Uni-Logo
You are here: Home Staff Niclas Vödisch
Articleactions

Niclas Vödisch

Albert-Ludwigs-Universität Freiburg
Technische Fakultät
Autonome Intelligente Systeme
Georges-Köhler-Allee 080
D-79110 Freiburg i. Br., Germany
Office:   080-00-022

Email: voedisch@cs.uni-freiburg.de
Website: vniclas.github.io

About me

  • 06/2021 - present: Working at the Autonomous Intelligent Systems group of Prof. Dr. Wolfram Burgard as Ph.D. student; collaborating with the Robot Learning group led by Prof. Dr. Abhinav Valada.
  • 09/2018 - 05/2021: M.Sc. in Computational Science and Engineering at ETH Zurich, Switzerland
  • 08/2016 - 05/2017: Visiting student at Carnegie Mellon University in Pittsburgh, PA, USA
  • 09/2014 - 06/2018: B.Sc. in Computational Engineering Science at RWTH Aachen University, Germany

Research Interests

  • Machine Perception
  • Simulatenous Localization and Mapping (SLAM)
  • Autonomous Driving

Current Research Projects

Teaching

Students

  • LiDAR Distillation for Monocular 3D Object Detection and Online HD Map Segmentation, Markus Käppeler, Master Project, ongoing (with Kürsat Petek)
  • PADLoC: Deep Loop Closure Detection and Registration Using Panoptic Attention, José Arce y de la Borbolla, Master Thesis, 06/2022 (with Daniele Cattaneo)

Publications

Conference Papers

  • N. Vödisch, D. Cattaneo, W. Burgard, and A. Valada
    Continual SLAM: Beyond Lifelong Simultaneous Localization and Mapping through Continual Learning
    Proceedings of the International Symposium on Robotics Research (ISRR), 2022
    arXiv Video Website BibTeX
  • L. Andresen*, A. Brandemuehl*, A. Hönger*, B. Kuan*, N. Vödisch*, H. Blum, V. Reijgwart, L. Bernreiter, L. Schaupp, J. J. Chung, M. Bürki, M. R. Oswald, R. Siegwart, and A. Gawel
    Accurate Mapping and Planning for Autonomous Racing
    2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 2021
    arXiv IEEE Xplore Video BibTeX

Journal Papers

  • N. Vödisch, O. Unal, K. Li, L. Van Gool, and D. Dai
    End-to-End Optimization of LiDAR Beam Configuration for 3D Object Detection and Localization
    IEEE Robotics and Automation Letters (RA-L), vol. 7, no. 2, pp. 2242-2249, April 2022
    arXiv IEEE Xplore Video Code BibTeX
  • N. Vödisch*, D. Dodel*, and M. Schötz*
    FSOCO: The Formula Student Objects in Context Dataset
    SAE International Journal of Connected and Automated Vehicles, vol. 5, 2022
    arXiv SAE Website BibTeX
The asterisk (*) denotes equal contribution.
Benutzerspezifische Werkzeuge