
Minimal Critical Subsystems
for Discrete-Time Markov Models?

Ralf Wimmer1, Nils Jansen2, Erika Ábrahám2,
Bernd Becker1, and Joost-Pieter Katoen2

1 Albert-Ludwigs-University Freiburg, Germany
{wimmer, becker}@informatik.uni-freiburg.de

2 RWTH Aachen University, Germany
{nils.jansen, abraham, katoen}@informatik.rwth-aachen.de

Abstract. We propose a new approach to compute counterexamples for
violated ω-regular properties of discrete-time Markov chains and Markov
decision processes. Whereas most approaches compute a set of system
paths as a counterexample, we determine a critical subsystem that already
violates the given property. In earlier work we introduced methods to
compute such subsystems based on a search for shortest paths. In this
paper we use SMT solvers and mixed integer linear programming to
determine minimal critical subsystems.

1 Introduction

Systems with uncertainties often act in safety-critical environments. In order
to use the advantages of formal verification, formal models are needed. Popular
modeling formalisms for such systems are discrete-time Markov chains (DTMCs)
and—in the presence of non-determinism—Markov decision processes (MDPs).

State-of-the-art model checking algorithms verify probabilistic safety proper-
ties like “The probability to reach a safety-critical state is at most 10−3” or, more
generally, ω-regular properties [1], efficiently by solving linear equation systems [2].
Thereby, if the property is violated, they do not provide any information about
the reasons why this is the case. However, this is not only strongly needed for
debugging purposes, but it is also exploited for abstraction refinement in CEGAR
frameworks [3, 4]. Therefore, in recent years much research effort has been made
to develop algorithms for counterexample generation for DTMCs and MDPs (see,
e. g., [5–13]). Most of these algorithms [6–9] yield path-based counterexamples,
i. e., counterexamples in the form of a set of finite paths that all lead from the
initial state to a safety-critical state and whose joint probability mass exceeds
the allowed limit.

? This work was partly supported by the German Research Council (DFG) as part
of the Transregional Collaborative Research Center “Automatic Verification and
Analysis of Complex Systems” (SFB/TR 14 AVACS) and the DFG project “CEBug –
Counterexample Generation for Stochastic Systems using Bounded Model Checking”

Unfortunately, the number of paths needed for a counterexample is often very
large or even infinite, in particular if the gap between the allowed probability
and its actual value is small. The size of the counterexample may be several
orders of magnitude larger than the number of system states, rendering the
counterexample practically unusable for debugging purposes. Different proposals
have been made to alleviate this problem: [6] represents the path set as a regular
expression, [7] detects loops on paths, and [8] shrinks paths through strongly
connected components into single transitions.

As an alternative to path-based counterexamples, the usage of small critical
subsystems has been proposed in [5, 10]. A critical subsystem is a part of the
Markov chain such that the probability to reach a safety-critical state (or, more
generally, to satisfy an ω-regular property) inside this part exceeds the bound.
This induces a path-based counterexample by considering all paths leading
through this subsystem. Contrary to the path-based representation, the size of
a critical subsystem is bounded by the size of the model under consideration.
Different heuristic methods have been proposed for the computation of small
critical subsystems: The authors of [5] apply best first search to identify a
critical subsystem, while in [10] a novel technique is presented that is based
on a hierarchical abstraction of DTMCs in combination with heuristics for the
selection of the states to be contained in the subsystem.

Both approaches use heuristic methods to select the states of a critical
subsystem. However, we are not aware of any algorithm that is suited to compute
a minimal critical subsystem, neither in terms of the number of states nor of the
number of transitions. In this paper we fill this gap. We provide formulations as
a SAT-modulo theories (SMT) problem and as a mixed integer linear program
(MILP) which yield state-minimal critical subsystems of DTMCs and MDPs,
respectively. We will present a number of optimizations which significantly speed
up the computation times in many cases. Experimental results on some case
studies are provided, which show the effectiveness of our approach. We show that
our MILP approach yields significantly more compact counterexamples than the
heuristic methods even if the MILPs cannot be solved to optimality due to time
restrictions. We present our algorithms for probabilistic safety properties, but
they can be extended to the more general case of arbitrary ω-regular properties.3

Structure of the Paper. In Section 2 we introduce the foundations of DTMCs,
MDPs, and critical subsystems. In Sections 3 and 4 we present different approaches
for the computation of state-minimal subsystems for DTMCs and MDPs. We
discuss experimental results in Section 5 and finally draw a conclusion in Section 6.

2 Foundations

We first introduce discrete-time Markov chains and discrete-time Markov decision
processes as well as critical subsystems for both models.

3 They can be reduced to reachability after a product construction of a DTMC or
MDP, resp., with a deterministic Rabin automaton, followed by a graph analysis [2].
For more details see [14].

Discrete-Time Markov Chains.

Definition 1. A discrete-time Markov chain (DTMC) is a tuple M = (S, sI , P)
with S being a finite set of states, sI ∈ S the initial state and P : S × S → [0, 1]
the matrix of transition probabilities such that

∑
s′∈S P (s, s′) ≤ 1 for all s ∈ S.4

Let in the following M = (S, sI , P) be a DTMC, T ⊆ S a set of target states,
and λ ∈ [0, 1] an upper bound on the allowed probability to reach a target
state5 in T from the initial state sI . This property can be formulated by the
PCTL formula P≤λ(♦T). We assume this property to be violated, i. e., the actual
probability of reaching T exceeds λ.

The probability to eventually reach a target state from a state s is the unique
solution of a linear equation system [2, p. 760] containing an equation for each
state s ∈ S: ps = 1 if s ∈ T , ps = 0 if there is no path from s to any state in T ,
and ps =

∑
s′∈S P (s, s′) · ps′ in all other cases.

Definition 2. A subsystem of M is a DTMC M ′ = (S′, s′I , P
′) such that S′ ⊆ S,

s′I ∈ S′, and P ′(s, s′) > 0 implies P ′(s, s′) = P (s, s′) for all s, s′ ∈ S′.
We call a subsystem M ′ = (S′, s′I , P

′) of M critical if s′I = sI , S′ ∩ T 6= ∅,
and the probability to reach a state in S′ ∩ T from s′I in M ′ is larger than λ.

We want to identify a minimal critical subsystem (MCS) of M , which induces
a counterexample for P≤λ(♦T). Minimality can thereby be defined in terms
of the number of states or the number of transitions. In this paper we restrict
ourselves to state-minimal subsystems. However, our approaches can easily be
adapted to transition minimality. In [4] it is shown that computing MCSs for
arbitrarily nested PCTL formulae is NP-complete. It is unclear if this also holds
for reachability properties.

We denote the set of transitions of M by EM =
{

(s, s′) ∈ S×S
∣∣P (s, s′) > 0

}
,

the set of successors of state s ∈ S by succM (s) =
{
s′ ∈ S

∣∣ (s, s′) ∈ EM}, and

its predecessors by predM (s) =
{
s′ ∈ S

∣∣ (s′, s) ∈ EM}. A finite path π in M is a
finite sequence π = s0s1 . . . sn such that (si, si+1) ∈ EM for all 0 ≤ i < n.

Definition 3. Let M = (S, sI , P) be a DTMC with target states T ⊆ S. A state
s ∈ S is called relevant if there is a path π = s0s1s2 . . . sn with s0 = sI , si 6∈ T for
0 ≤ i < n, sn ∈ T and s = sj for some j ∈ {0, . . . , n}. A transition (s, s′) ∈ EM
is relevant if both s and s′ are relevant and s 6∈ T .

We denote the set of relevant states of M by Srel
M and the set of relevant

transitions by Erel
M . States and transitions that are not relevant can be removed

from all critical subsystems without changing the probability to reach a target

4 Please note that we allow sub-stochastic distributions. Usually, the sum of probabilities
is required to be exactly 1. This can be obtained by defining M ′ = (S ∪ {s⊥}, sI , P ′)
with s⊥ a fresh sink state, P ′(s, s′) = P (s, s′) for all s, s′ ∈ S, P ′(s⊥, s⊥) = 1, and
finally P (s, s⊥) = 1− P (s, S) and P ′(s⊥, s) = 0 for all s ∈ S.

5 Model checking PCTL properties can be lead back to the problem of computing
reachability probabilities.

state. Since we are interested in MCSs, we only have to take relevant states and
transitions into account.

Let E−M =
{

(s, s′) ∈ S × S
∣∣ (s′, s) ∈ EM} be the set of reversed transitions

of M . We consider the directed graphs G = (S,EM) and G− = (S,E−M).

Lemma 1. A state s ∈ S is relevant iff s is reachable from the initial state sI
in G and s is reachable from a target state in G−. A transition (s, s′) ∈ EM is
relevant iff s is reachable from the initial state sI in G and s′ is reachable from
a target state in G−, and s 6∈ T .

This lemma shows that the set Srel
M of relevant states and the set Erel

M of
relevant transitions can be determined in linear time in the size of the DTMC by
two simple graph analyses.

Markov Decision Processes. Extending DTMCs with non-determinism yields
the class of Markov decision processes:

Definition 4. A discrete-time Markov decision process (MDP) M is a tuple
M = (S, sI , A, P) such that S is a finite set of states, sI ∈ S the initial state,
A a finite set of actions, and P : S × A × S → [0, 1] a function such that∑
s′∈S P (s, a, s′) ≤ 1 for all a ∈ A and all s ∈ S.

If s ∈ S is the current state of an MDP M , its successor state is determined
as follows: First a non-deterministic choice between the actions in A is made;
say a ∈ A is chosen. Then the successor state of s is determined probabilistically
according to the distribution P (s, a, ·).

We set succM (s, a) =
{
s′ ∈ S

∣∣P (s, a, s′) > 0
}

, predM (s, a) =
{
s′ ∈ S

∣∣
P (s′, a, s) > 0

}
, and EM =

{
(s, s′) ∈ S × S

∣∣ ∃a ∈ A : P (s, a, s′) > 0
}

. Relevant
states Srel

M and transitions Erel
M are defined in the same way as for DTMCs.

Before probability measures can be defined for MDPs, the non-determinism
has to be resolved. This is done by an entity called scheduler. For our purposes
we do not need schedulers in their full generality, which are allowed to return
a probability distribution over the actions A, depending on the path that led
from the initial state to the current state. Instead, for reachability properties the
following subclass suffices [2, Lemma 10.102]:

Definition 5. Let M = (S, sI , A, P) be an MDP. A (deterministic memoryless)
scheduler for M is a function σ : S → A.

Such a scheduler σ induces a DTMC Mσ = (S, sI , P
σ) with Pσ(s, s′) =

P (s, σ(s), s′). The probability of reaching a target state is now computed in this
induced DTMC. The property P≤λ(♦T) is satisfied in an MDP M = (S, sI , A, P)
if it is satisfied in Mσ for all schedulers σ. Since all schedulers guarantee a
reachability probability of at most λ, this implies that the maximal reachability
probability is at most λ. If the property is violated, there is a non-empty set of
schedulers for which the probability exceeds λ. We call them critical schedulers.

We want to compute a critical scheduler and a critical subsystem in the
corresponding induced DTMC that is state- (transition-) minimal among all
critical subsystems for all critical schedulers. Computing state-minimal critical
subsystems for reachability properties of MDPs is NP-complete [4].

SAT-Modulo-Theories. SAT-modulo-theories (SMT) [15] refers to a gener-
alization of the classical propositional satisfiability problem (SAT). Compared
to SAT problems, in an SMT formula atomic propositions may be replaced by
atoms of a given theory. For the computation of MCSs this theory is linear real
arithmetic.

SMT problems are solved by the combination of a DPLL-procedure (as
used for deciding SAT problems) with a theory solver that is able to decide
the satisfiability of conjunctions of theory atoms. For a description of such a
combined algorithm see [16].

Mixed Integer Linear Programming. In contrast to SMT, mixed integer
linear programs consist only of a conjunction of linear inequalities. A subset
of the variables occurring in the inequalities are restricted to take only integer
values, which makes solving MILPs NP-hard.

Definition 6. Let A ∈ Qn×m, B ∈ Qk×m, b ∈ Qm, c ∈ Qn, and d ∈ Qk. A
mixed integer linear program (MILP) consists in computing min cTx+ dT y such
that Ax+By ≤ b and x ∈ Rn, y ∈ Zk.

MILPs are typically solved by a combination of a branch-and-bound algorithm
with the generation of so-called cutting planes. These algorithms heavily rely on
the fact, that relaxations of MILPs which result from removing the integrality
constraints, can be solved efficiently. MILPs are widely used in operations research,
hardware-software codesign and numerous other applications. Efficient open
source as well as commercial implementations are available like Scip or Cplex.
We refer the reader to, e. g., [17] for more information on solving MILPs.

3 Computing Minimal Critical Subsystems for DTMCs

The problem to find state-minimal critical subsystems for DTMCs can be specified
as an SMT problem over linear real arithmetic, which we present in this section.
As the experimental results were not satisfactory, we additionally elaborated
MILP formulations of this problem. We also report on further optimizations that
lead to a noticeable speed-up in many cases.

3.1 Formulation as an SMT Problem

We first specify an SMT formula over linear real arithmetic whose satisfying
variable assignments correspond to the critical subsystems of M . The SMT
formula is shown in Fig. 1. We use ⊕ for the binary XOR operator.

We introduce a variable xs ∈ [0, 1] ⊆ R for each relevant state s ∈ Srel
M . We

require in the formula that xs = 1 or xs = 0 holds. A state s ∈ Srel
M is contained

in the subsystem iff xs = 1 for the computed optimal satisfying assignment. In
order to obtain a state-minimal critical subsystem, we have to minimize the
number of xs-variables to which the value 1 is assigned, or equivalently, the sum
over all xs-variables (line 1a). Besides the xs variables we need one real-valued

minimize
∑

s∈Srel
M

xs (1a)

such that psI > λ (1b)

∀s ∈ Srel
M ∩ T :

(
(xs = 0 ∧ ps = 0)⊕ (xs = 1 ∧ ps = 1)

)
(1c)

∀s ∈ Srel
M \ T :

(
(xs = 0 ∧ ps = 0)⊕

(
xs = 1 ∧ ps =

∑
s′∈succM (s)∩Srel

M

P (s, s′) · ps′
))

. (1d)

Fig. 1. SMT formulation for state-minimal critical subsystems of DTMCs

variable ps ∈ [0, 1] ⊆ R for each state s ∈ Srel
M to which the probability of reaching

a target state from s inside the subsystem is assigned.
If xs is zero, the corresponding state s does not belong to the subsystem.

Then its probability contribution is also zero. Target states that are contained
in the subsystem have probability one (line 1c). Note that the MCS does not
need to contain all target states. The probability of all non-target states in the
subsystem is the weighted sum over the probabilities of the relevant successor
states (line 1d). In order to obtain a critical subsystem we additionally have to
require that psI > λ (line 1b).

The size of this formula is linear in the size of M . Since most of the state-of-
the-art SMT solvers for linear real arithmetic cannot cope with the minimization
of objective functions, we apply binary search in the range

{
1, . . . , |Srel

M |
}

for the
optimal value of the objective function. Starting with kl = 1 and ku = |Srel

M |, we
iteratively search for critical subsystems whose number of states is between kl
and km := kl+ (ku−kl)/2. If we find such a subsystem with k states, then we set
ku to k − 1. Otherwise we set kl to km + 1. We repeat the search until ku < kl.

3.2 Formulation as a Mixed Integer Linear Program

The formulation as an SMT problem gives a good intuition how an MCS can
be computed using solver technologies. However, as the experiments will show,
the solution process is very time-consuming. This might be due to the fact that
SMT solvers distinguish many cases while searching for a solution because of the
involved disjunctions. We therefore reformulate the problem as an MILP that
does not contain any disjunctions. The MILP is shown in Fig. 2.

In order to avoid the disjunctions of the SMT formulation, we need to explicitly
require the variables xs to be integer in contrast to the SMT formulation with
xs ∈ [0, 1] ⊆ R. Hence, the MILP contains the variables xs ∈ [0, 1] ⊆ Z and
ps ∈ [0, 1] ⊆ R for all states s ∈ Srel

M .
The constraints can be translated as follows: For target states s ∈ Srel

M ∩ T ,
the condition (1c) of the SMT formulation corresponds to ps = xs (line 2c). For
the remaining states s ∈ Srel

M \ T , we ensure by ps ≤ xs that the probability
contribution of not selected states is zero (line 2d). For all non-target states s,
an upper bound on the probability contribution ps is given by the sum of the

minimize
(
−1

2
psI +

∑
s∈Srel

M

xs
)

(2a)

such that psI > λ (2b)

∀s ∈ Srel
M ∩ T : ps = xs (2c)

∀s ∈ Srel
M \ T : ps ≤ xs (2d)

ps ≤
∑

s′∈succM (s)∩Srel
M

P (s, s′) · ps′ . (2e)

Fig. 2. MILP formulation for state-minimal critical subsystems of DTMCs

probabilities ps′ of the relevant successor states s′, weighted by the according
transition probabilities P (s, s′) (line 2e). Together with the requirement that the
probability of the initial state has to be larger than λ (line 2b) this describes the
critical subsystems of the DTMC under consideration.

Using this formulation and the same objective function as in the SMT formula,
the exact probability of reaching target states in the resulting MCS is not
computed as a by-product. We would only compute a lower bound, because
line (2e) is an inequality. However, we can achieve this by forcing the solver to
maximize psI . We change the objective function to min

(
− 1

2psI +
∑
s∈Srel

M
xs
)
.

Then the solver computes not only an arbitrary MCS, but among all MCSs one
with maximal probability, and assigns to the variable psI its actual reachability
probability. A factor 0 < c < 1 is needed because if we only subtract the
probability of the initial state, the solver may add an additional state if this
results in psI = 1. We chose c = 1

2 .

3.3 Optimizations

In the following we describe optimizations both of the SMT and the MILP
formulation. They add redundant constraints to the problem. These constraints
may help the solver to detect unsatisfiable branches in the search space earlier.

Successor and Predecessor Constraints. In order to guide the solver to
choose states that form complete paths leading from the initial state to the set
of target states, we firstly add the following optional constraints to the MILP
formulation in Fig. 2:

∀s ∈ Srel
M \ T : − xs +

∑
s′∈(succM (s)∩Srel

M)\{s}

xs′ ≥ 0 (3a)

∀s ∈ Srel
M \ {sI} : − xs +

∑
s′∈(predM (s)∩Srel

M)\{s}

xs′ ≥ 0 . (3b)

The first set of constraints (3a), which we call forward cuts, states that each
non-target state in the MCS must have a proper successor state which is also

contained in the MCS. Proper in this case means that self-loops are ignored. The
second set of constraints (3b), called backward cuts, requires that each non-initial
state in the MCS has a proper predecessor in the MCS.

For MILP, forward and backward cuts do not modify the feasible solutions
but add cutting planes which tighten the LP-relaxation of the MILP and may
lead to better lower bounds on the optimal value.

For the SMT formulation similar constraints can be constructed. We omit
their description here because in our experimental results they did not improve
the performance. A reason for this phenomenon could be that these constraints
come with an additional effort in propagation and theory solving that is not
compensated by their positive effect of restricting the solution set.

SCC Constraints. The forward respectively backward cuts do not encode that
all states of the MCS are forwards respectively backwards reachable: A satisfying
assignment could define a loop to belong to the subsystem even if in the solution
the states of the loop are connected neither to the initial nor to any target state.

To strengthen the effect of forward and backward cuts, we make use of strongly
connected components. Formally, a strongly-connected component (SCC) of a
DTMC M = (S, sI , P) is a maximal subset C ⊆ S such that each state s ∈ C is
reachable from each state s′ ∈ C visiting only states from C. The input states
In(C) of an SCC C are those states which have an in-coming transition from
outside the SCC, i. e., In(C) = {s ∈ C | ∃s′ ∈ S \ C : P (s′, s) > 0}. The output
states of C, denoted Out(C), are those states outside C which can be reached from
C via a single transition. Hence, Out(C) = {s ∈ S \ C | ∃s′ ∈ C : P (s′, s) > 0}.

A state of an SCC can be reached from the initial state only through one
of the SCC’s input states. Therefore we define an SCC input cut for each SCC
assuring that, if none of its input states is included in the MCS, then the MCS
does not contain any states of the SCC. Line 4a shows the SMT variant of this
constraint, whereas line 4b gives the corresponding MILP formulation:∧

s∈In(C)

xs = 0 ⇒
∧

s∈C\In(C)

xs = 0 (4a)

∑
s∈C\In(C)

xs ≤
∣∣C \ In(C)

∣∣ · ∑
s∈In(C)

xs . (4b)

Analogously, starting from a state inside an SCC, all paths to a target state
lead through one of the SCC’s output states. Therefore, if no output state of
an SCC C is selected, we do not want to select any state of the SCC. Line 5a
contains the SMT and line 5b the MILP formulation of this SCC output cut :∧

s∈Out(C)

xs = 0 ⇒
∧
s∈C

xs = 0 (5a)

∑
s∈C

xs ≤
∣∣C∣∣ · ∑

s∈Out(C)

xs . (5b)

Complete Reachability Encoding. Although the SCC cuts further restrict
the selection of unreachable states, they still do not encode reachability exactly:
We could, for example, select a path from an input to an output state of an SCC
and additionally select an unreachable loop inside the SCC.

For a complete encoding of forward reachability, we introduce a variable
r→s ∈ [0, 1] ⊆ R for each state s ∈ Srel

M . The values of these variables define a
partial order on the states. We make use of this partial order to express forward
reachability in critical subsystems: We encode that for each selected state s there
is a path s0 . . . sn from the initial state s0 = sI to sn = s such that r→i < r→i+1

for all 0 ≤ i < n and all states on the path are selected, i. e., xsi = 1 for all
0 ≤ i ≤ n. Note that we can assign a proper value to r→s for each reachable state
s, for example the value ns/|Srel

M | with ns being the size of the longest loop-free
path leading from the initial state to s.

An SMT encoding of forward reachability can be defined as follows:

∀s ∈ Srel
M \ {sI} :

(
¬xs ∨

∨
s′∈predM (s)∩Srel

M

(xs′ ∧ r→s′ < r→s)
)
. (6a)

The SMT encoding of backward reachability is analogous, using a variable r←s ∈
[0, 1] ⊆ R for each state s ∈ Srel

M :

∀s ∈ Srel
M \ T :

(
¬xs ∨

∨
s′∈succM (s)∩Srel

M

(xs′ ∧ r←s < r←s′)
)
. (7a)

For the MILP encoding of forward reachability, for each transition from a state
s to s′ we additionally use an integer variable t→s,s′ ∈ [0, 1] ⊆ Z. These variables
correspond to the choice of the predecessor states in the disjunctions of the SMT
encoding. Again, we encode that for each selected state s there is a path in the
selected subsystem leading from the initial state to s. The variable t→s′,s encodes
if the transition from s′ to s appears in that path.

∀s∈Srel
M ∀s′ ∈ (succM (s)∩Srel

M) : 2t→s,s′ ≤ xs + xs′ (8a)

r→s < r→s′ + (1− t→s,s′) (8b)

∀s ∈ Srel
M \ {sI} : (1− xs) +

∑
s′∈predM (s)∩Srel

M

t→s′,s ≥ 1 . (8c)

Lines 8a and 8b encode that each transition from s to s′ with t→s,s′ = 1 connects
selected states with r→s < r→s′ . Under this assumption, the constraints defined
in line 8c imply by induction that for each selected state there is a reachable
selected predecessor state.

Backward reachability is analogous using a variable t←s,s′ ∈ [0, 1] ⊆ Z for each
transition:

∀s∈Srel
M ∀s′ ∈ (succM (s)∩Srel

M) : 2t←s,s′ ≤ xs + xs′ (9a)

r←s < r←s′ + (1− t←s,s′) (9b)

∀s ∈ Srel
M \ T : (1− xs) +

∑
s′∈succM (s)∩Srel

M

t←s,s′ ≥ 1 . (9c)

minimize
∑

s∈Srel
M

xs (10a)

such that psI > λ (10b)

∀s ∈ Srel
M ∩ T :

(
(xs = 0 ∧ ps = 0)⊕ (xs = 1 ∧ ps = 1)

)
(10c)

∀s ∈ Srel
M \ T :

((
xs = 0 ∧ ps = 0

)
⊕
(
xs = 1 ∧

∨
a∈A

(
as = a ∧ ps =

∑
s′∈succM (s,a)∩Srel

M

P (s, a, s′) · ps′
)))

. (10d)

Fig. 3. SMT formulation for state-minimal critical subsystems of MDPs

These encodings come at the cost of new variables, but they cut all subsystems
with unreachable states, especially unreachable loops which were not covered by
the previous two encodings.

4 Computing Minimal Critical Subsystems for MDPs

In this section we describe how to extend our SMT- and MILP-based formulations
to Markov decision processes. Using these formulations, we not only provide a
state-minimal critical subsystem but also the corresponding critical scheduler.

4.1 SMT Formulation

The SMT formulation for MCSs for MDPs straightly follows the ideas for DTMCs.
We additionally introduce a variable as ∈

[
0, |A|−1

]
⊆ R for all states s ∈ Srel

M \T
which stores the action selected by a critical scheduler. If each action is assigned a
unique number in the range 0, . . . , |A| − 1, this again results in an SMT problem
over linear real arithmetic, which is shown in Fig. 3.

4.2 MILP Formulation

The corresponding MILP for computing state-minimal critical subsystems for
MDPs is shown in Fig. 4. We again have the decision variables xs ∈ [0, 1] ⊆ Z for
s ∈ Srel

M and the probability variables ps ∈ [0, 1] ⊆ R for s ∈ Srel
M . In contrast to

the SMT formulation, for the MILP constraints we need a variable as ∈ [0, 1] ⊆ Z
for each state s ∈ Srel

M and each action a ∈ A. The variable as will carry the
value 1 if the critical scheduler selects action a in state s, and 0 otherwise.

The main difference to the MILP of DTMCs is line (11f). If the current action
is not selected, i. e., as = 0, the constraint is not a restriction for ps. Otherwise,
if as = 1, the constraint is equivalent to ps ≤

∑
s′∈succ(s,a)∩Srel

M
P (s, a, s′) · ps′ ,

which is the analogous constraint to the formulation for DTMCs.

minimize
(
−1

2
psI +

∑
s∈Srel

M

xs
)

(11a)

such that psI > λ (11b)

∀s ∈ Srel
M ∩ T : xs = ps (11c)

∀s ∈ Srel
M \ T : ps ≤ xs (11d)

xs =
∑
a∈A

as (11e)

∀s ∈ Srel
M \ T ∀a ∈ A : ps ≤

(∑
s′∈succM (s,a)∩Srel

M

P (s, a, s′) · ps′
)

+ (1− as) . (11f)

Fig. 4. MILP formulation for state-minimal critical subsystems of MDPs

The redundant constraints that we have added to the SMT and MILP
formulations for DTMCs in order to make the solution process more efficient can
easily be transferred to MDPs. We omit them here due to space restrictions.

5 Experimental Evaluation

In order to evaluate the performance of our SMT and MILP formulations for state-
minimal critical subsystems of DTMCs, we implemented a tool called SubSys
in C++ and applied it to two series of test cases. For all benchmarks, we used
Prism [18] models, which are available at http://prismmodelchecker.org.

(1) The crowds protocol [19] provides a mechanism for anonymous web
browsing by routing messages through a network of N nodes. If a node wants
to send a message, it has a probabilistic choice whether to deliver the message
directly to its destination or to forward it to a randomly selected successor node.
This procedure preserves anonymous sending of messages, as the original sender
of a message cannot be determined. One instance consists of R rounds of message
deliveries. In the following tables we denote the different instances by crowdsN -R.
The set T of target states contains all those states where a bad group member
could identify the sender of a message.

(2) The synchronous leader election protocol [20] models the selection of a
distinguished leader node in a ring of N identical network nodes. In each round,
every node randomly selects an integer number in the range {0 . . .K}. The node
with the highest number becomes the leader, if this number is unique. Otherwise
a new round starts. In the tables below, we denote the instances for different
values of N and K by leaderN -K.

All experiments were performed on a computer with four 2.3 GHz AMD
Opteron Quad-Core CPUs and 64 GB memory, running Ubuntu 10.04 Linux in
64-bit mode. We aborted any experiment which did not finish within 7200 s or
needed more than 4 GB of memory. A table entry “– TL –” means that the time
limit was exceeded; the exceeding of the memory limit is denoted by “– ML –”.

Table 1. Sizes of the benchmark models and comparison with the heuristic local search
method of [10]

Model |S| |EM | |T | λ |SMCS| |EMCS| |Sheur| |Eheur|
crowds2-3 183 243 26 0.09 22 27 23 27
crowds2-4 356 476 85 0.09 22 27 23 27
crowds2-5 612 822 196 0.09 22 27 23 27
crowds3-3 396 576 37 0.09 37 51 40 56
crowds3-4 901 1321 153 0.09 37 51 40 56
crowds3-5 1772 2612 425 0.09 37 51 40 56
crowds5-4 3515 6035 346 0.09 72 123 94 156
crowds5-6 18817 32677 3710 0.09 72 123 145 253
crowds5-8 68740 120220 19488 0.09 72 123 198 356
leader3-2 22 29 1 0.5 15 18 17 20
leader3-3 61 87 1 0.5 33 45 40 54
leader3-4 135 198 1 0.5 70 101 76 108
leader4-2 55 70 1 0.5 34 41 44 54
leader4-3 256 336 1 0.5 132 171 170 220
leader4-4 782 1037 1 0.5 395 522 459 605
leader4-5 1889 2513 1 0.5 946 1257 1050 1393
leader4-6 3902 5197 1 0.5 1953 2600 2103 2797

For solving the SMT formulae and the MILPs we used a number of state-
of-the-art solvers, from which we selected, after a series of preliminary ex-
periments, the most efficient ones, namely Z3 3.1 [21] (http://research.
microsoft.com/en-us/um/redmond/projects/z3) as an SMT solver for linear
real arithmetic, Scip 2.0.2 (http://scip.zib.de) as a publicly available MILP
solver, and Cplex 12.3 (http://www-01.ibm.com/software/integration/
optimization/cplex-optimizer) as a commercial MILP solver.

Table 1 contains statistics on our benchmarks. The columns contain (from
left to right) the model name, the number of states, the number of transitions
with non-zero probability, the number of target states, the probability bound,
the number of states in the MCS, and finally the number of transitions in
the MCS. The last two columns contain the sizes of heuristically computed
critical subsystems. We used the local search approach of [10] to determine these
subsystems. For all instances the heuristic tool terminated within 6 min.

We give the running times of Z3, Scip, and Cplex in Table 2. Cplex
supports a parallel mode, in which we started 16 threads in parallel. Therefore
we give for Cplex the accumulated times of all threads and, in parentheses, the
actual time from start to termination of the tool. All times are given in seconds.

The block of columns entitled “w/o redundant constraints” contains the
running times of the solvers without any optimizations. The block “optimal conf.”
lists the optimal times, i. e., the times achieved by adding the combination of
optional constraints that leads to the smallest computation time. These running
times can be obtained in general by using a portfolio approach which runs the
different combinations of redundant constraints in parallel. Using Z3 did not

Table 2. Running times of Z3, Scip, and Cplex for computing MCSs

w/o redundant constraints optimal conf.

Model Z3 Scip Cplex Z3 Scip Cplex

crowds2-3 6.80 0.16 1.33 (0.28) 4.82 0.12 0.06 (0.11)
crowds2-4 123.34 0.47 0.30 (0.24) 23.72 0.30 0.30 (0.24)
crowds2-5 293.94 0.90 0.56 (0.45) 152.28 0.60 0.56 (0.24)
crowds3-3 5616.39 0.64 0.49 (0.33) 640.61 0.35 0.38 (0.30)
crowds3-4 – TL – 4.29 5.53 (2.07) – TL – 1.45 0.89 (0.58)
crowds3-5 – TL – 23.49 6.66 (2.77) – TL – 5.58 1.51 (0.87)
crowds5-4 – TL – 743.84 14.23 (5.07) – TL – 13.28 12.51 (4.89)
crowds5-6 – TL – – TL – 302.03 (38.39) – TL – 1947.46 100.26 (23.52)
crowds5-8 – TL – – TL – – TL – – TL – – TL – 1000.79 (145.84)
leader3-2 0.07 0.07 0.62 (0.22) 0.05 0.01 0.21 (0.13)
leader3-3 – TL – 91.89 0.43 (0.22) – TL – 0.06 0.02 (0.06)
leader3-4 – TL – 2346.59 0.70 (0.36) – TL – 0.40 0.07 (0.09)
leader4-2 3.57 0.23 0.45 (0.21) 1.38 0.07 0.24 (0.17)
leader4-3 – TL – 1390.79 22.33 (3.38) – TL – 0.21 0.49 (0.37)
leader4-4 – TL – – TL – – TL – – TL – 1.49 1.88 (1.21)
leader4-5 – TL – – TL – – TL – – TL – 1.15 4.06 (2.80)
leader4-6 – TL – – TL – – ML – – TL – – TL – 8.70 (5.92)

lead to satisfying results although the optimizations, especially the reachability
cuts, decreased the running times clearly. A significant speed-up is recognizable
using the MILP solvers. The optimal running times were in some cases smaller
by orders of magnitude considering in particular the large benchmarks for which
the standard formulation could not be solved within the time limit.

To gain more insight into the effects of the different kinds of redundant
constraints, we list more detailed results for crowds5-6 and leader4-5 in Table 3.
The left block of columns contains the running times without SCC cuts. The
column “–” contains the values without forward and backward cuts, the column
“→” the values with forward cuts, “←” the values with backward cuts and
“↔” with both forward and backward cuts. The values for the four different
combinations of reachability cuts (none, only forward, only backward, and both)
are listed in the according rows of the table.

Comparing the values for the reachability cuts, we can observe that they have
a negative effect on the running times for crowds5-6 with MILP solvers. However,
they speed up the solution of leader4-5 by a factor of more than 103, decreasing
the solution times from more than 7200 s to less than 5 s. The same tendency
can be observed for all crowds and leader instances, respectively.

The addition of backward cuts to crowds5-6 reduces the running time to
about one third, and they typically decrease the times for most of the instances.
Since the SCC cuts are even less effective, we only give the minimal value of the
three cases (with SCC input, SCC output, and with both kinds of SCC cuts).

Fig. 5 shows the size of the MCS of crowds5-6 for different values of λ (red solid
lines), comparing it with the size of heuristically computed critical subsystems

Table 3. Runtimes for crowds5-6 and leader4-5 with and without redundant constraints
using Cplex as MILP solver

no SCC cuts with SCC cuts

Reach – → ← ↔ – → ← ↔

cr
ow

d
s5

-6

none
302.03 367.49 103.20 149.73 301.87 342.07 100.26 138.36

(38.39) (44.70) (23.52) (26.07) (38.64) (42.76) (23.52) (25.20)

fwd
656.13 1292.59 651.47 966.57 634.40 833.37 646.64 925.95

(120.04) (148.82) (112.47) (127.94) (118.22) (108.13) (111.18) (125.52)

bwd
4043.93 3613.96 770.90 1070.50 3911.81 3603.49 756.28 1074.36

(384.74) (358.49) (121.02) (130.45) (375.48) (358.25) (119.90) (130.72)

both
2107.84 1403.44 5972.98 2191.83 1986.37 1379.78 5925.31 2210.68

(251.41) (185.34) (546.83) (281.07) (238.58) (183.38) (542.18) (284.51)

le
a
d
er

4
-5

none – TL – – TL – – TL – – TL – – TL – – TL – – TL – – TL –

fwd
284.04 254.56 286.83 261.53 294.71 259.98 285.33 251.69

(40.02) (35.97) (40.85) (36.46) (41.15) (36.21) (40.57) (35.80)

bwd
6.30 6.29 6.27 6.10 5.89 5.73 5.78 5.95

(3.73) (3.69) (3.72) (3.71) (3.65) (3.66) (3.67) (3.69)

both
4.46 4.06 4.34 4.56 4.17 4.41 4.10 4.39

(2.77) (2.80) (2.83) (2.91) (2.77) (2.83) (2.84) (2.90)

using the local search of [10] (blue dotted lines). For λ ≥ 0.23, we could only
compute an upper bound (within 8 % from the optimal value) on the size of the
MCS using our MILP formulation due to the timeout of 2 hours. Also the local
search tool ran into a timeout for λ ≥ 0.35, however, without yielding a critical
subsystem.

6 Conclusion

0

1000

2000

3000

4000

5000

6000

7000

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

λ

states (min)
transitions (min)
states (heur)
transitions (heur)

Fig. 5. Size of the MCS and heuristically de-
termined critical subsystems for crowds5-6 and
different values of λ

In this paper we have shown how
to compute state-minimal criti-
cal subsystems for DTMCs and
MDPs using SMT- and MILP-
based formulations. By adding
redundant constraints, which
trigger implications for SMT
and tighten the LP-relaxation
of the MILP, the solution pro-
cess can be speeded up clearly.
Thereby the MILP formulation is more efficient to solve by orders of magnitude
compared to the SMT formulation. A topic for future research is to analyze the
theoretical complexity of computing MCSs for DTMCs. We conjecture that this
problem is NP-complete. Furthermore we plan to integrate the MILP approach
into the hierarchical counterexample generation tool described in [10].

Acknowledgments. The authors thank the reviewers for pointing out the
relevance of [4].

References

1. Bustan, D., Rubin, S., Vardi, M.Y.: Verifying ω-regular properties of Markov chains.
In: Proc. of CAV. Volume 3114 of LNCS, Springer (2004) 189–201

2. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press (2008)
3. Hermanns, H., Wachter, B., Zhang, L.: Probabilistic CEGAR. In: Proc. of CAV.

Volume 5123 of LNCS, Springer (2008) 162–175
4. Chadha, R., Viswanathan, M.: A counterexample-guided abstraction-refinement

framework for Markov decision processes. ACM TOCL 12(1) (2010) 1–45
5. Aljazzar, H., Leue, S.: Directed explicit state-space search in the generation of coun-

terexamples for stochastic model checking. IEEE Trans. on Software Engineering
36(1) (2010) 37–60

6. Han, T., Katoen, J.P., Damman, B.: Counterexample generation in probabilistic
model checking. IEEE Trans. on Software Engineering 35(2) (2009) 241–257

7. Wimmer, R., Braitling, B., Becker, B.: Counterexample generation for discrete-time
Markov chains using bounded model checking. In: Proc. of VMCAI. Volume 5403
of LNCS, Springer (2009) 366–380

8. Andrés, M.E., D’Argenio, P., van Rossum, P.: Significant diagnostic counterexamples
in probabilistic model checking. In: Proc. of HVC. Volume 5394 of LNCS, Springer
(2008) 129–148

9. Günther, M., Schuster, J., Siegle, M.: Symbolic calculation of k-shortest paths
and related measures with the stochastic process algebra tool Caspa. In: Proc. of
DYADEM-FTS, ACM Press (2010) 13–18

10. Jansen, N., Ábrahám, E., Katelaan, J., Wimmer, R., Katoen, J.P., Becker, B.:
Hierarchical counterexamples for discrete-time Markov chains. In: Proc. of ATVA.
Volume 6996 of LNCS, Springer (2011) 443–452

11. Kattenbelt, M., Huth, M.: Verification and refutation of probabilistic specifications
via games. In: Proc. of FSTTCS. Volume 4 of LIPIcs, Schloss Dagstuhl – Leibniz-
Zentrum für Informatik (2009) 251–262

12. Schmalz, M., Varacca, D., Völzer, H.: Counterexamples in probabilistic LTL model
checking for Markov chains. In: Proc. of CONCUR. Volume 5710 of LNCS, Springer
(2009) 587–602

13. Fecher, H., Huth, M., Piterman, N., Wagner, D.: PCTL model checking of Markov
chains: Truth and falsity as winning strategies in games. Performance Evaluation
67(9) (2010) 858–872

14. Wimmer, R., Becker, B., Jansen, N., Ábrahám, E., Katoen, J.P.: Minimal critical
subsystems as counterexamples for ω-regular DTMC properties. In Brandt, J.,
Schneider, K., eds.: Proc. of MBMV, Kovač-Verlag (2012)

15. de Moura, L.M., Bjørner, N.: Satisfiability modulo theories: introduction and
applications. Communication of the ACM 54(9) (2011) 69–77

16. Dutertre, B., de Moura, L.M.: A fast linear-arithmetic solver for DPLL(T). In:
Proc. of CAV. Volume 4144 of LNCS, Springer (2006) 81–94

17. Schrijver, A.: Theory of Linear and Integer Programming. Wiley (1986)
18. Kwiatkowska, M.Z., Norman, G., Parker, D.: Prism 4.0: Verification of probabilistic

real-time systems. In: Proc. of CAV. Volume 6806 of LNCS, Springer (2011) 585–591
19. Reiter, M.K., Rubin, A.D.: Crowds: Anonymity for web transactions. ACM Trans.

on Information and System Security 1(1) (1998) 66–92
20. Itai, A., Rodeh, M.: Symmetry breaking in distributed networks. Information and

Computation 88(1) (1990) 60–87
21. de Moura, L.M., Bjørner, N.: Z3: An efficient SMT solver. In: Proc. of TACAS.

Volume 4963 of LNCS, Springer (2008) 337–340

