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Abstract— This paper addresses the problem of vegetation
detection from laser measurements. The ability to detect veg-
etation is important for robots operating outdoors, since it
enables a robot to navigate more efficiently and safely in such
environments. In this paper, we propose a novel approach for
detecting low, grass-like vegetation using laser remission values.
In our algorithm, the laser remission is modeled as a function
of distance, incidence angle, and material. We classify surface
terrain based on 3D scans of the surroundings of the robot.
The model is learned in a self-supervised way using vibration-
based terrain classification. In all real world experiments we
carried out, our approach yields a classification accuracy of
over 99%. We furthermore illustrate how the learned classifier
can improve the autonomous navigation capabilities of mobile
robots.

I. INTRODUCTION

Autonomous outdoor navigation is an active research field

in robotics. In most of the outdoor navigation scenarios in-

cluding autonomous cars, autonomous wheelchairs, surveil-

lance robots, or transportation vehicles, the classification of

the terrain plays an important role as most of the robots have

been designed for navigation on streets or paved paths rather

than on natural surfaces covered by grass or vegetation. The

navigation outside of paved paths might be uncomfortable

for passengers and might even introduce the risk of the robot

getting stuck. Furthermore, driving on grass will in general

increase wheel slippage and in this way increase potential

errors in the odometry. Accordingly, the robust detection of

vegetated areas is an important requirement for robots in any

of the above-mentioned situations.

In this paper, we propose a novel laser-based classification

approach that is especially suited for detecting low vegetation

typically found in structured outdoor environments such as

parks or campus sites. We classify surface terrain based on

3D scans of the surrounding of the robot in order to allow

the robot to take the classification result into account during

trajectory planning. It exploits an effect that is well known

from satellite image analysis: Chlorophyll which is found

in living plants strongly reflects near-IR light [13]. Often

used laser scanners such as the SICK LMS 291-S05 scanner

emit near-IR light and return the reflectivity of the object

they hit. Our approach models this remission value of the

laser scanner as a function of terrain class, incidence angle,

and measured distance. Classification is done using a support
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Fig. 1. Picture of a street and vegetation (top) and typical classification
results obtained based on range differences (middle) and remission values
(bottom). Shown is a bird’s eye view of a 3D scan of the area depicted at the
top with a maximum range of 5 m. Whereas points classified as street are
depicted in blue, points corresponding to vegetation are colored in green.

vector machine. To integrate classification results, we apply

a probabilistic mapping method similar to occupancy grid

mapping [12]. The model is learned in a self-supervised

way using a vibration-based classification approach to label

training data. In our experiments, we demonstrate that our

approach can be used to accurately map vegetated areas and

do so with a higher accuracy than standard techniques that

are solely based on range values (see Fig. 1). We furthermore

present an application to autonomous navigation in structured

outdoor environments in which a robot benefits from the

knowledge about the vegetation in its surroundings.

This paper is organized as follows. After discussing related

work, we will briefly describe Support Vector machines

which are employed for classification in our approach.

Sec. IV then discusses the properties of the remission values.

In Sec. V we then present our approach for self-supervised

learning of the terrain classification. Finally, in Sec. VI we

describe the experimental results obtained with real data and

with real robots navigating through our university campus.



II. RELATED WORK

There exist several approaches for detecting vegetation

using laser measurements. Wolf et al. [23] use hidden

Markov models to classify scans from a tilted laser scanner

into navigable (e.g., street) and non-navigable (e.g., grass)

regions. The main feature for classification is the variance

in height measurements relative to the robot height. Other

approaches analyze the distribution of 3D endpoints in a

sequence of scans [8], [9], [10]. However, flat vegetation

such as a freshly mowed lawn can not be reliably detected

using this feature alone.

A combination of camera and laser measurements has

been used to detect vegetation in several approaches [2],

[6], [11], [22]. In a combined system, Wellington et al. [22]

use the remission value of a laser scanner in addition

to density features and camera images as a classification

feature. However, they do not model the dependency between

remission, measured range, and incidence angle. Probably

due to this fact, they found the feature to be only ”moderately

informative”.

The approach that is closest to our approach has been

proposed by Bradley et al. [2]. Chlorophyll-rich vegetation

is detected using a combination of laser range measurements,

regular and near-infrared cameras. Vegetation is recognized

by comparing measurements from the different types of

cameras. 3D laser measurements of the environment are

projected into the camera images. A classifier is then trained

using the vegetation feature and features from the distribution

of 3D endpoints. According to the authors the approach

yields a classification accuracy of up to 95% but requires

sophisticated camera equipment.

In contrast to those combined systems, our approach uses

a laser scanner as its sole sensor. It is thus independent of

lighting conditions and can be used on a variety of existing

robot systems. Additionally, hand-labeling of training data is

not required in our approach.

Terrain types have also been classified using vibration

sensors on a robot [3], [7], [15], [21]. In these approaches,

the robot traverses the terrain and the induced vibration

is measured using accelerometers. The measurements are

usually analyzed in the Fourier domain. Sadhukhan et al. [15]

presented an approach based on neural networks. A similar

approach is presented by DuPont et al. [7]. Brooks and

Iagenemma [3] use a combination of principal component

analysis and linear discriminant analysis to classify terrain.

More recently, SVMs have been used by Weiss et al. [20],

[21].

Self-supervised learning has previously been used by

Dahlkamp et al. [5] in a vision-based road detection sys-

tem. Here, laser measurements are used to identify nearby

traversable surfaces. This information is then used to label

camera image patches in order to train a classifier that is able

to predict traversability in the far range. In our approach, we

adopt the idea of self-supervision to generate labeled training

data. We apply a vibration-based classifier to label laser

measurements recorded by the robot. This labeled dataset

is then used to train a laser-based vegetation classifier. Both

classifiers used in our approach have been implemented using

support vector machines which will be introduced in the

following.

III. SUPPORT VECTOR MACHINES

Support vector machines (SVMs) are a kernel-based learn-

ing method which is widely used for classification and

regression [16]. A SVM is essentially a hyperplane learning

algorithm. Two classes of data points are separated by a

hyperplane so that the margin between training points and

the plane is maximized:

max
w∈H,b∈R

min{||x − xi|| | x ∈ H, 〈w, x〉 + b = 0}, (1)

where H is some dot product space, xi are training points,

and w is a weighting vector. The following decision function

is used to determine the class label y:

f(x) = 〈w, x〉 + b (2)

y = sgn(f(x)) (3)

The hyperplane can be constructed efficiently by solving

a quadratic programming problem. To separate non-linear

classes, the so-called kernel trick is applied. The training

data is first mapped into a higher-dimensional feature space

using a kernel function. A separating hyperplane is then

constructed in this features space which yields a nonlinear

decision boundary in the input space. In practice, the Gaus-

sian Radial Basis Function (RBF) is often used as a kernel

function given by

k(x, x′) = e
−(x−x

′)2

2l2 , (4)

with the so-called length-scale parameter l.

There exist derivatives of the basic SVM-formulation

which allow for training errors. Among those, C-SVM is a

popular method. An addition parameter commonly denoted

as C has to be optimized which adjusts the trade-off between

maximizing the margin and minimizing the training error.

Throughout this work, we use the SVM implementation

of LibSVM [4].

IV. USING REMISSION VALUES FOR

TERRAIN CLASSIFICATION

The goal of our terrain classification algorithm is to pre-

cisely classify the area containing vegetation. This classifica-

tion has to be made early enough for the robot’s planner to

take the classification into account. For this reason, we focus

on classifying three-dimensional scans of the environment

surrounding the robot.

We are interested in distinguishing flat vegetation such as

grass from drivable surfaces such as streets or paved paths.

For sake of brevity, we will call those classes of materials

”street” and ”vegetation” in the following.

Compared to an approach based purely on the scan point

distribution (see experiment in Sec. VI-A) a far better

classification accuracy can be achieved when the remission

value of laser measurements is used to classify endpoints.



Fig. 2. Left: typical remission measurements of a SICK LMS 291-S05 for
street (blue) and vegetation class (green). Right: mean remission values for
both classes.

Fig. 3. Classification of the scene depicted in Fig. 1 using the mean
remission value (see Fig. 2, right) to distinguish both classes.

The SICK LMS laser scanner uses light at a wavelength of

905 nm which is within the near-infrared range. Chlorophyll

which is found in living plants strongly reflects near-IR

light [13]. The remission values returned by the scanner

depends on the material of the measured surface, on the

distance at which it is hit, and on the angle of incidence [1].

Unfortunately, this relation is non-linear as the example of

measurements in Fig. 2 shows. It is essential to take the

measured range as well as the angle of the measurement into

account. Averaging the remission value over all measured

ranges and angles will lead to wrong classification results

especially in the near range of up to three meters. This can

be seen in Fig. 3. Here, the scene from Fig. 1 was classified

using the mean remission value for both classes (see Fig. 2)

ignoring the range and incidence angle.

In our approach, we apply a C-SVM to classify laser

beams depending on the measured range, incidence angle,

and remission using a RBF-kernel. Other classification meth-

ods might certainly be used instead of a SVM as long as

they are able to classify data which is only separable in

a non-linear way. The input to the learning algorithm is a

labeled set of laser measurements. Each data point consists

of a range measurement, incidence angle, and a remission

value. By determining the separating hyperplane between

both data sets, we implicitly model the remission functions

for the street and vegetation class.

V. SELF-SUPERVISED LEARNING FOR

ROBUST TERRAIN CLASSIFICATION

To avoid tedious hand-labeling of dense three-dimensional

training data our algorithm uses a self-supervised training

method [5]. While the robot is moving it generates a 3D

model of the environment using the method described in

Sec. V-B. Incidence angles are estimated using the surface

normal in the 3D model as well as the angle of the laser

beam relative to the robot.

For each measured scan point the remission value, inci-

dence angle, and distance are stored. As the robot moves

through the environment it traverses previously scanned

surface patches. Those patches are labeled using the vibration

classifier described below and are then fed to the SVM as

training data. The training is done offline. To optimize the

length-scale parameter l of the kernel as well as the soft-

margin parameter C, we perform a systematic grid search

on the grid log
2
l ∈ {−15, ..., 3} and log

2
C ∈ {−5, ..., 15}.

The optimal parameters are determined using 5-fold cross

validation.

Once the classifier has been trained, the model can be

used on any robot which is using the same sensor in a

similar configuration. More specifically, the laser should be

mounted so that the laser is measuring the surface at angles

and distances similar to those observed during the training

phase.

A. Terrain Classification based on the Vibration of the

Vehicle

We use a vibration-based classifier to label training data.

Different types of terrain induce vibrations of a different

characteristic to the robot. These vibrations can be measured

by an inertial measurement unit (IMU) and can be used

to classify the terrain the robot traverses. Note that such

classifiers do not allow the prediction of terrain classes in

areas which have not been traversed yet. In our system,

we only need to differentiate between vegetation and streets

(non-vegetation) to generate training data for the SVM.

In our experiments, we use a XSens MTi to measure the

acceleration along the z-axis. We apply the Fourier transform

to the raw acceleration data. In our algorithm, a 128-point

FFT is used to capture the frequency spectrum of up to 25 Hz.

The frequency spectrum also depends on the speed of the

robot. To account for this dependency, it has been suggested

to train several classifiers at different speeds [20]. In our

system, however, we decided to treat the forward velocity

as a training feature instead. In addition to this, we also use

the rotational velocity as a feature to account for vibrations

which result from the skid-steering of our robot.

To classify the acceleration and velocity data, we again use

a C-SVM with a RBF-kernel. Our feature vector x consists

of the first 32 Fourier magnitudes |Fm|, the mean forward

velocity v̄t and the mean rotational velocity v̄r of the robot

over the sample period

|Fm| =
√

(Re Fm)2 + (Im Fm)2,m∈{0,...,31} (5)

x = {|F0|, ..., |F31|, v̄t, r̄t}, (6)

where Fm denotes the m-th Fourier component. The classi-

fier was trained by recording short tracks of about 50 m at

varying speeds both on a street and on vegetation. Parameter

optimization was done using grid search and 5-fold cross

validation.



In our experiments, we achieved a high classification

accuracy and thus this data is well suited to label the training

data for the laser-based classification.

B. Mapping of Vegetation

We use multi-level surface maps [18] to model the envi-

ronment. This representation uses a 2D grid and stores in

each cell a set of patches representing individual surfaces

at different heights. In our approach, we additionally store

the probability of each surface patch to contain vegetation.

Let P (vi) denote this probability of patch i. In general,

surface patches will be observed multiple times. Therefore,

we need to probabilistically combine results from several

measurements. In this way, the uncertainty in classification

is explicitly taken into account.

Let zt be a laser measurement at time t. Analogous to

Moravec [12], we obtain an update rule for P (vi | z1:t).
First we apply Bayes’ rule and obtain

P (vi | z1:t) =
P (zt | vi, z1:t−1)P (vi | z1:t−1)

P (zt | z1:t−1)
. (7)

We then compute the ratio

P (vi | z1:t)

P (¬vi | z1:t)
=

P (zt | vi, z1:t−1)

P (zt | ¬vi, z1:t−1)

P (vi | z1:t−1)

P (¬vi | z1:t−1)
. (8)

Similarly, we obtain

P (vi | zt)

P (¬vi | zt)
=

P (zt | vi)

P (zt | ¬vi)

P (vi)

P (¬vi)
,

which can be transformed to

P (zt | vi)

P (zt | ¬vi)
=

P (vi | zt)

P (¬vi | zt)

P (¬vi)

P (vi)
. (9)

If we apply the Markov assumption that the current observa-

tion is independent of previous observations given we know

that a patch contains vegetation

P (zt | vi, z1:t−1) = P (zt | vi) (10)

and utilize the fact that P (¬vi) = 1 − P (vi), we obtain

P (vi | z1:t)

1 − P (vi | z1:t)
=

P (vi | zt)

1 − P (vi | zt)

P (vi | z1:t−1)

1 − P (vi | z1:t−1)

1 − P (vi)

P (vi)
. (11)

This equation can be transformed into the following update

formula:

P (vi | z1:t) =
[

1 +
1 − P (vi | zt)

P (vi | zt)

1 − P (vi | z1:t−1)

P (vi | z1:t−1)

P (vi)

1 − P (vi)

]−1

(12)

To perform the update step, we need an inverse sensor model

P (vi | z). In our system, this sensor model is based on the

remission value of the laser. The SVM-classifier is used to

model the measurement probabilities as described in the next

section. Here, the prior probability of P (vi) was set to 0.5.

Fig. 4. Robots used in our experiments.

C. Class Probabilities

The decision function of Support Vector Machines (see

Eq. 3) produces a class label y which is not a probability (y

is either 1 or -1).

Several methods have been proposed to map the output

of SVMs to posterior class probabilities [14], [19]. Among

those a popular approach is Platt’s method [14]. It uses a

parametric model to fit the posterior given by

P (y = 1 | f) = (1 + exp(Af + B))−1. (13)

The parameters A and B are determined using maximum

likelihood estimation from a training set (fi, yi), where fi

are the outputs of the function given in Eq. 2 and yi are the

corresponding class labels. For details of the optimization

step see [14]. In our approach, this method is used to obtain

the inverse sensor model P (vi | z).

VI. EXPERIMENTS

Our approach has been implemented and evaluated in

several experiments. The experiments are designed to demon-

strate that our approach is suitable to allow robots to reliably

detect vegetation and thus improves robust navigation in

structured outdoor environments.

We used two different robot systems (see Fig. 4). The self-

supervised learning approach is evaluated using an ActivMe-

dia Pioneer 2 AT, which is able to traverse low vegetation.

For mapping large environments and for an autonomous

driving experiment, we use an ActivMedia Powerbot plat-

form. This robot cannot safely traverse grass since its castor

wheels will block the robot due to its weight. Both robots

are equipped with SICK LMS S291-S05 laser scanners on

pan-tilt units. In addition to that, the Pioneer robot carries an

XSens MTi IMU to measure vibrations. Three-dimensional

scans are gathered by tilting the laser scanner from 50

degrees upwards to 30 degrees downwards. We use the raw

(unnormalized) remission values provided by the scanner.

We limit the classification to scans with a range smaller

than 5.0 meters. The approach itself is not limited in range.

However, at a laser resolution of one degree and a low height

of the sensor relative to the ground (approx. 0.5 m), long

range data will be too sparse both to gather training data

and to reliably detect drivable surfaces and obstacles.

A. Vegetation detection using range differences

In a first experiment, we implemented a vegetation de-

tection algorithm based purely on the range differences of



Fig. 5. Self-supervised learning. Left: the data set which is used to train
the classifier. Right: test set recorded at a different location.

neighboring laser measurements similar to the one proposed

by Wolf et al. [23]. This method is only used for a com-

parison with our proposed classification approach. Three-

dimensional data is acquired by gathering a sweep of 2D

scans. For each 2D scan the 2D endpoints pi = 〈xi, yi〉 are

computed from the range and angle measurements 〈ri, αi〉.
A local feature di is then determined for every scan point

di = xi − xi−1. (14)

This feature captures the local roughness of the terrain. To

cope with flat but tilted surfaces we classify scans based

on the absolute difference in di between neighboring range

measurements as suggested in [11]. Furthermore, we also use

the measured range as a training feature to account for the

varying data density from near to far scans. A SVM is used

to train a classifier based on these features.

In our experiments, we achieve a classification accuracy

of about 75% using the described method. An example of

the classification results can be seen in Fig. 1. Similar results

have been reported by other researchers [2].

B. Self-supervised Learning

To train our remission-based classifier, we manually

steered the Pioneer AT robot through an outdoor environment

consisting of a street and an area covered with grass. We

acquired 3D scans approximately every 4 m. While the robot

was driving the IMU measured the vibration induced to

the robot. To correct odometry errors of the robot, we em-

ployed a state-of-the-art SLAM approach [17] and 3D scan-

matching. We trained our classifier using the self-supervised

approach described in Sec. V. The training set is visualized in

Fig. 5a. The data recorded at the border region between street

and vegetation were ignored since the precise location of the

border cannot be determined using the vibration sensor. The

model for the laser-based classifier was trained using 19,989

vegetation and 11,248 street samples.

To further evaluate the precision of the classifier, we

recorded separate test data at a different location (see Fig. 5b

and Fig. 6). The test set contains 36,304 vegetation and

28,883 street measurements. Again, the labeling of the data

was carried out using the vibration-based classifier. The

previously trained classifier reached a precision of 99.9 % on

the test data; the recall is 99.6 %. The confusion matrix is

given in Table I. Note that such accurate classification results

are not due to overfitting. Fig. 2 illustrates that a non-linear

function (as learned by the SVM in our approach) can clearly

separate the classes.

TABLE I

CONFUSION MATRIX FOR EXP. VI-B (NUMBER OF DATA POINTS)

vegetation street

vegetation 36,300 138

street 4 28,745

Fig. 6. Aerial view of the computer science campus in Freiburg. Approxi-
mated robot trajectories are shown for the training (top, yellow) and the test
set (bottom, red). Courtesy of Google Maps, Copyright 2008, DigitalGlobe.

C. 3D Mapping

In this experiment, the Powerbot robot was steered across

the computer science campus at the University of Freiburg.

The scanning laser of the robot was tilted to a fixed angle

of 20 degrees downwards. In this way, a fairly large area

could be mapped in less than 15 minutes. The length of

the trajectory is 490 m. The vegetation classifier was used

to map vegetation in the three-dimensional model of the

environment. To properly integrate multiple measurements,

we used the mapping approach described in Sec. V-B with

a cell size of 0.1 m.

Due to a significantly different hardware setup than on the

Pioneer AT, we were not able to use the model generated in

Sec. VI-B. Instead, we recorded a training set of 12,153 grass

and 10,448 street samples by placing the robot in front of flat

areas containing only street and only vegetation. This method

is only applicable if such example data can be gathered

and thus should be considered inferior to the self-supervised

approach described in Sec. V.

Fig. 7. Mapping of a large outdoor environment. The laser was tilted at a
fixed angle of 20 degrees while the robot was moving. The figure shows a
2D projection of the 3D map.



Fig. 8. Autonomous navigation experiment. Although the shortest obstacle-
free path from the start to the goal position led over grass, the robot could
reliably avoid the vegetated areas by using our vegetation classifier and
traveled over the paved streets to reach its goal.

Compared to the aerial image of the campus site in Fig. 6,

the mapping result shown in Fig. 7 is highly accurate. Even

small amounts of vegetation, for example between tiles on a

path, can be identified. To evaluate the accuracy of the map

created during this experiment, we manually marked wrongly

classified cells. Of a total of 271,638 cells (75,622 vegetation,

196,016 street), we found 547 false positives and 194 false

negatives. This corresponds to a precision of 99.23 % and a

recall of 99.74 %.

D. Autonomous Navigation

As mentioned above, the Powerbot cannot safely traverse

vegetated areas. In the experiment depicted in Fig. 8 (see

also our video attachment), the robot was told to navigate

to a goal position 80 m in front while avoiding vegetation.

Since the robot did not have a map, it explored the envi-

ronment in the process of reducing its distance to the goal

location. Thereby, it used the vegetation classifier to detect

vegetation. The environment was represented as described in

Sec. V-B. Without knowledge about the specific terrain, the

shortest obstacle-free path would have led the robot across a

large area containing grass. By considering the classification

results in the path costs, however, the planner chose a safe

trajectory over the street.

VII. CONCLUSION

In this paper, we proposed a new approach to vegetation

detection using the remission values of a laser scanner.

By predicting vegetation in the surrounding of a robot,

our approach improves robot navigation in structured out-

door environments. The laser classifier is learned in a self-

supervised fashion by means of a support vector machine

using a vibration-based terrain classifier to gather training

data. The approach has been implemented and evaluated

in several real-world experiments. The experiments show

that our approach is able to accurately detect low, grass-

like vegetation with an accuracy of more than 99%. We also

demonstrated that the terrain classification can be used to

improve the navigation behavior of a robot.

Our current approach is limited to detecting flat vegetation

due to the self-supervised training method. In future work,

we will investigate whether the described approach can also

be applied to classify tall vegetation such as trees or bushes.

We will also look into using remission values provided by

the recently introduced Hokuyo UTM-30LX. With a weight

of 370 g this sensor could allow vegetation detection on an

even broader range of robots including humanoids and small

scale robots.
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