Uni-Logo
You are here: Home Staff Gabriel Leivas Oliveira
Articleactions

Gabriel Leivas Oliveira

Albert-Ludwigs-Universität Freiburg
Technische Fakultät
Autonome Intelligente Systeme
Georges-Köhler-Allee 080
D-79110 Freiburg i. Br., Germany
Office:   080-xx-xxx

oliveira@informatik.uni-freiburg.de
Fax:   +49 761 203-8007

About me

  • 03/2005 - 12/2009: Bachelor o.Sc. in Computer Engineering, Federal University of Rio Grande
  • 03/2010 - 05/2012: Master o.Sc. in Computer Science, Federal University of Minas Gerais
  • 08/2012 - 09/2014: Master o.Sc. in Computer Science, University of Minnesota
  • 10/2014 - up to now: Working at the Autonomous Intelligent Systems group of Prof. Dr. Wolfram Burgard as Doctoral Research Assistant

Research Interests

  • Computer Vision
  • Robotics Perception

Datasets

  • Human Part Segmentation Datasets Datasets
  • Range Segmentation Dataset Range

Recent Publications

    G. Oliveira, C. Bollen, W. Burgard, and T. Brox.
    Efficient and Robust Deep Networks for Semantic Segmentation.. The International Journal of Robotics Research (IJRR),, 2017.
    .pdf ]
  • T. Naseer, G. Oliveira, W. Burgard, and T. Brox.
    Semantics-aware Visual Localization under Challenging Perceptual Conditions. . IEEE International Conference on Robotics and Automation (ICRA), Singapore, 2017.
    .pdf ]
  • G. Oliveira, W. Burgard, and T. Brox.
    Efficient Deep Models for Monocular Road Segmentation. . IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2016), Daejeon, Korea, 2016.
    .pdf ]
  • A. Valada, G. Oliveira, W. Burgard, and T. Brox.
    Deep Multispectral Semantic Scene Understanding of Forested Environments using Multimodal Fusion. . The 2016 International Symposium on Experimental Robotics (ISER 2016), Tokyo, Japan, October 2016.
    .pdf ]
  • G. Oliveira, A. Valada, C. Bollen, W. Burgard, and T. Brox.
    Deep Learning for Human Part Discovery in Images. IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 2016.
    .pdf ]
Benutzerspezifische Werkzeuge