach relies on
a calibration structure consisting of two orthogonal planes
and uses a non-linear least squares formulation to compute
the calibration parameters. Our approach does not need the
specific calibration structure but we assume that the sensors
are mounted in one plane. Sheehan et al. [19] calibrate a set
of 2D laser range finders mounted on a spinning disk. They
employ the Renyi entropy as a measure of point cloud quality
and cast the problem as entropy minimization. The same idea
has later been used to calibrate the resulting 3D spinning
laser range finder with an inertial measurement unit and a
set of 2D laser range finders [13]. The authors also provide
an approximation that gracefully degrades with the amount
of computation used. Their approach assumes that the robot

moves and while moving all sensors will observe the same
part of the environment. Le and Ng [11] jointly calibrate
intrinsic and extrinsic parameters of generalized 3D sensors,
e.g., a 3D laser range finder, stereo cameras or a rotating
2D laser range finders. The approach relies on matching
point correspondences between pairwise sensors and com-
putes the extrinsic parameters via least square optimization.
They calibrate networks of sensors sequentially by chaining
their respective transformations. A main limitation is the
requirement of a checkerboard for point correspondences.

In contrast to these approaches, we address calibration
as a global optimization problem and do not rely on the
pairwise calibration of sensors. Similar ideas have been
proposed recently by other researchers. Brookshire and Teller
[3] recover the 2D rigid transformation between pairs of
sensors mounted on the same plane. They only require incre-
mental pose measurements and can use asynchronous sensors
(but with time-sync between them). They also compute the
Cramer-Rao lower bound of the calibration and estimate the
uncertainty of the relative transformation. The authors use
non-linear least square optimization and reach a submillime-
ter accuracy. The authors recently extended their method to
3D [4] by performing the minimization and the interpolation
using dual-quaternions and Lie-algebra. Schneider et al. [18]
present a calibration algorithm based on the sensor odometry.
Given the time-synchronized delta poses of two sensors, they
estimate the relative pose between them using the unscented
Kalman filter. Kümmerle et al. [9] present a similar approach,
also based on the odometry estimation of different sensors.
They propose to simultaneously estimate the parameters
of the sensors simultaneously to determining the position
of the robot and the map of the environment. The main
difference between their and our approach is that we consider
stationary sensors and, hence, we cannot rely on computing
incremental pose measurements. The limited overlap results
in a reduction of observable data by the sensor, therefore
it is difficult to reach the same level of accuracy as of the
previous approaches.

Recently, Fernández-Moral et al. [7] presented a calibra-
tion approach based on matching plane observations from
different range sensors. Their method poses no restrictions
on the position of the cameras and only assumes that there
is a planar surface observed simultaneously. They formulate
the calibration jointly between all the sensors, using a non-
linear least square formulation. Although their approach
shares similarities to ours, we do not require the presence
of planar surfaces in the environment and we also provide a
consistency measure of the resulting calibration.

III. ESTIMATING A VALID INITIAL GUESS

In this section we will describe how we compute the
initial guess for the least square problem. We proceed in
two steps. First, we compute a guess between pairs of laser
range finders that have an overlapping region. Second, we
transform the estimated relative transformations of the first
step to an optimization problem to compute a joint initial
guess for the whole system of scanners.



A. Computation of the Pairwise Initial Guess

To figure out which laser range finders jointly observe a
part of the environment, we exploit the presence of dynamic
obstacles moving through the environment. In the initial-
ization phase, we estimate, for each laser range finder, the
static part of the environment using background subtraction
techniques [2]. When the moving object is entering the field
of view of one sensor, we exploit the learned background to
identify the measurements belonging to the moving person.
Based on the dynamic range measurements introduced by
the moving object, we compute the pairwise relative trans-
formation between corresponding laser range finders with
RANSAC [8]. In detail, for each laser range finder, we collect
the set of measurements belonging to the moving object and
store them together with their time stamps. Let Pi = {pt

i,q}
be the set of measured points of the laser range finder i
where pt

i,q is the q-th point recorded at time t. Let Ti,j = {t}
be the set of time stamps in which the laser range finder i
and j have observed the moving object at the same time t1.
For each pair of laser range finders i and j, we sample the
minimal hypothesis set in a two stage process. At first, we
sample a time instance t from the set Ti,j . Then we sample
two random points from each set Pi and Pj recorded at time
t. After calculating an initial transformation from these two
correspondences, we compute the number of inliers over all
time instances. We consider a point an inlier if the distance
between the point and its nearest neighbor in the other scan
is below a specified threshold according to the computed
transformation. We repeat this process multiple times and in
the end return the transformation hypothesis with the highest
inlier count as initial guess.

To avoid false initializations, it is of utmost importance
to use only observations from the dynamic object. The
overlapping area can be rather small, so that a large fraction
of the point correspondences from the static scene will be
outliers. In this case, RANSAC needs many more iterations
to converge and the number of outliers could surpass its
breaking point, which may lead to a biased result. One
might argue that alternative and more sophisticated matching
algorithms might overcome this problem [20, 17]. However,
we found out that relying on just the dynamic object mea-
surements suffices in most of the cases.

B. Computation of the Joint Initial Guess

The parameters estimated in the previous section only
relates pairs of laser range finders relative to each other.
In order to properly initialize the optimization problem, we
need to combine these transformations. A naive approach
would be to compute the graph from the overlapping areas
and chain the transformations along its minimum span-
ning tree. However, the errors typically accumulate while
chaining the transformations, potentially resulting in poor
point correspondences between the measured points. To solve

1In practice, there will be always some differences in the time stamps. In
this paper we consider two times tamps equal if they differ by less than half
of the period between to scans. Which is 10ms for a frequency of 50Hz .
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Fig. 2. Example factor graph using pose to pose measurements. We measure
the relative poses zij = xi 	 xj between four laser range finders using
RANSAC (white nodes). The factures correspond to the Measurements
(black squares).
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Fig. 3. Example factor graph using point landmarks. The positions of the
landmarks lk (shaded nodes) implicitly provide measurements zij (black
squares) between the laser range finders xi (white nodes).

this problem, we seek to find the maximum likelihood
configuration of all sensors. To achieve this, we construct a
factor graph (see Fig. 2) where each node represents a laser
range finder and each factor represents the transformation
estimated with RANSAC. We scale the transformation un-
certainties by the inverse of the number of inliers computed
by RANSAC. Intuitively, this is equivalent to believe more
in transformations that have more support from the inlier
set. More formally, let xi,xj , zi,j ∈ SE (2) be the pose
of the i-th and j-th range finder, and their transformation
estimated by RANSAC, respectively. We solve for the initial
global alignment by minimizing the following least squares
problem:

(x1, . . . ,xN )? = argmin
x1,...,xN

∑
zi,j

‖(xj 	 xi)− zi,j‖2Ωi,j
(1)

where Ωi,j denotes the information matrix associated with
the measurement zi,j . The above formulation is closely re-
lated to the simultaneous localization and mapping (SLAM)
problem, formulated as pose graph optimization. Although
the two problems share the same error functions for the
optimization, they differ in the type of data used to compute
the pairwise transformations. In a SLAM setting, there is
one robot going around the environment collecting data,
while in our case the sensor positions do not change. At
the same time, the sensors have only a limited overlap.
In many cases, the extrinsic parameters computed by this
approach are not accurate enough for the task at hand. The
transformation returned by RANSAC are often computed
using only a small subset of the points, due to noise in
sensor data, non synchronized sensors and slightly different
viewpoints. Therefore, we rely on this result as a good initial
guess for the main calibration procedure described in the
following section.



IV. JOINT CALIBRATION OF MULTIPLE LASER RANGE
FINDERS

In this section, we describe the proposed calibration
scheme and we show how we can compute a measure of
consistency of the final calibration. We estimate the relative
transformations of all laser range finder pairs by constructing
a global optimization problem in which we include all point
correspondences for all laser pairs and all timestamps. In
correspondance to the SLAM problem, each point correspon-
dence can be regarded as a landmark, observed from two
different laser range finders at one specific time.

We build another factor graph, similar to the one described
in the previous section. This one, however, includes addi-
tional nodes to model the point correspondences observed by
the laser range finders. Accordingly, each factor expresses
the spatial relationships between two sensor poses and a
jointly observed landmark. Figure 3 depicts the structure of
this graph. Note the difference to the model in Figure 2. As
can be seen, each pair of poses in the new graph can have
multiple edges between each other, see for instance the nodes
x3 and x4. Note that these landmarks are neither distinctive
features nor come from static observations since we observe
only points sampled from an moving object. Therefore, there
is no re-observation of landmarks in a second time instance.

Given an initial guess, we build the factor graph as
following. For each pair of sensors i and j, we express
the measured points in the sets Pi and Pj in the local
coordinate frames of their corresponding sensor. For each
point we compute a local surface approximation and store the
corresponding normal direction. Then, for each time stamp
t, we associate the points pt

i,q and pt
j,r if their euclidean and

angular distances are below a threshold. For each associated
point we insert a landmark node ll in the graph and its
associated factor zi,j,l.

For each point correspondence
〈
pt
i,q,p

t
j,r

〉
we look for

the configuration of poses xi and xj that minimizes the
reprojection error

zi,j,l = pi,q − (xj 	 xi)⊕ pj,r, (2)

where q and r are the point indices associated with the
l-th landmark (note that we omitted the time index for
notational simplicity). To compute the maximum-likelihood
calibration parameters (x1, . . . ,xN )?, we solve the least
squares problem

(x1, . . . ,xN )? = argmin
x1,...,xN

∑
zi,j,l

‖zi,j,l‖2Ωi,j,l
, (3)

where Ωi,j,l denotes the information matrix associated with
the measurement zi,j,l.

We iteratively repeat this process and decrease the distance
thresholds for point correspondences with each iteration.
After the optimization problem converged, we perform a final
refinement step in which we also include the observations
from the static scene. Note that there is no guarantee that the
proposed optimization procedure finds the global minimum
for all possible initializations. Still, we found out in our

Fig. 4. Simulation environment with seventeen laser range finders. Each
a wave front indicates the field of view of the corresponding laser range
finder. Each one starts at the origin of the corresponding laser range finder
indicated with a red dot. Note that the overlaps of the fields of view of some
of the laser range finders are rather small which increases the difficulty of
estimating the correct transformations.

experiments that the proposed method typically converges
to the global minimum given the jointly computed initial
guess, even in real world settings.

A. Consistency and Uncertainty of the Resulting Calibration

An important aspect of calibration algorithm is to provide
the user with a measure of how reliable the resulting cal-
ibration is. Most approaches provide observability analysis
and estimate the Cramer Rao lower bound of the system.
However, as also pointed out by Censi [5], computing such
a bound is not trivial, not even in the simple case of only
two sensors. Moreover, there might be some unobservable
bias due to wrong point correspondences.

In light of this aspects, we decided to focus more on un-
derstanding whether the final estimate corresponds to a local
minimum. To achieve this, we extend the work of Mazuran
et al. [14] to handle observations taken at different times
from the same pose. We achieve this by including an exterior
loop in the algorithm, where we compute the consistency
measure on each time stamp. Finally, we compute for each
pair of laser range finders a consistency value by projecting
the measurement of one sensor into the coordinate frame of
the other and computing the ratio between the number of
consistent observations vs. the number of total observations.
This provides an more intuitive measure to non expert
users. We then visualize the transformations with lowest
consistency value, together with the estimated overlapping
area. We use this information to guide the process and collect
more data on the low consistency region.

V. EXPERIMENTS

We evaluated the proposed calibration method on both
simulated and real datasets. For the simulated data, we
considered 17 laser range finders in an environment of 20×
10m2 and simulated a person walking through it. Figure 4
shows the corresponding environment and the visible area
of each laser range finder. Wavefronts indicate the field of
view of each sensor. The simulated laser range finders have
a resolution of 0.5◦, a field of view of 190◦, a max range of
15m and a Gaussian noise with 0.015m standard deviation.

For the real world data, we used five laser range finders in
a reconfigurable experimental area and recorded three data



sets with a person walking along different trajectories. To
estimate the ground truth, we first removed all the walls in
the environment to have full overlap between the laser range
finders. Then, we estimated their relative transformations
using ICP over multiple scans and averaged the resulting
estimate. After estimating their transformation, we put the
walls back in their position. The bottom of Figure 1 shows
the experimental setup after we inserted the walls. As in the
previous figures, we use colored wavefronts to indicate the
field of view of each sensor.

The lower right pair of laser range finders in Figure 1 is
mounted on different heights therefore the laser range finders
see different parts of the static environment. This makes it
more difficult to estimate the transformation because the laser
range finders have nearly no overlap in the static parts of
the scans. Also not perfectly adjusted tilt angles and time
stamping errors of the laser range scans have an influence
on the accuracy on the experiment results. The simulated
data has the advantage that we know the true pose of the
laser range finders and that we can avoid biases due to tilted
laser range finders and inaccurate time stamping of scans.

We compared the accuracy of the proposed calibration
with respect to the RANSAC initial guess (RANSAC) and
a pairwise iterative closest point (ICP) algorithm. We per-
formed the pairwise ICP only with the static scans and
use the RANSAC results as an initial guess. In the error
metric, we consider the pairwise transformations instead of
the global pose of the laser range finders, which could be
influenced by the choice of the reference frame. Because
of the non-deterministic nature of RANSAC we ran all ex-
periment 100 times and computed mean, standard deviation
and maximum values of the error metric. We performed all
experiments with the same set of parameters. For RANSAC,
we used an inlier distance of 0.05m, a confidence level
of 0.23, and an inlier probability of 0.25. During the ICP
iterations we decreased the correspondence search radius
from 0.7m down to 0.1m. For both optimization problems,
we used the Levemberg-Marquardt algorithm implemented
in g2o [10] with dynamic covariance scaling [1] as robust
kernel. We used thresholds ranging from 0.7m to 0.1m in
7 iterations for the point correspondences and 0.05m for the
final refinement using static measurements.

A. Results

Figure 5 show the results of the experiments. The simu-
lated runs have the labels Set 1, Set 2, and Set 3 and the
real world runs have the labels Set 4, Set 5, and Set 6. The
shortest simulated data set spans 299 seconds and the longest
432 second. The shortest real world data sets corresponds to
58 seconds and the longest to 84 seconds.

For the simulation sets, RANSAC followed by global
optimization achieves a mean translational error of about
0.055m. The proposed approach, when using only dynamic
data, achieves an accuracy of 0.025m, which improves to
0.014m when we also consider the static structure. The stan-
dard deviation for our approach is 0.0002m, indicating that
all runs converge to the same minimum. For the rotational
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Fig. 5. Errors of the simulated (Set 1, Set 2, Set 3) and experimental (Set 4,
Set 5, Set 6) data sets. The boxes indicate the mean error of the averaged
results over all runs and the bars show the standard deviation to illustrate the
distribution of the error over the runs. The crosses represent the maximum
errors of all relative transformation over all runs. The top figure shows
the translational errors and the bottom figure the rotational errors. All ICP
max translational errors are above 0.48m for the simulated sets and above
0.86m for the experimental sets. The ICP max rotational errors for Set 1
and Set 2 are 17.2◦ and 13.8◦

errors, RANSAC followed by optimization achieves a mean
error of about 0.5◦. Our approach using dynamic data has
a similar accuracy of 0.37◦. This improves drastically when
including the static structure to 0.18◦. We believe this is due
to the fact that the dynamic data is often concentrated in
a small portion of the environment, poorly constraining the
angular part of the transformation. ICP performs worse than
RANSAC and our approach. We believe this is caused by the
limited number of point correspondences from static objects,
which are not enough to compensate for the noise.

The results obtained with the real data show a similar
trend. The main difference is that the improvement in ac-
curacy when including the static structure is not as drastic
as before. We believe this is due to the imperfect planar
alignment of the sensors and because the sensors are mounted
at different heights. When we closely inspect the bottom
right part of Figure 1, we see that one laser range finder is
measuring a table (the orange sensor) while another one is
only measuring the wall, indicating that it is mounted above
the table. The experimental results demonstrate that our
approach improves over a naive approach using RANSAC
followed by global optimization on pairwise measurement
only. The results also show that using the information from
the static scene improves the accuracy, even if there is only
limited overlap. To give an idea about the runtime, for the
longest simulated set, it took 67.8 s to compute the joint
initial guess and 4.2 s to optimize. The set contains the laser
range readings of 17 scanner and is 432 s long.

B. Consistency Check

In this section we present the advantage and effectiveness
of the proposed consistency measure. To do so, we evaluate



Fig. 6. Example for the application of the consistency measure. The top
figure shows the calibrated laser poses, whereas one of the lasers (marked
in brown) is not well aligned with the rest. The bottom image shows the
correct registration of this sensor. Our consistency measure is 0.24 for the
link between the brown and the blue laser in the top image, whereas the
same measure in the bottom image is 0.92, thereby correctly capturing the
bad alignment in the top image.

our consistency measure on two simulated runs. The first
consists of a data set in which we purposely did not cover
the whole overlapping area with the moving object. For
the second, we use the data collected for Set 2. Figure 6
shows the two different datasets, where we highlight the
transformation with the lowest consistency value. In the first
run (top), we obtain a consistency score of 0.24, clearly
indicating that we cannot trust the resulting transformation.
For the second run (bottom), we have instead a consistency
score of 0.92, which indicates a consistent calibration. Thus,
the end user can use this information to inspect the final
calibration and decide if he needs further data to achieve
desired target accuracy.

VI. CONCLUSION

In this paper, we presented a novel calibration algorithm
for the extrinsic parameters of a set of static laser range
finders placed at the same hight and scanning horizontally. In
contrast to previous approaches, we do not consider pairwise
calibration only but rather consider it as a joint maximum
likelihood estimation problem. Our approach does not need
any calibration pattern and requires only a single object
moving through the environment. We furthermore propose an
initialization scheme to provide a valid guess and a measure
of consistency to automatically check if the calibration is
correct. We implemented our approach and evaluated it in
both real and simulated data. The results show that our
algorithm is able to estimate the extrinsic parameters of the
network with high accuracy, even when the fields of view of
the individual scanners have very little overlap. Additionally,

our approach can achieve higher accuracy than pairwise
calibration, even after a global minimization step. Finally,
we show that the proposed consistency measure is able to
capture wrong calibrations and is a useful tool for the user.
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