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I. MOTIVATION AND RELATED WORK

Recently, methods to accurately capture the motion of
people gained increasing interest for variety of applications
including interaction, animation, orthopedics, and rehabili-
tation. Compared to markerless approaches, marker-based
methods are typically more accurate and are more robust
against occlusions [8]. Major challenges in this context are
to associate the observed markers with skeleton segments, to
track markers between consecutive frames, and to estimate
the underlying skeleton configuration for each frame. Ex-
isting solutions to this problem often assume fully labeled
markers, which usually requires labor-intensive manual la-
beling.

In our previous work [7], we propose a fully automated
method to initialize and track the skeleton configuration of
humans from optical motion capture data. This method ap-
plies a flexible T-pose-based initialization that works with a
wide range of marker placements without additional manual
effort. To this end, we scale a standard human skeleton,
based on Contini [3], to the person’s size and align the
skeleton to the person’s limbs. After initialization we robustly
estimate the skeleton configuration through least-squares
optimization. Initialization methods without an underlying
known skeleton structure were investigated by Ringer and
Lasenby [9], Kirk et al. [5] and de Aguiar et al. [4]. These
methods require a certain number of markers associated
to each segment and an additional manual labeling step.
Assuming known marker labels, several authors estimate the
joint positions of the skeleton segments while taking into
account skin movement artifacts [1, 2].

The contribution to this workshop are recent enhancements
in skeleton tracking methods that build on our previous
method [7]. First, using a large database of known skeleton
configuration, we are able to mitigate the requirements
during initialization. Instead of T-Pose initialization, we are
able to initialize tracking during natural walking movements.
Second, we update the association of markers to segments
and the corresponding relative positions online during the
tracking process in order to cope with initialization errors.

II. SKELETON TRACKING

In this section we briefly recap our previous skeleton track-
ing method [7]. At each discrete time step ¢, we assume to
receive a frame of data F; that is a set of unlabeled 3D points
{0;,¢}. Each point is an observation of a marker m € M,
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which we assume to be attached to a segment s € S of the
skeleton. The goal of our method is to estimate the skeleton
configuration Cy for each frame. We represent the skeleton
configuration by the translation and the rotations of each
segment. In general, the problem of skeleton tracking can
be represented as a maximization problem, where the goal
is to maximize the likelihood £(Cy.; | Fi.¢) of the skeleton
configuration given the observations. In this representation,
the association of markers to segments & : M — S and the
labeling of the observations x; : F; — M are latent variables
in our observation model. Thus, we marginalize over these
latent variables to compute the likelihood

L(Ciy | Fiu) = Z P(Frs ey X1zt | Cre). (D)

X1:t,81:t

We consider online tracking, therefore we perform a recur-
sive estimation where we compute the most likely configu-
ration C} given the previous configurations Cy.;_1 as well as
the previous marker labeling and segment associations. In a
first step, we initialize Cy, £y and X, assuming the person to
stand in T-pose. As a contribution of this paper, we present
a novel method that enables us to initialize a skeleton in
natural walking motion without the T-pose requirement.
Since maximization of Eq. (1) is infeasible in practice,
we split its computation in two steps in an EM-like fashion
as outlined in Fig. 1. We estimate the most likely associ-
ations y; given the current frame F; with fixed skeleton
configuration Cy. Especially when a marker was occluded
and reappears, the labeling based on the preceding frame
is incomplete. We address this by associating the remaining
observations to markers given the estimated skeleton con-
figuration Cy. Given the resulting marker labeling, we then
compute the most likely skeleton configuration C; by means
of optimization techniques [6]. In our previous work [7], we
assumed a fixed association of markers to segments &; and
computed it once in an initialization phase. In this paper, we
introduce a novel method to flexibly adjust this association
online and demonstrate its improved tracking behavior.

III. UPDATE OF RELATIVE MARKER POSES AND SEGMENT
ASSOCIATION

Our experiments show that we can improve skeleton
tracking by adjusting the association of markers to segments,
and their relative poses, online during skeleton tracking. This
step corrects errors that are introduced by inaccurate ini-
tialization. During online tracking, we consider the squared
distance between the observations and the predicted marker
positions, summed up over a number of previous frames. We
then compute the position of each marker that minimizes
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Fig. 1.

Overview of the proposed method. On the right hand side we recap the T-pose initialization presented in Meyer et al. [7]. This T-pose initialization

can be replaced by our Big Data approach. In each successive frame, most observed points are labeled based on the preceding frame by nearest neighbor
association. Repeated optimization of the skeleton configuration and association based on the current skeleton estimate robustly labels the remaining points.

this distance error. In addition, we change the segment
association, if this further reduces the mean distance error.
This update step makes our method more robust against
movements of the markers with respect to the segment, for
example due to shifts of the markers that are attached to the
person’s clothing, or even changes in the segment the marker
is attached to. This is especially beneficial for the robustness
of long time tracking studies.

IV. BIG DATA INITIALIZATION

For the Big Data initialization we use a database of
50000 previously recorded natural skeleton configurations.
For each of these configurations, we automatically generate
100 variants by rotation and scaling. Then we compute
the corresponding association function and pick the 100
skeletons with least sum of the marker to segment distances.
We start the previously described tracking algorithm with
these configurations and subsequently erase hypotheses with
high optimization errors.

V. EXPERIMENTAL RESULTS

In this set of experiments, we present the effect of adjust-
ing the marker associations and their relative poses online.
We evaluated the presented algorithm on a set of four motion
capture recordings of different test subjects and marker sets,
each recorded with 100Hz frame rate. Fig. 2 shows the
performance \5g of each data set, which is the mean squared
value of the optimized cost function, i.e., a weighted sum
of marker distances and joint limit costs, averaged over 50
frames. In this experiment, we used T-pose initialization.
Using Big Data initialization, we obtain approximately the
same performance results.

As a performance measure, we use the optimization error
A, which comprises the distance between observations and
predicted marker positions as well as an additional term that
represents natural joint limits. During online tracking,
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